Bacterial communities in semen from men of infertile couples: metagenomic sequencing reveals relationships of seminal microbiota to semen quality

Shun-Long Weng, Chih-Min Chiu, Feng-Mao Lin, Wei-Chih Huang, Chao Liang, Ting Yang, Tzu-Ling Yang, Chia-Yu Liu, Wei-Yun Wu, Yi-An Chang, Tzu-Hao Chang, Hsien-Da Huang, Shun-Long Weng, Chih-Min Chiu, Feng-Mao Lin, Wei-Chih Huang, Chao Liang, Ting Yang, Tzu-Ling Yang, Chia-Yu Liu, Wei-Yun Wu, Yi-An Chang, Tzu-Hao Chang, Hsien-Da Huang

Abstract

Some previous studies have identified bacteria in semen as being a potential factor in male infertility. However, only few types of bacteria were taken into consideration while using PCR-based or culturing methods. Here we present an analysis approach using next-generation sequencing technology and bioinformatics analysis to investigate the associations between bacterial communities and semen quality. Ninety-six semen samples collected were examined for bacterial communities, measuring seven clinical criteria for semen quality (semen volume, sperm concentration, motility, Kruger's strict morphology, antisperm antibody (IgA), Atypical, and leukocytes). Computer-assisted semen analysis (CASA) was also performed. Results showed that the most abundant genera among all samples were Lactobacillus (19.9%), Pseudomonas (9.85%), Prevotella (8.51%) and Gardnerella (4.21%). The proportion of Lactobacillus and Gardnerella was significantly higher in the normal samples, while that of Prevotella was significantly higher in the low quality samples. Unsupervised clustering analysis demonstrated that the seminal bacterial communities were clustered into three main groups: Lactobacillus, Pseudomonas, and Prevotella predominant group. Remarkably, most normal samples (80.6%) were clustered in Lactobacillus predominant group. The analysis results showed seminal bacteria community types were highly associated with semen health. Lactobacillus might not only be a potential probiotic for semen quality maintenance, but also might be helpful in countering the negative influence of Prevotella and Pseudomonas. In this study, we investigated whole seminal bacterial communities and provided the most comprehensive analysis of the association between bacterial community and semen quality. The study significantly contributes to the current understanding of the etiology of male fertility.

Conflict of interest statement

Competing Interests: The authors and the affiliations to Health GeneTech Corporation, along with any other relevant declarations relating to employment, consultancy, patents, products in development or marketed product etc. have declared that no competing interests exist. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Research overview.
Figure 1. Research overview.
Figure 2. Relatively abundant genera in semen…
Figure 2. Relatively abundant genera in semen samples.
Figure 3. Bacterial communities in semen samples.
Figure 3. Bacterial communities in semen samples.
(A) Hierarchical clustering was used to generate a clustering tree depicting the bacterial diversity in 96 men with clinical values. The scale bar represents the sample distance generated by UniFrac. (B) Clinical value status is depicted in the seven horizontal bars. The red and green rectangles respectively represent abnormal and normal clinical values. B1 to B7 respectively represent the clinical value status of semen volume, sperm concentration, motility, Kruger's strict morphology, antisperm antibody (IgA), Atypical, and leucocytes. (C) G1, G2 and G3 represent the three main groups in the clustering results, which were respectively predominated by Pseudomonas, Lactobacillus and Prevotella. (D) The colored bars represent the taxonomic compositions in each sample. Less abundant taxa were grouped in the “Others” category.
Figure 4. Diversity and richness of bacterial…
Figure 4. Diversity and richness of bacterial communities in the G1, G2 and G3 groups.
Figure 5. Genera co-occurring with main contributors…
Figure 5. Genera co-occurring with main contributors and their co-occurring children in the (A) G1, (B) G2 and (C) G3 groups.
Figure 6. Relatively abundant genera in the…
Figure 6. Relatively abundant genera in the (A) normal and (B) case samples.
Figure 7. Relatively abundant bacteria with significantly…
Figure 7. Relatively abundant bacteria with significantly different distributions between the normal and case samples (* p
Figure 8. Diversity and richness of bacterial…
Figure 8. Diversity and richness of bacterial communities in the case and normal samples.
Figure 9. PCoA analysis of case and…
Figure 9. PCoA analysis of case and normal samples.
The blue rectangles and red circles respectively represent the case and normal samples.
Figure 10. Classification rule and potential markers…
Figure 10. Classification rule and potential markers for classifying microbiome communities of semen.

References

    1. Kamischke A, Nieschlag E (1999) Analysis of medical treatment of male infertility. Hum Reprod 14 Suppl 11–23.
    1. Carr BR (2013) Optimal diagnosis and medical treatment of male infertility. Semin Reprod Med 31: 231–232.
    1. Rittenberg V, El-Toukhy T (2010) Medical treatment of male infertility. Hum Fertil (Camb) 13: 208–216.
    1. Diemer T, Huwe P, Ludwig M, Hauck EW, Weidner W (2003) Urogenital infection and sperm motility. Andrologia 35: 283–287.
    1. Ochsendorf FR (2008) Sexually transmitted infections: impact on male fertility. Andrologia 40: 72–75.
    1. Keck C, Gerber-Schafer C, Clad A, Wilhelm C, Breckwoldt M (1998) Seminal tract infections: impact on male fertility and treatment options. Hum Reprod Update 4: 891–903.
    1. Henkel R, Ludwig M, Schuppe HC, Diemer T, Schill WB, et al. (2006) Chronic pelvic pain syndrome/chronic prostatitis affect the acrosome reaction in human spermatozoa. World J Urol 24: 39–44.
    1. Domes T, Lo KC, Grober ED, Mullen JB, Mazzulli T, et al. (2012) The incidence and effect of bacteriospermia and elevated seminal leukocytes on semen parameters. Fertil Steril 97: 1050–1055.
    1. Close CE, Roberts PL, Berger RE (1990) Cigarettes, alcohol and marijuana are related to pyospermia in infertile men. J Urol 144: 900–903.
    1. Barratt CL, Bolton AE, Cooke ID (1990) Functional significance of white blood cells in the male and female reproductive tract. Hum Reprod 5: 639–648.
    1. Jarvi K, Noss MB (1994) Pyospermia and male infertility. Can J Urol 1: 25–30.
    1. Stumpf RM, Wilson BA, Rivera A, Yildirim S, Yeoman CJ, et al. (2013) The primate vaginal microbiome: comparative context and implications for human health and disease. Am J Phys Anthropol 152 Suppl 57119–134.
    1. Madupu R, Szpakowski S, Nelson KE (2013) Microbiome in human health and disease. Sci Prog 96: 153–170.
    1. Cox MJ, Cookson WO, Moffatt MF (2013) Sequencing the human microbiome in health and disease. Hum Mol Genet 22: R88–94.
    1. Jordan JA, Durso MB (2005) Real-time polymerase chain reaction for detecting bacterial DNA directly from blood of neonates being evaluated for sepsis. J Mol Diagn 7: 575–581.
    1. Goldenberger D, Kunzli A, Vogt P, Zbinden R, Altwegg M (1997) Molecular diagnosis of bacterial endocarditis by broad-range PCR amplification and direct sequencing. J Clin Microbiol 35: 2733–2739.
    1. Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev Genet 11: 31–46.
    1. Akutsu T, Motani H, Watanabe K, Iwase H, Sakurada K (2012) Detection of bacterial 16S ribosomal RNA genes for forensic identification of vaginal fluid. Leg Med (Tokyo) 14: 160–162.
    1. Lbadin OKaI, I N. (2008) Bacteriospermia and sperm quality in infertile male patient at University of Benin Teaching Hospital, Benin City, Nigeria Malaysian Journal of Microbiology Vol 4(2) : pp. 65– 67.
    1. De Francesco MA, Negrini R, Ravizzola G, Galli P, Manca N (2011) Bacterial species present in the lower male genital tract: a five-year retrospective study. Eur J Contracept Reprod Health Care 16: 47–53.
    1. Moretti E, Capitani S, Figura N, Pammolli A, Federico MG, et al. (2009) The presence of bacteria species in semen and sperm quality. J Assist Reprod Genet 26: 47–56.
    1. Kiessling AA, Desmarais BM, Yin HZ, Loverde J, Eyre RC (2008) Detection and identification of bacterial DNA in semen. Fertil Steril 90: 1744–1756.
    1. Hou D, Zhou X, Zhong X, Settles ML, Herring J, et al. (2013) Microbiota of the seminal fluid from healthy and infertile men. Fertil Steril 100: 1261–1269.
    1. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6: e27310.
    1. Reid G, Dols J, Miller W (2009) Targeting the vaginal microbiota with probiotics as a means to counteract infections. Curr Opin Clin Nutr Metab Care 12: 583–587.
    1. Osset J, Bartolome RM, Garcia E, Andreu A (2001) Assessment of the capacity of Lactobacillus to inhibit the growth of uropathogens and block their adhesion to vaginal epithelial cells. J Infect Dis 183: 485–491.
    1. Pascual LM, Daniele MB, Ruiz F, Giordano W, Pajaro C, et al. (2008) Lactobacillus rhamnosus L60, a potential probiotic isolated from the human vagina. J Gen Appl Microbiol 54: 141–148.
    1. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, et al. (2009) The WEKA Data Mining Software: An Update. SIGKDD Explorations 11.
    1. Lacroix JM, Jarvi K, Batra SD, Heritz DM, Mittelman MW (1996) PCR-based technique for the detection of bacteria in semen and urine. Journal of Microbiological Methods 26: 61–71.
    1. Andrade-Rocha FT (2009) Colonization of Gardnerella vaginalis in semen of infertile men: prevalence, influence on sperm characteristics, relationship with leukocyte concentration and clinical significance. Gynecol Obstet Invest 68: 134–136.
    1. Smith SM, Ogbara T, Eng RH (1992) Involvement of Gardnerella vaginalis in urinary tract infections in men. J Clin Microbiol 30: 1575–1577.
    1. Marchandin H, Teyssier C, Jumas-Bilak E, Robert M, Artigues AC, et al. (2005) Molecular identification of the first human isolate belonging to the Veillonella ratti-Veillonella criceti group based on 16S rDNA and dnaK gene sequencing. Res Microbiol 156: 603–607.
    1. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, et al. (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 103: 15611–15616.
    1. Dicks LM, Silvester M, Lawson PA, Collins MD (2000) Lactobacillus fornicalis sp. nov., isolated from the posterior fornix of the human vagina. Int J Syst Evol Microbiol 50 Pt 3: 1253–1258.
    1. Bukharin OV, Kuz'min MD, Ivanov Iu B (2000) [The role of the microbial factor in the pathogenesis of male infertility]. Zh Mikrobiol Epidemiol Immunobiol 106–110.
    1. Ivanov IB, Kuzmin MD, Gritsenko VA (2009) Microflora of the seminal fluid of healthy men and men suffering from chronic prostatitis syndrome. Int J Androl 32: 462–467.
    1. Catlin BW (1992) Gardnerella vaginalis: characteristics, clinical considerations, and controversies. Clinical Microbiology Reviews 5: 213–237.
    1. Harper JJ, Davis GHG (1982) Cell-Wall Analysis of Gardnerella-Vaginalis (Hemophilus-Vaginalis). International Journal of Systematic Bacteriology 32: 48–50.
    1. Pleckaityte M, Zilnyte M, Zvirbliene A (2012) Insights into the CRISPR/Cas system of Gardnerella vaginalis. BMC Microbiol 12: 301.
    1. Shah HN, Collins DM (1990) Prevotella, a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides. Int J Syst Bacteriol 40: 205–208.
    1. Gonzalez Pedraza Aviles A, Ortiz Zaragoza MC, Irigoyen Coria A (1999) Bacterial vaginosis a "broad overview". Rev Latinoam Microbiol 41: 25–34.
    1. Donders G (2010) Diagnosis and management of bacterial vaginosis and other types of abnormal vaginal bacterial flora: a review. Obstet Gynecol Surv 65: 462–473.
    1. Euzeby JP (1997) List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47: 590–592.
    1. Hattemer A, Hauser A, Diaz M, Scheetz M, Shah N, et al. (2013) Bacterial and clinical characteristics of health care- and community-acquired bloodstream infections due to Pseudomonas aeruginosa. Antimicrob Agents Chemother 57: 3969–3975.
    1. Liu Y, Liu K, Yu X, Li B, Cao B (2014) Identification and control of a Pseudomonas spp (P. fulva and P. putida) bloodstream infection outbreak in a teaching hospital in Beijing, China. Int J Infect Dis 23: 105–108.
    1. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50 Pt 4: 1563–1589.
    1. Isaiah IN, Nche BT, Nwagu IG, Nnanna II (2011) Current studies on bacterospermia the leading cause of male infertility: a protege and potential threat towards mans extinction. N Am J Med Sci 3: 562–564.
    1. Yang CH, Young T, Peng MY, Weng MC (1996) Clinical spectrum of Pseudomonas putida infection. J Formos Med Assoc 95: 754–761.
    1. Taneja N, Meharwal SK, Sharma SK, Sharma M (2004) Significance and characterisation of pseudomonads from urinary tract specimens. J Commun Dis 36: 27–34.
    1. Saha R, Jain S, Kaur IR (2010) Metallo beta-lactamase producing pseudomonas species—a major cause of concern among hospital associated urinary tract infection. J Indian Med Assoc 108: 344–348.
    1. Elsner P, Hartmann AA, Wecker I (1988) Gardnerella vaginalis is associated with other sexually transmittable microorganisms in the male urethra. Zentralbl Bakteriol Mikrobiol Hyg A 269: 56–63.
    1. Virecoulon F, Wallet F, Fruchart-Flamenbaum A, Rigot JM, Peers MC, et al. (2005) Bacterial flora of the low male genital tract in patients consulting for infertility. Andrologia 37: 160–165.
    1. Fraczek M, Szumala-Kakol A, Jedrzejczak P, Kamieniczna M, Kurpisz M (2007) Bacteria trigger oxygen radical release and sperm lipid peroxidation in in vitro model of semen inflammation. Fertil Steril 88: 1076–1085.
    1. Srinivasan S, Fredricks DN (2008) The human vaginal bacterial biota and bacterial vaginosis. Interdiscip Perspect Infect Dis 2008: 750479.
    1. Srinivasan S, Hoffman NG, Morgan MT, Matsen FA, Fiedler TL, et al. (2012) Bacterial communities in women with bacterial vaginosis: high resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. PLoS One 7: e37818.
    1. Atassi F, Brassart D, Grob P, Graf F, Servin AL (2006) Lactobacillus strains isolated from the vaginal microbiota of healthy women inhibit Prevotella bivia and Gardnerella vaginalis in coculture and cell culture. FEMS Immunol Med Microbiol 48: 424–432.
    1. Kaewsrichan J, Peeyananjarassri K, Kongprasertkit J (2006) Selection and identification of anaerobic lactobacilli producing inhibitory compounds against vaginal pathogens. FEMS Immunol Med Microbiol 48: 75–83.
    1. Sanocka-Maciejewska D, Ciupinska M, Kurpisz M (2005) Bacterial infection and semen quality. J Reprod Immunol 67: 51–56.
    1. Schulz M, Sanchez R, Soto L, Risopatron J, Villegas J (2010) Effect of Escherichia coli and its soluble factors on mitochondrial membrane potential, phosphatidylserine translocation, viability, and motility of human spermatozoa. Fertil Steril 94: 619–623.
    1. Diemer T, Huwe P, Ludwig M, Schroeder-Printzen I, Michelmann HW, et al. (2003) Influence of autogenous leucocytes and Escherichia coli on sperm motility parameters in vitro. Andrologia 35: 100–105.
    1. Berktas M, Aydin S, Yilmaz Y, Cecen K, Bozkurt H (2008) Sperm motility changes after coincubation with various uropathogenic microorganisms: an in vitro experimental study. Int Urol Nephrol 40: 383–389.
    1. Jarvi K, Lacroix JM, Jain A, Dumitru I, Heritz D, et al. (1996) Polymerase chain reaction-based detection of bacteria in semen. Fertil Steril 66: 463–467.
    1. Tanner MA, Shoskes D, Shahed A, Pace NR (1999) Prevalence of corynebacterial 16S rRNA sequences in patients with bacterial and "nonbacterial" prostatitis. J Clin Microbiol 37: 1863–1870.
    1. Mandar R (2013) Microbiota of male genital tract: impact on the health of man and his partner. Pharmacol Res 69: 32–41.
    1. Cao XW, Lin K, Li CY, Yuan CW (2011) [A review of WHO Laboratory Manual for the Examination and Processing of Human Semen (5th edition)]. Zhonghua Nan Ke Xue 17: 1059–1063.
    1. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, et al. (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108 Suppl 14516–4522.
    1. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359.
    1. DeSantis TZ, Dubosarskiy I, Murray SR, Andersen GL (2003) Comprehensive aligned sequence construction for automated design of effective probes (CASCADE-P) using 16S rDNA. Bioinformatics 19: 1461–1468.
    1. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, et al. (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72: 5069–5072.
    1. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5: 169–172.
    1. Kozak M (2012) "A Dendrite Method for Cluster Analysis" by Calinski and Harabasz: A Classical Work that is Far Too Often Incorrectly Cited. Communications in Statistics-Theory and Methods 41: 2279–2280.
    1. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.
    1. Benjamini Y, Hochberg Y (2000) On the adaptive control of the false discovery fate in multiple testing with independent statistics. Journal of Educational and Behavioral Statistics 25: 60–83.
    1. Hamady M, Lozupone C, Knight R (2010) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4: 17–27.

Source: PubMed

3
Subscribe