Feasibility of bioelectrical impedance spectroscopy measurement before and after thoracentesis

Matthias Daniel Zink, Sören Weyer, Karolin Pauly, Andreas Napp, Michael Dreher, Steffen Leonhardt, Nikolaus Marx, Patrick Schauerte, Karl Mischke, Matthias Daniel Zink, Sören Weyer, Karolin Pauly, Andreas Napp, Michael Dreher, Steffen Leonhardt, Nikolaus Marx, Patrick Schauerte, Karl Mischke

Abstract

Background: Bioelectrical impedance spectroscopy is applied to measure changes in tissue composition. The aim of this study was to evaluate its feasibility in measuring the fluid shift after thoracentesis in patients with pleural effusion.

Methods: 45 participants (21 with pleural effusion and 24 healthy subjects) were included. Bioelectrical impedance was analyzed for "Transthoracic," "Foot to Foot," "Foot to Hand," and "Hand to Hand" vectors in low and high frequency domain before and after thoracentesis. Healthy subjects were measured at a single time point.

Results: The mean volume of removed pleural effusion was 1169 ± 513 mL. The "Foot to Foot," "Hand to Hand," and "Foot to Hand" vector indicated a trend for increased bioelectrical impedance after thoracentesis. Values for the low frequency domain in the "Transthoracic" vector increased significantly (P < 0.001). A moderate correlation was observed between the amount of removed fluid and impedance change in the low frequency domain using the "Foot to Hand" vector (r = -0.7).

Conclusion: Bioelectrical impedance changes in correlation with the thoracic fluid level. It was feasible to monitor significant fluid shifts and loss after thoracentesis in the "Transthoracic" vector by means of bioelectrical impedance spectroscopy. The trial is registered with Registration Numbers IRB EK206/11 and NCT01778270.

Figures

Figure 1
Figure 1
A model of the frequency-dependent electrical behavior of body tissue. At infinite high frequencies, the current passes more or less straight through all kinds of tissue; at low frequencies, the current avoids the cells.
Figure 2
Figure 2
Measured vectors of bioelectrical impedance spectroscopy: (a) “Foot to Foot” (F); (b) “Foot to Hand” (H); (c) “Hand to Hand” (B); and (d) “Transthoracic” (T).
Figure 3
Figure 3
Effect of thoracentesis in the low frequency domain (Re): (a) impedances using the “Foot to Hand” vector (before 437 (95% CI 369–505) Ω; after 477 (95% CI 402–552) Ω; P = 0.021); (b) impedances using the “Transthoracic” vector (before 34.46 (95% CI 29.08–39.84) Ω; after 38.28 (95% CI 31.85–44.71) Ω; P = 0.001).
Figure 4
Figure 4
Impedances using the low frequency domain in patients before and after thoracentesis and in the control group: (a) using the “Foot to Hand” vector before (437 (369–505) Ω) and after thoracentesis (477 (95% CI 402–552) Ω), control group (512 (95% CI 483–541) Ω); (b) using the “Transthoracic” vector before (34.46 (29.08–39.84) Ω) and after thoracentesis (95% CI 38.28 (95% CI 31.85–44.71) Ω), control group (65.18 (95% CI 59.8–70.56) Ω).
Figure 5
Figure 5
Correlation between PE and impedances using different measuring vectors: (a) “Foot to Hand” vector in the low frequency domain (B_Re; r = −0.65; P = 0.001; CI 95% −0.85 to −0.31), (b) “Foot to Hand” vector in the high frequency domain (B_Ri; r = −0.48; P = 0.03; CI 95% −0.76 to  –0.06), (c) “Transthoracic” vector in the low frequency domain (T_Re; r = −0.37; P = 0.1; CI 95% −0.69 to 0.07), and (d) “Transthoracic” vector in the high frequency domain (T_Ri; r = −0.26; P = 0.26; CI 95% −0.62 to 0.2).

References

    1. Sahn S. A., Heffner J. E. Pleural fluid analysis. In: Light R. W., Lee Y. C. G., editors. Textbook of Pleural Diseases. 2nd. London, UK: Arnold Press; 2008. pp. 209–211.
    1. Froudarakis M. E. Diagnostic work-up of pleural effusions. Respiration. 2008;75(1):4–13. doi: 10.1159/000112221.
    1. Light R. W. Pleural effusion. The New England Journal of Medicine. 2002;346(25):1971–1977. doi: 10.1056/nejmcp010731.
    1. Cartaxo A. M., Vargas F. S., Salge J. M., et al. Improvements in the 6-min walk test and spirometry following thoracentesis for symptomatic pleural effusions. Chest. 2011;139(6):1424–1429. doi: 10.1378/chest.10-1679.
    1. Qureshi N. R., Rahman N. M., Gleeson F. V. Thoracic ultrasound in the diagnosis of malignant pleural effusion. Thorax. 2009;64(2):139–143. doi: 10.1136/thx.2008.100545.
    1. Colice G. L., Curtis A., Deslauriers J., et al. Medical and surgical treatment of parapneumonic effusions: an evidence-based guideline. Chest. 2000;118(4):1158–1171. doi: 10.1378/chest.118.4.1158.
    1. Cornish B. H., Thomas B. J., Ward L. C. Improved prediction of extracellular and total body water using impedance loci generated by multiple frequency bioelectrical impedance analysis. Physics in Medicine and Biology. 1993;38(3):337–346. doi: 10.1088/0031-9155/38/3/001.
    1. Piccoli A. Estimation of fluid volumes in hemodialysis patients: comparing bioimpedance with isotopic and dilution methods. Kidney International. 2014;85(4):738–741. doi: 10.1038/ki.2013.434.
    1. Sim P. Y., Su T. T., Abd Majid H., Nahar A. M., Jalaludin M. Y. A comparison study of portable foot-to-foot bioelectrical impedance scale to measure body fat percentage in asian adults and children. BioMed Research International. 2014;2014:10. doi: 10.1155/2014/475659.475659
    1. Beltran N. E., Garcia L. E., Garcia-Lorenzana M. Gastric tissue damage analysis generated by ischemia: bioimpedance, confocal endomicroscopy, and light microscopy. BioMed Research International. 2013;2013:8. doi: 10.1155/2013/824682.824682
    1. Chao P.-J., Huang E.-Y., Cheng K.-S., Huang Y.-J. Electrical impedance spectroscopy as electrical biopsy for monitoring radiation sequelae of intestine in rats. BioMed Research International. 2013;2013:7. doi: 10.1155/2013/974614.974614
    1. Piccoli A., Codognotto M., Cianci V., et al. Differentiation of cardiac and noncardiac dyspnea using bioelectrical impedance vector analysis (BIVA) Journal of Cardiac Failure. 2012;18(3):226–232. doi: 10.1016/j.cardfail.2011.11.001.
    1. Campbell J. H., Harris N. D., Zhang F., Brown B. H., Morice A. H. Clinical applications of electrical impedance tomography in the monitoring of changes in intrathoracic fluid volumes. Physiological Measurement. 1994;15(supplement 2a):A217–A222. doi: 10.1088/0967-3334/15/2a/027.
    1. Petersen J. R., Jensen B. V., Drabaek H., Viskum K., Mehlsen J. Electrical impedance measured changes in thoracic fluid content during thoracentesis. Clinical Physiology. 1994;14(4):459–466. doi: 10.1111/j.1475-097X.1994.tb00404.x.
    1. Zerahn B., Jensen B. V., Olsen F., Petersen J. R., Kanstrup I.-L. The effect of thoracentesis on lung function and transthoracic electrical bioimpedance. Respiratory Medicine. 1999;93(3):196–201. doi: 10.1016/s0954-6111(99)90008-2.
    1. de Lorenzo A., Andreoli A., Matthie J., Withers P. Predicting body cell mass with bioimpedance by using theoretical methods: a technological review. Journal of Applied Physiology. 1997;82(5):1542–1558.
    1. Grimnes S., Martinsen Ø. G. Cole equations. In: Grimnes S., Martinsen Ø. G., editors. Bioimpedance and Bioelectricity Basics. 2nd. London, UK: Elsevier Academic Press; 2008. pp. 304–313.
    1. Weyer S., Zink M. D., Wartzek T., et al. Bioelectrical impedance spectroscopy as a fluid management system in heart failure. Physiological Measurement. 2014;35(6):917–930. doi: 10.1088/0967-3334/35/6/917.
    1. Hooper C., Lee Y. C. G., Maskell N. Investigation of a unilateral pleural effusion in adults: British Thoracic Society pleural disease guideline 2010. Thorax. 2010;65(supplement 2):ii4–ii17. doi: 10.1136/thx.2010.136978.
    1. Fein A., Grossman R. F., Jones J. G., Goodman P. C., Murray J. F. Evaluation of transthoracic electrical impedance in the diagnosis of pulmonary edema. Circulation. 1979;60(5):1156–1160. doi: 10.1161/01.cir.60.5.1156.
    1. Saunders C. E. The use of transthoracic electrical bioimpedance in assessing thoracic fluid status in emergency department patients. American Journal of Emergency Medicine. 1988;6(4):337–340. doi: 10.1016/0735-6757(88)90151-9.
    1. Krantz T., Cai Y., Lauritsen T., Warberg J., Secher N. H. Accurate monitoring of blood loss: thoracic electrical impedance during hemorrhage in the pig. Acta Anaesthesiologica Scandinavica. 2000;44(5):598–604. doi: 10.1034/j.1399-6576.2000.00519.x.
    1. Arad M., Zlochiver S., Davidson T., Shoenfeld Y., Adunsky A., Abboud S. The detection of pleural effusion using a parametric EIT technique. Physiological Measurement. 2009;30(4):421–428. doi: 10.1088/0967-3334/30/4/006.
    1. Kyle U. G., Bosaeus I., de Lorenzo A. D., et al. Bioelectrical impedance analysis. Part I. Review of principles and methods. Clinical Nutrition. 2004;23(5):1226–1243. doi: 10.1016/j.clnu.2004.06.004.
    1. Beckmann L., van Riesen D., Leonhardt S. Optimal electrode placement and frequency range selection for the detection of lung water using bioimpedance spectroscopy. Proceedings of the IEEE Engineering in Medicine and Biology Society Conference; 2007; pp. 2685–2688.
    1. Luepschen H., van Riesen D., Beckmann L., Hameyer K., Leonhardt S. Modeling of fluid shifts in the human thorax for electrical impedance tomography. IEEE Transactions on Magnetics. 2008;44(6):1450–1453. doi: 10.1109/tmag.2007.916131.
    1. Grimnes S., Martinsen Ø. G. Basic biomaterials. In: Grimnes S., Martinsen Ø. G., editors. Bioimpedance and Bioelectricity Basics. 2nd. London, UK: Elsevier Academic Press; 2008. pp. 93–137.

Source: PubMed

3
Subscribe