In Vitro Activity of Neomycin, Streptomycin, Paromomycin and Apramycin against Carbapenem-Resistant Enterobacteriaceae Clinical Strains

Ya Hu, Lu Liu, Xiaoxia Zhang, Yu Feng, Zhiyong Zong, Ya Hu, Lu Liu, Xiaoxia Zhang, Yu Feng, Zhiyong Zong

Abstract

We determined the in vitro susceptibility of four aminoglycosides, which are not of the 4,6-disubstituted deoxystreptamine (DOS) subclass against a collection of carbapenem-resistant Enterobacteriaceae (CRE). CRE clinical strains (n = 134) were collected from multiple hospitals in China and carried blaNDM (blaNDM-1, blaNDM-5 or blaNDM-7; n = 66), blaKPC-2 (n = 62) or blaIMP-4 (n = 7; including one carrying blaNDM-1 and blaIMP-4). MICs of neomycin, paromomycin, streptomycin and apramycin as well as three 4,6-disubstituted DOS aminoglycosides (amikacin, gentamicin and tobramycin) were determined using the broth microdilution with breakpoints defined by the Clinical Laboratory Standards Institute (for amikacin, gentamicin and tobramycin), US Food and Drug Administration (streptomycin), the National Antimicrobial Resistance Monitoring System (apramycin) or la Société Française de Microbiologie (neomycin and paromomycin). Apramycin-resistant strains were subjected to whole genome sequencing using Illumina X10 platform. Among CRE strains, 65.7, 64.9, 79.1, and 95.5% were susceptible to neomycin (MIC50/MIC90, 8/256 μg/ml), paromomycin (4/>256 μg/ml), streptomycin (16/256 μg/ml) and apramycin (4/8 μg/ml), respectively, while only 55.2, 28.4, and 35.1% were susceptible to amikacin (32/>256 μg/ml), gentamicin (128/>256 μg/ml) and tobramycin (64/>256 μg/ml), respectively. Six CRE strains including five Escherichia coli of different sequence types and one Klebsiella pneumoniae were resistant to apramycin and the apramycin-resistant gene aac(3)-IVa was detected in all of these strains. In conclusion, neomycin, paromomycin, streptomycin and apramycin retain activity against most CRE strains. Although none of these non-4,6-disubstituted DOS aminoglycosides are suitable for intravenous use in human at present, these agents warrant further investigations to be used against CRE infections.

Keywords: Enterobacteriaceae; aminoglycosides; apramycin; carbapenemase; neomycin; paromomycin; streptomycin; susceptibility.

References

    1. Almaghrabi R., Clancy C. J., Doi Y., Hao B., Chen L., Shields R. K., et al. . (2014). Carbapenem-resistant Klebsiella pneumoniae strains exhibit diversity in aminoglycoside-modifying enzymes, which exert differing effects on plazomicin and other agents. Antimicrob. Agents Chemother. 58, 4443–4451. 10.1128/AAC.00099-14
    1. Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., et al. . (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477. 10.1089/cmb.2012.0021
    1. Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. 10.1093/bioinformatics/btu170
    1. Bradford P. A., Bratu S., Urban C., Visalli M., Mariano N., Landman D., et al. . (2004). Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 β-lactamases in New York City. Clin. Infect. Dis. 39, 55–60. 10.1086/421495
    1. Buehlmann M., Bruderer T., Frei R., Widmer A. F. (2011). Effectiveness of a new decolonisation regimen for eradication of extended-spectrum β-lactamase-producing Enterobacteriaceae. J. Hosp. Infect. 77, 113–117. 10.1016/j.jhin.2010.09.022
    1. Clark C. H. (1977). Clinical uses of kanamycin, neomycin and streptomycin. Mod. Vet. Pract. 58, 845–850.
    1. CLSI (2017). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Seven Informational Supplement. M100-S27. Wayne, PA: Clinical and Laboratory Standards Institute.
    1. Doi Y., Wachino J. I., Arakawa Y. (2016). Aminoglycoside resistance: the emergence of acquired 16s ribosomal rna methyltransferases. Infect. Dis. Clin. North Am. 30, 523–537. 10.1016/j.idc.2016.02.011
    1. Falagas M. E., Lourida P., Poulikakos P., Rafailidis P. I., Tansarli G. S. (2014). Antibiotic treatment of infections due to carbapenem-resistant enterobacteriaceae: systematic evaluation of the available evidence. Antimicrob. Agents Chemother. 58, 654–663. 10.1128/AAC.01222-13
    1. Hirsch E. B., Tam V. H. (2010). Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J. Antimicrob. Chemother. 65, 1119–1125. 10.1093/jac/dkq108
    1. Huttner B., Haustein T., Uckay I., Renzi G., Stewardson A., Schaerrer D., et al. . (2013). Decolonization of intestinal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae with oral colistin and neomycin: a randomized, double-blind, placebo-controlled trial. J. Antimicrob. Chemother. 68, 2375–2382. 10.1093/jac/dkt174
    1. Iovleva A., Doi Y. (2017). Carbapenem-resistant Enterobacteriaceae. Clin. Lab. Med. 37, 303–315. 10.1016/j.cll.2017.01.005
    1. Kang A. D., Smith K. P., Eliopoulos G. M., Berg A. H., McCoy C., Kirby J. E. (2017). In vitro apramycin activity against multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Diagn. Microbiol. Infect. Dis. 88, 188–191. 10.1016/j.diagmicrobio.2017.03.006
    1. Kostrub C. F., Diokno R., Aggen J. B, Miller G. H., Judice J. K., Tulkens P. (2009). Quantitative comparison of aminoglycoside nephrotoxicity in rats for effective screening and evaluation of new derivatives, and dosing rationales that minimise toxicity, in European Congress of Clinical Microbiology and Infectious Diseases (Helsinki: ), 1979.
    1. Livermore D. M., Mushtaq S., Warner M., Zhang J. C., Maharjan S., Doumith M., et al. . (2011a). Activity of aminoglycosides, including ACHN-490, against carbapenem-resistant Enterobacteriaceae isolates. J. Antimicrob. Chemother. 66, 48–53. 10.1093/jac/dkq408
    1. Livermore D. M., Warner M., Mushtaq S., Doumith M., Zhang J., Woodford N. (2011b). What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int. J. Antimicrob. Agents 37, 415–419. 10.1016/j.ijantimicag.2011.01.012
    1. Logan L. K., Weinstein R. A. (2017). The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J. Infect. Dis. 215, S28–S36. 10.1093/infdis/jiw282
    1. Matt T., Ng C. L., Lang K., Sha S. H., Akbergenov R., Shcherbakov D., et al. . (2012). Dissociation of antibacterial activity and aminoglycoside ototoxicity in the 4-monosubstituted 2-deoxystreptamine apramycin. Proc. Natl. Acad. Sci. U.S.A. 109, 10984–10989. 10.1073/pnas.1204073109
    1. Mendes R. E., Kiyota K. A., Monteiro J., Castanheira M., Andrade S. S., Gales A. C., et al. . (2007). Rapid detection and identification of metallo-β-lactamase-encoding genes by multiplex real-time PCR assay and melt curve analysis. J. Clin. Microbiol. 45, 544–547. 10.1128/JCM.01728-06
    1. Mingeot-Leclercq M. P., Glupczynski Y., Tulkens P. M. (1999). Aminoglycosides: activity and resistance. Antimicrob. Agents Chemother. 43, 727–737.
    1. Perzynski S., Cannon M., Cundliffe E., Chahwala S. B., Davies J. (1979). Effects of apramycin, a novel aminoglycoside antibiotic on bacterial protein synthesis. Eur. J. Biochem. 99, 623–628. 10.1111/j.1432-1033.1979.tb13295.x
    1. Poirel L., Jayol A., Nordmann P. (2017). Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev. 30, 557–596. 10.1128/CMR.00064-16
    1. Poirel L., Le Thomas I., Naas T., Karim A., Nordmann P. (2000). Biochemical sequence analyses of GES-1, a novel class A extended-spectrum β-lactamase, and the class 1 integron In52 from Klebsiella pneumoniae. Antimicrob. Agents Chemother. 44, 622–632. 10.1128/AAC.44.3.622-632.2000
    1. Rafailidis P. I., Falagas M. E. (2014). Options for treating carbapenem-resistant Enterobacteriaceae. Curr. Opin. Infect. Dis. 27, 479–483. 10.1097/QCO.0000000000000109
    1. Randall L., Ridley A., Lemma F., Hale C., Davies R. (2016). In vitro investigations into the use of antimicrobials in combination to maintain efficacy of fluoroquinolones in poultry. Res. Vet. Sci. 108, 47–53. 10.1016/j.rvsc.2016.07.010
    1. Rieg S., Kupper M. F., De With K., Serr A., Bohnert J. A., Kern W. V. (2015). Intestinal decolonization of Enterobacteriaceae producing extended-spectrum β-lactamases (ESBL): a retrospective observational study in patients at risk for infection and a brief review of the literature. BMC Infect. Dis. 15, 475. 10.1186/s12879-015-1225-0
    1. Shaw K. J., Rather P. N., Hare R. S., Miller G. H. (1993). Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol. Rev. 57, 138–163.
    1. Shields R. K., Clancy C. J., Press E. G., Nguyen M. H. (2016). Aminoglycosides for treatment of bacteremia due to carbapenem-resistant Klebsiella pneumoniae. Antimicrob. Agents Chemother. 60, 3187–3192. 10.1128/AAC.02638-15
    1. Sinha R. P. (1986). Development of high-level streptomycin resistance affected by a plasmid in lactic streptococci. Appl. Environ. Microbiol. 52, 255–261.
    1. Smith K. P., Kirby J. E. (2016). Evaluation of apramycin activity against carbapenem-resistant and -susceptible strains of Enterobacteriaceae. Diagn. Microbiol. Infect. Dis. 86, 439–441. 10.1016/j.diagmicrobio.2016.09.002
    1. Temkin E., Adler A., Lerner A., Carmeli Y. (2014). Carbapenem-resistant Enterobacteriaceae: biology, epidemiology, and management. Ann. N.Y. Acad. Sci. 1323, 22–42. 10.1111/nyas.12537
    1. Van Duin D., Kaye K. S., Neuner E. A., Bonomo R. A. (2013). Carbapenem-resistant Enterobacteriaceae: a review of treatment and outcomes. Diagn. Microbiol. Infect. Dis. 75, 115–120. 10.1016/j.diagmicrobio.2012.11.009
    1. World Health Organization (2015). WHO Model List of Essential Medicines. Geneva: World Health Organization.
    1. Zhang R., Liu L., Zhou H., Chan E. W., Li J., Fang Y., et al. . (2017). Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae (CRE) strains in China. EBioMedicine 19, 98–106. 10.1016/j.ebiom.2017.04.032
    1. Zhang X., Lu X., Zong Z. (2012). Enterobacteriaceae producing the KPC-2 carbapenemase from hospital sewage. Diagn. Microbiol. Infect. Dis. 73, 204–206. 10.1016/j.diagmicrobio.2012.02.007
    1. Zong Z., Zhang X. (2013). blaNDM-1-carrying Acinetobacter johnsonii detected in hospital sewage. J. Antimicrob. Chemother. 68, 1007–1010. 10.1093/jac/dks505

Source: PubMed

3
Subscribe