Personalized Antidepressant Selection and Pathway to Novel Treatments: Clinical Utility of Targeting Inflammation

Manish K Jha, Madhukar H Trivedi, Manish K Jha, Madhukar H Trivedi

Abstract

Major depressive disorder (MDD) is a chronic condition that affects one in six adults in the US during their lifetime. The current practice of antidepressant medication prescription is a trial-and-error process. Additionally, over a third of patients with MDD fail to respond to two or more antidepressant treatments. There are no valid clinical markers to personalize currently available antidepressant medications, all of which have similar mechanisms targeting monoamine neurotransmission. The goal of this review is to summarize the recent findings of immune dysfunction in patients with MDD, the utility of inflammatory markers to personalize treatment selection, and the potential of targeting inflammation to develop novel antidepressant treatments. To personalize antidepressant prescription, a c-reactive protein (CRP)-matched treatment assignment can be rapidly implemented in clinical practice with point-of-care fingerstick tests. With this approach, 4.5 patients need to be treated for 1 additional remission as compared to a CRP-mismatched treatment assignment. Anti-cytokine treatments may be effective as novel antidepressants. Monoclonal antibodies against proinflammatory cytokines, such as interleukin 6, interleukin 17, and tumor necrosis factor α, have demonstrated antidepressant effects in patients with chronic inflammatory conditions who report significant depressive symptoms. Additional novel antidepressant strategies targeting inflammation include pharmaceutical agents that block the effect of systemic inflammation on the central nervous system. In conclusion, inflammatory markers offer the potential not only to personalize antidepressant prescription but also to guide the development of novel mechanistically-guided antidepressant treatments.

Keywords: antidepressants; blood-brain barrier; c-reactive protein; depression; experimental drugs; inflammation; monoamines; monoclonal antibodies.

Conflict of interest statement

Jha received contract research support from Acadia Pharmaceuticals. Trivedi is or has been an advisor/consultant and received fees from Alkermes, AstraZeneca, Cerecor, Eli Lilly & Company, Lundbeck, Naurex, Neuronetics, Otsuka Pharmaceuticals, Pamlab, Pfizer Inc., SHIRE Development and Takeda. In addition, he has received grants/research support from the National Institute of Mental Health and National Institute on Drug Abuse.

Figures

Figure 1
Figure 1
Superiority of CRP-matched treatment assignment to SSRI monotherapy of combination of bupropion and SSRI. CRP is c-reactive protein, CO-MED is Combining Medications to Enhance Depression Outcomes, SSRI is selective serotonin reuptake inhibitor. This figure is based on the findings reported by Jha et al. [92]. CRP-matched treatment assignment refers to participants who received escitalopram only and had CRP

Figure 2

Theoretical framework for developing novel…

Figure 2

Theoretical framework for developing novel antidepressants by targeting inflammatory pathways. Two distinct pharmacologic…

Figure 2
Theoretical framework for developing novel antidepressants by targeting inflammatory pathways. Two distinct pharmacologic interventions with the potential to reduce depressive symptom severity. In the first pathway, activation of indoleamine oxygenase (IDO) results in increased levels of kynurenine, which is taken up by LAT-1 transporters and converted to Quinolinic acid by microglial cells. This results in glutamatergic excitotoxicity and depressive symptoms. Blockade of the LAT-1 transporter by a pharmacologic agent can disrupt this cascade and reduce depressive symptoms and mitigate central nervous system (CNS) effects of peripheral inflammation. Similarly, anti-cytokine treatments may be effective in depressed patients with elevated levels of inflammatory cytokines (interleukin 6 or IL-6, interleukin 17 or IL-17, and tumor necrosis factor alpha or TNF-α), which result in blood-brain barrier (BBB) dysfunction.
Figure 2
Figure 2
Theoretical framework for developing novel antidepressants by targeting inflammatory pathways. Two distinct pharmacologic interventions with the potential to reduce depressive symptom severity. In the first pathway, activation of indoleamine oxygenase (IDO) results in increased levels of kynurenine, which is taken up by LAT-1 transporters and converted to Quinolinic acid by microglial cells. This results in glutamatergic excitotoxicity and depressive symptoms. Blockade of the LAT-1 transporter by a pharmacologic agent can disrupt this cascade and reduce depressive symptoms and mitigate central nervous system (CNS) effects of peripheral inflammation. Similarly, anti-cytokine treatments may be effective in depressed patients with elevated levels of inflammatory cytokines (interleukin 6 or IL-6, interleukin 17 or IL-17, and tumor necrosis factor alpha or TNF-α), which result in blood-brain barrier (BBB) dysfunction.

References

    1. Hasin D.S., Goodwin R.D., Stinson F.S., Grant B.F. Epidemiology of major depressive disorder: Results from the national epidemiologic survey on alcoholism and related conditions. Arch. Gen. Psychiatry. 2005;62:1097–1106. doi: 10.1001/archpsyc.62.10.1097.
    1. Kessler R.C., Berglund P., Demler O., Jin R., Koretz D., Merikangas K.R., Rush A.J., Walters E.E., Wang P.S. The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCS-R) JAMA. 2003;289:3095–3105. doi: 10.1001/jama.289.23.3095.
    1. Judd L.L., Akiskal H.S., Zeller P.J., Paulus M., Leon A.C., Maser J.D., Endicott J., Coryell W., Kunovac J.L., Mueller T.I., et al. Psychosocial disability during the long-term course of unipolar major depressive disorder. Arch. Gen. Psychiatry. 2000;57:375–380. doi: 10.1001/archpsyc.57.4.375.
    1. Jha M.K., Minhajuddin A., Greer T.L., Carmody T., Rush A.J., Trivedi M.H. Early improvement in work productivity predicts future clinical course in depressed outpatients: Findings from the co-med trial. Am. J. Psychiatry. 2016;173:1196–1204. doi: 10.1176/appi.ajp.2016.16020176.
    1. Jha M.K., Teer R.B., Minhajuddin A., Greer T.L., Rush A.J., Trivedi M.H. Daily activity level improvement with antidepressant medications predicts long-term clinical outcomes in outpatients with major depressive disorder. Neuropsychiatr. Dis. Treat. 2017;13:803–813. doi: 10.2147/NDT.S128407.
    1. Jha M.K., Minhajuddin A., Greer T.L., Carmody T., Rush A.J., Trivedi M.H. Early improvement in psychosocial function predicts longer-term symptomatic remission in depressed patients. PLoS ONE. 2016;11:e0167901. doi: 10.1371/journal.pone.0167901.
    1. Papakostas G.I., Petersen T., Mahal Y., Mischoulon D., Nierenberg A.A., Fava M. Quality of life assessments in major depressive disorder: A review of the literature. Gen. Hosp. Psychiatry. 2004;26:13–17. doi: 10.1016/j.genhosppsych.2003.07.004.
    1. Vos T., Barber R.M., Bell B., Bertozzi-Villa A., Biryukov S., Bolliger I., Charlson F., Davis A., Degenhardt L., Dicker D. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the global burden of disease study 2013. Lancet. 2015;386:743–800. doi: 10.1016/S0140-6736(15)60692-4.
    1. Greenberg P.E., Fournier A.A., Sisitsky T., Pike C.T., Kessler R.C. The economic burden of adults with major depressive disorder in the united states (2005 and 2010) J. Clin. Psychiatry. 2015;76:155–162. doi: 10.4088/JCP.14m09298.
    1. Pence B.W., O‘Donnell J.K., Gaynes B.N. The depression treatment cascade in primary care: A public health perspective. Curr. Psychiatry Rep. 2012;14:328–335. doi: 10.1007/s11920-012-0274-y.
    1. Kendler K.S. What psychiatric genetics has taught us about the nature of psychiatric illness and what is left to learn. Mol. Psychiatry. 2013;18:1058–1066. doi: 10.1038/mp.2013.50.
    1. Gelenberg A.J., Freeman M.P., Markowitz J.C., Rosenbaum J.F., Thase M.E., Trivedi M.H., Van Rhoads R.S., Reus V.I., Raymond DePaulo J., Jr., Fawcett J.A. Practice guideline for the treatment of patients with major depressive disorder third edition. Am. J. Psychiatry. 2010;167:1–3.
    1. Friedman E.S., Davis L.L., Zisook S., Wisniewski S.R., Trivedi M.H., Fava M., Rush A.J. Baseline depression severity as a predictor of single and combination antidepressant treatment outcome: Results from the co-med trial. Eur. Neuropsychopharmacol. 2012;22:183–199. doi: 10.1016/j.euroneuro.2011.07.010.
    1. Sung S.C., Wisniewski S.R., Balasubramani G.K., Zisook S., Kurian B., Warden D., Trivedi M.H., Rush A.J. Does early-onset chronic or recurrent major depression impact outcomes with antidepressant medications? A co-med trial report. Psychol. Med. 2013;43:945–960. doi: 10.1017/S0033291712001742.
    1. Sung S.C., Haley C.L., Wisniewski S.R., Fava M., Nierenberg A.A., Warden D., Morris D.W., Kurian B.T., Trivedi M.H., Rush A.J. The impact of chronic depression on acute and long-term outcomes in a randomized trial comparing selective serotonin reuptake inhibitor monotherapy versus each of 2 different antidepressant medication combinations. J. Clin. Psychiatry. 2012;73:967–976. doi: 10.4088/JCP.11m07043.
    1. Sung S.C., Wisniewski S.R., Luther J.F., Trivedi M.H., Rush A.J. Pre-treatment insomnia as a predictor of single and combination antidepressant outcomes: A co-med report. J. Affect. Disord. 2015;174:157–164. doi: 10.1016/j.jad.2014.11.026.
    1. Arnow B.A., Blasey C., Williams L.M., Palmer D.M., Rekshan W., Schatzberg A.F., Etkin A., Kulkarni J., Luther J.F., Rush A.J. Depression subtypes in predicting antidepressant response: A report from the ispot-d trial. Am. J. Psychiatry. 2015;172:743–750. doi: 10.1176/appi.ajp.2015.14020181.
    1. Bobo W.V., Chen H., Trivedi M.H., Stewart J.W., Nierenberg A.A., Fava M., Kurian B.T., Warden D., Morris D.W., Luther J.F., et al. Randomized comparison of selective serotonin reuptake inhibitor (escitalopram) monotherapy and antidepressant combination pharmacotherapy for major depressive disorder with melancholic features: A co-med report. J. Affect. Disord. 2011;133:467–476. doi: 10.1016/j.jad.2011.04.032.
    1. Gartlehner G., Hansen R.A., Morgan L.C., Thaler K., Lux L., Van Noord M., Mager U., Thieda P., Gaynes B.N., Wilkins T., et al. Comparative benefits and harms of second-generation antidepressants for treating major depressive disorder: An updated meta-analysis. Ann. Intern. Med. 2011;155:772–785. doi: 10.7326/0003-4819-155-11-201112060-00009.
    1. Rush A.J., Trivedi M.H., Wisniewski S.R., Nierenberg A.A., Stewart J.W., Warden D., Niederehe G., Thase M.E., Lavori P.W., Lebowitz B.D., et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. Am. J. Psychiatry. 2006;163:1905–1917. doi: 10.1176/ajp.2006.163.11.1905.
    1. Rush A.J., Trivedi M.H., Wisniewski S.R., Stewart J.W., Nierenberg A.A., Thase M.E., Ritz L., Biggs M.M., Warden D., Luther J.F., et al. Bupropion-sr, sertraline, or venlafaxine-xr after failure of ssris for depression. N. Engl. J. Med. 2006;354:1231–1242. doi: 10.1056/NEJMoa052963.
    1. Burton C., Cochran A.J., Cameron I.M. Restarting antidepressant treatment following early discontinuation—A primary care database study. Fam. Pract. 2015;32:520–524. doi: 10.1093/fampra/cmv063.
    1. Warden D., Rush A.J., Wisniewski S.R., Lesser I.M., Kornstein S.G., Balasubramani G.K., Thase M.E., Preskorn S.H., Nierenberg A.A., Young E.A., et al. What predicts attrition in second step medication treatments for depression?: A STAR*D report. Int. J. Neuropsychopharmacol. 2009;12:459–473. doi: 10.1017/S1461145708009073.
    1. Trivedi M.H. Right patient, right treatment, right time: Biosignatures and precision medicine in depression. World Psychiatry. 2016;15:237–238. doi: 10.1002/wps.20371.
    1. Trivedi M.H., Rush A.J., Wisniewski S.R., Nierenberg A.A., Warden D., Ritz L., Norquist G., Howland R.H., Lebowitz B., McGrath P.J., et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: Implications for clinical practice. Am. J. Psychiatry. 2006;163:28–40. doi: 10.1176/appi.ajp.163.1.28.
    1. Trivedi M.H., Fava M., Wisniewski S.R., Thase M.E., Quitkin F., Warden D., Ritz L., Nierenberg A.A., Lebowitz B.D., Biggs M.M., et al. Medication augmentation after the failure of ssris for depression. N. Engl. J. Med. 2006;354:1243–1252. doi: 10.1056/NEJMoa052964.
    1. Mrazek D.A., Hornberger J.C., Altar C.A., Degtiar I. A review of the clinical, economic, and societal burden of treatment-resistant depression: 1996–2013. Psychiatr. Serv. 2014;65:977–987. doi: 10.1176/appi.ps.201300059.
    1. Ball S., Classi P., Dennehy E.B. What happens next?: A claims database study of second-line pharmacotherapy in patients with major depressive disorder (mdd) who initiate selective serotonin reuptake inhibitor (ssri) treatment. Ann. Gen. Psychiatry. 2014;13:8. doi: 10.1186/1744-859X-13-8.
    1. Feighner J.P. Mechanism of action of antidepressant medications. J. Clin. Psychiatry. 1999;60(Suppl. S4):4–11. discussion 12–13.
    1. Murrough J.W., Charney D.S. Is there anything really novel on the antidepressant horizon? Curr. Psychiatry Rep. 2012;14:643–649. doi: 10.1007/s11920-012-0321-8.
    1. Insel T., Cuthbert B., Garvey M., Heinssen R., Pine D.S., Quinn K., Sanislow C., Wang P. Research domain criteria (rdoc): Toward a new classification framework for research on mental disorders. Am. J. Psychiatry. 2010;167:748–751. doi: 10.1176/appi.ajp.2010.09091379.
    1. Dantzer R., O‘Connor J.C., Freund G.G., Johnson R.W., Kelley K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci. 2008;9:46–56. doi: 10.1038/nrn2297.
    1. Miller A.H., Raison C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 2015;16:22–34. doi: 10.1038/nri.2015.5.
    1. Raison C.L., Borisov A.S., Broadwell S.D., Capuron L., Woolwine B.J., Jacobson I.M., Nemeroff C.B., Miller A.H. Depression during pegylated interferon-alpha plus ribavirin therapy: Prevalence and prediction. J. Clin. Psychiatry. 2005;66:41–48. doi: 10.4088/JCP.v66n0106.
    1. McNutt M.D., Liu S., Manatunga A., Royster E.B., Raison C.L., Woolwine B.J., Demetrashvili M.F., Miller A.H., Musselman D.L. Neurobehavioral effects of interferon-[alpha] in patients with hepatitis-C: Symptom dimensions and responsiveness to paroxetine. Neuropsychopharmacology. 2012;37:1444–1454. doi: 10.1038/npp.2011.330.
    1. Raison C.L., Broadwell S.D., Borisov A.S., Manatunga A.K., Capuron L., Woolwine B.J., Jacobson I.M., Nemeroff C.B., Miller A.H. Depressive symptoms and viral clearance in patients receiving interferon-α and ribavirin for hepatitis c. Brain Behav. Immun. 2005;19:23–27. doi: 10.1016/j.bbi.2004.05.001.
    1. Burstow N.J., Mohamed Z., Gomaa A.I., Sonderup M.W., Cook N.A., Waked I., Spearman C.W., Taylor-Robinson S.D. Hepatitis C treatment: Where are we now? Int. J. Gen. Med. 2017;10:39–52. doi: 10.2147/IJGM.S127689.
    1. Pepys M.B., Hirschfield G.M. C-reactive protein: A critical update. Int. J. Gen. Med. 2003;111:1805–1812.
    1. Kaptoge S., Di Angelantonio E., Lowe G., Pepys M.B., Thompson S.G., Collins R., Danesh J. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: An individual participant meta-analysis. Lancet. 2010;375:132–140.
    1. Wium-Andersen M., Ørsted D., Nielsen S., Nordestgaard B. Elevated c-reactive protein levels, psychological distress, and depression in 73 131 individuals. JAMA Psychiatry. 2013;70:176–184. doi: 10.1001/2013.jamapsychiatry.102.
    1. Cepeda M.S., Stang P., Makadia R. Depression is associated with high levels of C-reactive protein and low levels of fractional exhaled nitric oxide: Results from the 2007–2012 national health and nutrition examination surveys. J. Clin. Psychiatry. 2016;77:1666–1671. doi: 10.4088/JCP.15m10267.
    1. Köhler-Forsberg O., Buttenschøn H.N., Tansey K.E., Maier W., Hauser J., Dernovsek M.Z., Henigsberg N., Souery D., Farmer A., Rietschel M., et al. Association between C-reactive protein (crp) with depression symptom severity and specific depressive symptoms in major depression. Brain Behav. Immun. 2017;62:344–350. doi: 10.1016/j.bbi.2017.02.020.
    1. Vetter M.L., Wadden T.A., Vinnard C., Moore R.H., Khan Z., Volger S., Sarwer D.B., Faulconbridge L.F. Gender differences in the relationship between symptoms of depression and high-sensitivity crp. Int. J. Obes. 2013;37(Suppl. S1):S38–S43. doi: 10.1038/ijo.2013.95.
    1. Batty G., Bell S., Stamatakis E., Kivimäki M. Association of systemic inflammation with risk of completed suicide in the general population. JAMA Psychiatry. 2016;73:993–995. doi: 10.1001/jamapsychiatry.2016.1805.
    1. Haapakoski R., Mathieu J., Ebmeier K.P., Alenius H., Kivimaki M. Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and c-reactive protein in patients with major depressive disorder. Brain Behav. Immun. 2015;49:206–215. doi: 10.1016/j.bbi.2015.06.001.
    1. Howren M.B., Lamkin D.M., Suls J. Associations of depression with c-reactive protein, il-1, and il-6: A meta-analysis. Psychosom. Med. 2009;71:171–186. doi: 10.1097/PSY.0b013e3181907c1b.
    1. Kohler C.A., Freitas T.H., Maes M., de Andrade N.Q., Liu C.S., Fernandes B.S., Stubbs B., Solmi M., Veronese N., Herrmann N., et al. Peripheral cytokine and chemokine alterations in depression: A meta-analysis of 82 studies. Acta Psychiatr. Scand. 2017;135:373–387. doi: 10.1111/acps.12698.
    1. Dowlati Y., Herrmann N., Swardfager W., Liu H., Sham L., Reim E.K., Lanctot K.L. A meta-analysis of cytokines in major depression. Biol. Psychiatry. 2010;67:446–457. doi: 10.1016/j.biopsych.2009.09.033.
    1. Kern S., Skoog I., Borjesson-Hanson A., Blennow K., Zetterberg H., Ostling S., Kern J., Gudmundsson P., Marlow T., Rosengren L., et al. Higher csf interleukin-6 and csf interleukin-8 in current depression in older women. Results from a population-based sample. Brain Behav. Immun. 2014;41:55–58. doi: 10.1016/j.bbi.2014.05.006.
    1. Lindqvist D., Janelidze S., Hagell P., Erhardt S., Samuelsson M., Minthon L., Hansson O., Bjorkqvist M., Traskman-Bendz L., Brundin L. Interleukin-6 is elevated in the cerebrospinal fluid of suicide attempters and related to symptom severity. Biol. Psychiatry. 2009;66:287–292. doi: 10.1016/j.biopsych.2009.01.030.
    1. Valkanova V., Ebmeier K.P., Allan C.L. Crp, il-6 and depression: A systematic review and meta-analysis of longitudinal studies. J. Affect. Disord. 2013;150:736–744. doi: 10.1016/j.jad.2013.06.004.
    1. Shelton R.C., Pencina M.J., Barrentine L.W., Ruiz J.A., Fava M., Zajecka J.M., Papakostas G.I. Association of obesity and inflammatory marker levels on treatment outcome: Results from a double-blind, randomized study of adjunctive l-methylfolate calcium in patients with mdd who are inadequate responders to ssris. J. Clin. Psychiatry. 2015;76:1635–1641. doi: 10.4088/JCP.14m09587.
    1. Dong C. Th17 cells in development: An updated view of their molecular identity and genetic programming. Nat. Rev. Immunol. 2008;8:337–348. doi: 10.1038/nri2295.
    1. Yao Z., Fanslow W.C., Seldin M.F., Rousseau A.M., Painter S.L., Comeau M.R., Cohen J.I., Spriggs M.K. Herpesvirus saimiri encodes a new cytokine, il-17, which binds to a novel cytokine receptor. Immunity. 1995;3:811–821. doi: 10.1016/1074-7613(95)90070-5.
    1. Harrington L.E., Hatton R.D., Mangan P.R., Turner H., Murphy T.L., Murphy K.M., Weaver C.T. Interleukin 17-producing cd4+ effector t cells develop via a lineage distinct from the t helper type 1 and 2 lineages. Nat. Immunol. 2005;6:1123–1132. doi: 10.1038/ni1254.
    1. Park H., Li Z., Yang X.O., Chang S.H., Nurieva R., Wang Y.H., Wang Y., Hood L., Zhu Z., Tian Q., et al. A distinct lineage of cd4 t cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 2005;6:1133–1141. doi: 10.1038/ni1261.
    1. Jin W., Dong C. Il-17 cytokines in immunity and inflammation. Emerg. Microbes Infect. 2013;2:e60. doi: 10.1038/emi.2013.58.
    1. Beurel E., Harrington L.E., Jope R.S. Inflammatory t helper 17 cells promote depression-like behavior in mice. Biol. Psychiatry. 2013;73:622–630. doi: 10.1016/j.biopsych.2012.09.021.
    1. Chen Y., Jiang T., Chen P., Ouyang J., Xu G., Zeng Z., Sun Y. Emerging tendency towards autoimmune process in major depressive patients: A novel insight from th17 cells. Psychiatry Res. 2011;188:224–230. doi: 10.1016/j.psychres.2010.10.029.
    1. Wohleb E.S., McKim D.B., Sheridan J.F., Godbout J.P. Monocyte trafficking to the brain with stress and inflammation: A novel axis of immune-to-brain communication that influences mood and behavior. Front. Neurosci. 2014;8:447. doi: 10.3389/fnins.2014.00447.
    1. Leighton S.P., Nerurkar L., Krishnadas R., Johnman C., Graham G.J., Cavanagh J. Chemokines in depression in health and in inflammatory illness: A systematic review and meta-analysis. Mol. Psychiatry. 2017 doi: 10.1038/mp.2017.205.
    1. Slavich G.M., Irwin M.R. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychol. Bull. 2014;140:774–815. doi: 10.1037/a0035302.
    1. Kiecolt-Glaser J.K., Derry H.M., Fagundes C.P. Inflammation: Depression fans the flames and feasts on the heat. Am. J. Psychiatry. 2015;172:1075–1091. doi: 10.1176/appi.ajp.2015.15020152.
    1. Eisenberger N.I., Berkman E.T., Inagaki T.K., Rameson L.T., Mashal N.M., Irwin M.R. Inflammation-induced anhedonia: Endotoxin reduces ventral striatum responses to reward. Biol. Psychiatry. 2010;68:748–754. doi: 10.1016/j.biopsych.2010.06.010.
    1. Remus J.L., Dantzer R. Inflammation models of depression in rodents: Relevance to psychotropic drug discovery. Int. J. Neuropsychopharmacol. 2016;19:1–13. doi: 10.1093/ijnp/pyw028.
    1. Hodes G.E., Pfau M.L., Leboeuf M., Golden S.A., Christoffel D.J., Bregman D., Rebusi N., Heshmati M., Aleyasin H., Warren B.L., et al. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc. Natl. Acad. Sci. USA. 2014;111:16136–16141. doi: 10.1073/pnas.1415191111.
    1. Huppert J., Closhen D., Croxford A., White R., Kulig P., Pietrowski E., Bechmann I., Becher B., Luhmann H.J., Waisman A., et al. Cellular mechanisms of il-17-induced blood-brain barrier disruption. FASEB J. 2010;24:1023–1034. doi: 10.1096/fj.09-141978.
    1. Kebir H., Kreymborg K., Ifergan I., Dodelet-Devillers A., Cayrol R., Bernard M., Giuliani F., Arbour N., Becher B., Prat A. Human th17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med. 2007;13:1173–1175. doi: 10.1038/nm1651.
    1. Kawanokuchi J., Shimizu K., Nitta A., Yamada K., Mizuno T., Takeuchi H., Suzumura A. Production and functions of il-17 in microglia. J. Neuroimmunol. 2008;194:54–61. doi: 10.1016/j.jneuroim.2007.11.006.
    1. Sarma J.D., Ciric B., Marek R., Sadhukhan S., Caruso M.L., Shafagh J., Fitzgerald D.C., Shindler K.S., Rostami A. Functional interleukin-17 receptor a is expressed in central nervous system glia and upregulated in experimental autoimmune encephalomyelitis. J. Neuroinflamm. 2009;6:14. doi: 10.1186/1742-2094-6-14.
    1. Miller A.H., Haroon E., Felger J.C. Therapeutic implications of brain-immune interactions: Treatment in translation. Neuropsychopharmacology. 2017;42:334–359. doi: 10.1038/npp.2016.167.
    1. Felger J.C. The role of dopamine in inflammation-associated depression: Mechanisms and therapeutic implications. Curr. Top. Behav. Neurosci. 2017;31:199–219.
    1. Felger J.C., Treadway M.T. Inflammation effects on motivation and motor activity: Role of dopamine. Neuropsychopharmacology. 2017;42:216–241. doi: 10.1038/npp.2016.143.
    1. Swardfager W., Rosenblat J.D., Benlamri M., McIntyre R.S. Mapping inflammation onto mood: Inflammatory mediators of anhedonia. Neurosci. Biobehav. Rev. 2016;64:148–166. doi: 10.1016/j.neubiorev.2016.02.017.
    1. Wiedlocha M., Marcinowicz P., Krupa R., Janoska-Jazdzik M., Janus M., Debowska W., Mosiolek A., Waszkiewicz N., Szulc A. Effect of antidepressant treatment on peripheral inflammation markers—A meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2018;80:217–226. doi: 10.1016/j.pnpbp.2017.04.026.
    1. Kohler C.A., Freitas T.H., Stubbs B., Maes M., Solmi M., Veronese N., de Andrade N.Q., Morris G., Fernandes B.S., Brunoni A.R., et al. Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: Systematic review and meta-analysis. Mol. Neurobiol. 2017 doi: 10.1007/s12035-017-0632-1.
    1. Warner-Schmidt J.L., Vanover K.E., Chen E.Y., Marshall J.J., Greengard P. Antidepressant effects of selective serotonin reuptake inhibitors (ssris) are attenuated by antiinflammatory drugs in mice and humans. Proc. Natl. Acad. Sci. USA. 2011;108:9262–9267. doi: 10.1073/pnas.1104836108.
    1. Shenoy A.R., Dehmel T., Stettner M., Kremer D., Kieseier B.C., Hartung H.P., Hofstetter H.H. Citalopram suppresses thymocyte cytokine production. J. Neuroimmunol. 2013;262:46–52. doi: 10.1016/j.jneuroim.2013.06.006.
    1. Hiles S.A., Baker A.L., de Malmanche T., Attia J. Interleukin-6, c-reactive protein and interleukin-10 after antidepressant treatment in people with depression: A meta-analysis. Psychol. Med. 2012;42:2015–2026. doi: 10.1017/S0033291712000128.
    1. Strawbridge R., Arnone D., Danese A., Papadopoulos A., Herane Vives A., Cleare A.J. Inflammation and clinical response to treatment in depression: A meta-analysis. Eur. Neuropsychopharmacol. 2015;25:1532–1543. doi: 10.1016/j.euroneuro.2015.06.007.
    1. Hannestad J., DellaGioia N., Bloch M. The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: A meta-analysis. Neuropsychopharmacology. 2011;36:2452–2459. doi: 10.1038/npp.2011.132.
    1. Gadad B.S., Jha M.K., Grannemann B.D., Mayes T.L., Trivedi M.H. Proteomics profiling reveals inflammatory biomarkers of antidepressant treatment response: Findings from the co-med trial. J. Psychiatr. Res. 2017;94:1–6. doi: 10.1016/j.jpsychires.2017.05.012.
    1. Martino M., Rocchi G., Escelsior A., Fornaro M. Immunomodulation mechanism of antidepressants: Interactions between serotonin/norepinephrine balance and th1/th2 balance. Curr. Neuropharmacol. 2012;10:97–123. doi: 10.2174/157015912800604542.
    1. Brustolim D., Ribeiro-dos-Santos R., Kast R.E., Altschuler E.L., Soares M.B. A new chapter opens in anti-inflammatory treatments: The antidepressant bupropion lowers production of tumor necrosis factor-alpha and interferon-gamma in mice. Int. Immunopharmacol. 2006;6:903–907. doi: 10.1016/j.intimp.2005.12.007.
    1. Ebbinghaus M., Gajda M., Boettger M.K., Schaible H.-G., Bräuer R. The anti-inflammatory effects of sympathectomy in murine antigen-induced arthritis are associated with a reduction of th1 and th17 responses. Ann. Rheum. Dis. 2012;71:253–261. doi: 10.1136/ard.2011.150318.
    1. Fawcett J., Rush A.J., Vukelich J., Diaz S.H., Dunklee L., Romo P., Yarns B.C., Escalona R. Clinical experience with high-dosage pramipexole in patients with treatment-resistant depressive episodes in unipolar and bipolar depression. Am. J. Psychiatry. 2016;173:107–111. doi: 10.1176/appi.ajp.2015.15060788.
    1. Lieberknecht V., Junqueira S.C., Cunha M.P., Barbosa T.A., de Souza L.F., Coelho I.S., Santos A.R., Rodrigues A.L., Dafre A.L., Dutra R.C. Pramipexole, a dopamine d2/d3 receptor-preferring agonist, prevents experimental autoimmune encephalomyelitis development in mice. Mol. Neurobiol. 2016;54:1033–1045. doi: 10.1007/s12035-016-9717-5.
    1. Trivedi M.H., Greer T.L., Church T.S., Carmody T.J., Grannemann B.D., Galper D.I., Dunn A.L., Earnest C.P., Sunderajan P., Henley S.S., et al. Exercise as an augmentation treatment for nonremitted major depressive disorder: A randomized, parallel dose comparison. J. Clin. Psychiatry. 2011;72:677–684. doi: 10.4088/JCP.10m06743.
    1. Rethorst C.D., Toups M.S., Greer T.L., Nakonezny P.A., Carmody T.J., Grannemann B.D., Huebinger R.M., Barber R.C., Trivedi M.H. Pro-inflammatory cytokines as predictors of antidepressant effects of exercise in major depressive disorder. Mol. Psychiatry. 2013;18:1119–1124. doi: 10.1038/mp.2012.125.
    1. Rethorst C.D., Greer T.L., Toups M.S., Bernstein I., Carmody T.J., Trivedi M.H. Il-1beta and bdnf are associated with improvement in hypersomnia but not insomnia following exercise in major depressive disorder. Transl. Psychiatry. 2015;5:e611. doi: 10.1038/tp.2015.104.
    1. Uher R., Tansey K.E., Dew T., Maier W., Mors O., Hauser J., Dernovsek M.Z., Henigsberg N., Souery D., Farmer A., et al. An inflammatory biomarker as a differential predictor of outcome of depression treatment with escitalopram and nortriptyline. Am. J. Psychiatry. 2014;171:1278–1286. doi: 10.1176/appi.ajp.2014.14010094.
    1. Jha M.K., Minhajuddin A., Gadad B.S., Greer T., Grannemann B., Soyombo A., Mayes T.L., Rush A.J., Trivedi M.H. Can c-reactive protein inform antidepressant medication selection in depressed outpatients? Findings from the co-med trial. Psychoneuroendocrinology. 2017;78:105–113. doi: 10.1016/j.psyneuen.2017.01.023.
    1. Hennings J.M., Uhr M., Klengel T., Weber P., Putz B., Touma C., Czamara D., Ising M., Holsboer F., Lucae S. Rna expression profiling in depressed patients suggests retinoid-related orphan receptor alpha as a biomarker for antidepressant response. Transl. Psychiatry. 2015;5:e538. doi: 10.1038/tp.2015.9.
    1. Jha M.K., Minhajuddin A., Gadad B.S., Greer T.L., Mayes T.L., Trivedi M.H. Interleukin 17 selectively predicts better outcomes with bupropion-ssri combination: Novel T cell biomarker for antidepressant medication selection. Brain Behav. Immun. 2017;66:103–110. doi: 10.1016/j.bbi.2017.07.005.
    1. Jha M.K., Minhajuddin A., Gadad B.S., Trivedi M.H. Platelet-derived growth factor as an antidepressant treatment selection biomarker: Higher levels selectively predict better outcomes with bupropion-ssri combination. Int. J. Neuropsychopharmacol. 2017;20:919–927. doi: 10.1093/ijnp/pyx060.
    1. Na K.S., Lee K.J., Lee J.S., Cho Y.S., Jung H.Y. Efficacy of adjunctive celecoxib treatment for patients with major depressive disorder: A meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2014;48:79–85. doi: 10.1016/j.pnpbp.2013.09.006.
    1. Raison C.L., Rutherford R.E., Woolwine B.J., Shuo C., Schettler P., Drake D.F., Haroon E., Miller A.H. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: The role of baseline inflammatory biomarkers. JAMA Psychiatry. 2013;70:31–41. doi: 10.1001/2013.jamapsychiatry.4.
    1. Husain M.I., Strawbridge R., Stokes P.R., Young A.H. Anti-inflammatory treatments for mood disorders: Systematic review and meta-analysis. J. Psychopharmacol. 2017;31:1137–1148. doi: 10.1177/0269881117725711.
    1. Kappelmann N., Lewis G., Dantzer R., Jones P.B., Khandaker G.M. Antidepressant activity of anti-cytokine treatment: A systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Mol. Psychiatry. 2016 doi: 10.1038/mp.2016.167.
    1. Gossec L., Steinberg G., Rouanet S., Combe B. Fatigue in rheumatoid arthritis: Quantitative findings on the efficacy of tocilizumab and on factors associated with fatigue. The french multicentre prospective peps study. Clin. Exp. Rheumatol. 2015;33:664–670.
    1. Papp K.A., Reich K., Paul C., Blauvelt A., Baran W., Bolduc C., Toth D., Langley R.G., Cather J., Gottlieb A.B., et al. A prospective phase iii, randomized, double-blind, placebo-controlled study of brodalumab in patients with moderate-to-severe plaque psoriasis. Br. J. Dermatol. 2016;175:273–286. doi: 10.1111/bjd.14493.
    1. Griffiths C.E.M., Fava M., Miller A.H., Russell J., Ball S.G., Xu W., Acharya N., Rapaport M.H. Impact of ixekizumab treatment on depressive symptoms and systemic inflammation in patients with moderate-to-severe psoriasis: An integrated analysis of three phase 3 clinical studies. Psychother. Psychosom. 2017;86:260–267. doi: 10.1159/000479163.
    1. Schmidt C. Suicidal thoughts end amgen’s blockbuster aspirations for psoriasis drug. Nat. Biotechnol. 2015;33:894–895. doi: 10.1038/nbt0915-894b.
    1. Danesh M.J., Kimball A.B. Brodalumab and suicidal ideation in the context of a recent economic crisis in the united states. J. Am. Acad. Dermatol. 2016;74:190–192. doi: 10.1016/j.jaad.2015.08.057.
    1. Farahnik B., Beroukhim K., Abrouk M., Nakamura M., Zhu T.H., Singh R., Lee K., Bhutani T., Koo J. Brodalumab for the treatment of psoriasis: A review of phase iii trials. Dermatol. Ther. 2016;6:111–124. doi: 10.1007/s13555-016-0121-x.
    1. Miller A.H., Trivedi M.H., Jha M.K. Is C-reactive protein ready for prime time in the selection of antidepressant medications? Psychoneuroendocrinology. 2017;84:206. doi: 10.1016/j.psyneuen.2017.04.006.
    1. Danesh J., Wheeler J.G., Hirschfield G.M., Eda S., Eiriksdottir G., Rumley A., Lowe G.D., Pepys M.B., Gudnason V. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N. Engl. J. Med. 2004;350:1387–1397. doi: 10.1056/NEJMoa032804.
    1. Emberson J.R., Whincup P.H., Morris R.W., Walker M., Lowe G.D., Rumley A. Extent of regression dilution for established and novel coronary risk factors: Results from the british regional heart study. Eur. J. Cardiovasc. Prev. Rehabil. 2004;11:125–134. doi: 10.1097/01.hjr.0000114967.39211.e5.
    1. Huang Y., Chen R., Wu T., Wei X., Guo A. Association between point-of-care crp testing and antibiotic prescribing in respiratory tract infections: A systematic review and meta-analysis of primary care studies. Br. J. Gen. Pract. 2013;63:e787–e794. doi: 10.3399/bjgp13X674477.
    1. Do N.T.T., Ta N.T.D., Tran N.T.H., Than H.M., Vu B.T.N., Hoang L.B., van Doorn H.R., Vu D.T.V., Cals J.W.L., Chandna A., et al. Point-of-care c-reactive protein testing to reduce inappropriate use of antibiotics for non-severe acute respiratory infections in vietnamese primary health care: A randomised controlled trial. Lancet Glob. Health. 2016;4:e633–e641. doi: 10.1016/S2214-109X(16)30142-5.

Source: PubMed

3
Subscribe