Mycophenolate mofetil versus azathioprine in kidney transplant recipients on steroid-free, low-dose cyclosporine immunosuppression (ATHENA): A pragmatic randomized trial

Piero Ruggenenti, Paolo Cravedi, Eliana Gotti, Annarita Plati, Maddalena Marasà, Silvio Sandrini, Nicola Bossini, Franco Citterio, Enrico Minetti, Domenico Montanaro, Ettore Sabadini, Regina Tardanico, Davide Martinetti, Flavio Gaspari, Alessandro Villa, Annalisa Perna, Francesco Peraro, Giuseppe Remuzzi, Piero Ruggenenti, Paolo Cravedi, Eliana Gotti, Annarita Plati, Maddalena Marasà, Silvio Sandrini, Nicola Bossini, Franco Citterio, Enrico Minetti, Domenico Montanaro, Ettore Sabadini, Regina Tardanico, Davide Martinetti, Flavio Gaspari, Alessandro Villa, Annalisa Perna, Francesco Peraro, Giuseppe Remuzzi

Abstract

Background: We compared protection of mycophenolate mofetil (MMF) and azathioprine (AZA) against acute cellular rejection (ACR) and chronic allograft nephropathy (CAN) in kidney transplant recipients on steroid-free, low-dose cyclosporine (CsA) microemulsion maintenance immunosuppression.

Methods and findings: ATHENA, a pragmatic, prospective, multicenter trial conducted by 6 Italian transplant centers, compared the outcomes of 233 consenting recipients of a first deceased donor kidney transplant induced with low-dose thymoglobulin and basiliximab and randomized to MMF (750 mg twice/day, n = 119) or AZA (75 to 125 mg/day, n = 114) added-on maintenance low-dose CsA microemulsion and 1-week steroid. In patients without acute clinical or subclinical rejections, CsA dose was progressively halved. Primary endpoint was biopsy-proven CAN. Analysis was by intention to treat. Participants were included between June 2007 and July 2012 and followed up to August 2016. Between-group donor and recipient characteristics, donor/recipient mismatches, and follow-up CsA blood levels were similar. During a median (interquartile range (IQR)) follow-up of 47.7 (44.2 to 48.9) months, 29 of 87 biopsied patients on MMF (33.3%) versus 31 of 88 on AZA (35.2%) developed CAN (hazard ratio (HR) [95% confidence interval (CI)]: 1.147 (0.691 to 1.904, p = 0.595). Twenty and 21 patients on MMF versus 34 and 14 on AZA had clinical [HR (95% CI): 0.58 (0.34 to 1.02); p = 0.057) or biopsy-proven subclinical [HR (95% CI): 1.49 (0.76 to 2.92); p = 0.249] ACR, respectively. Combined events [HR (95% CI): 0.85 (0.56 to 1.29); p = 0.438], patient and graft survival, delayed graft function (DGF), 3-year glomerular filtration rate (GFR) [53.8 (40.6;65.7) versus 49.8 (36.8;62.5) mL/min/1.73 m2, p = 0.50], and adverse events (AEs) were not significantly different between groups. Chronicity scores other than CAN predict long-term graft outcome. Study limitations include small sample size and unblinded design.

Conclusions: In this study, we found that in deceased donor kidney transplant recipients on low-dose CsA and no steroids, MMF had no significant benefits over AZA. This finding suggests that AZA, due to its lower costs, could safely replace MMF in combination with minimized immunosuppression.

Trial registration: ClinicalTrials.gov NCT00494741; EUDRACT 2006-005604-14.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Participant flowchart.
Fig 1. Participant flowchart.
ESKD, end-stage kidney disease.
Fig 2. Kaplan–Meier curves of the percentages…
Fig 2. Kaplan–Meier curves of the percentages of patients with CAN in the 2 randomization arms.
Kaplan–Meier curves of the percentages of patients with CAN during the 3 years of follow-up in the MMF (red line) and in the AZA (blue line) groups in the overall patient population (A) and in patients who received a single kidney transplant (B) considered separately. AZA, azathioprine; CAN, chronic allograft nephropathy; CI, confidence interval; HR, hazard ratio; MMF, mycophenolate mofetil.
Fig 3. Kaplan–Meier curves of the percentages…
Fig 3. Kaplan–Meier curves of the percentages of patients with acute rejection episodes in the 2 randomization arms.
Kaplan–Meier curves of the percentages of patients with biopsy-proven acute clinical rejection (A) or biopsy-proven clinical or subclinical rejection (B) during the 3 years of follow-up in the MMF (red line) and in the AZA (blue line) groups. AZA, azathioprine; CI, confidence interval; HR, hazard ratio; MMF, mycophenolate mofetil.
Fig 4. GFR, blood CsA levels, platelets,…
Fig 4. GFR, blood CsA levels, platelets, and WBC counts at different time points after transplantation in the 2 randomization arms.
(A) GFR, (B) blood CsA C0 and C2 levels, (C) platelets, and (D) WBC counts at different time points after transplantation in the MMF (red) and in the AZA groups (blue). GFR data are reported as median and IQR; blood CsA levels, platelets, and WBC counts are reported as mean ± SEM. AZA, azathioprine; CsA, cyclosporine; GFR, glomerular filtration rate; IQR, interquartile range; MMF, mycophenolate mofetil; WBC, white blood cell.

References

    1. The Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation. Transplantation. 1996;61:1029–37.
    1. Sollinger HW. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. U.S. Renal Transplant Mycophenolate Mofetil Study Group. Transplantation. 1995;60:225–32. doi: 10.1097/00007890-199508000-00003
    1. European Mycophenolate Mofetil Cooperative Study Group. Placebo-controlled study of mycophenolate mofetil combined with cyclosporin and corticosteroids for prevention of acute rejection. Lancet. 1995;345:1321–5.
    1. Mele TS, Halloran PF. The use of mycophenolate mofetil in transplant recipients. Immunopharmacology. 2000;47:215–45. doi: 10.1016/s0162-3109(00)00190-9
    1. Remuzzi G, Lesti M, Gotti E, Ganeva M, Dimitrov BD, Ene-Iordache B, et al.. Mycophenolate mofetil versus azathioprine for prevention of acute rejection in renal transplantation (MYSS): a randomised trial. Lancet. 2004;364:503–12. doi: 10.1016/S0140-6736(04)16808-6
    1. Remuzzi G, Cravedi P, Costantini M, Lesti M, Ganeva M, Gherardi G, et al.. Mycophenolate mofetil versus azathioprine for prevention of chronic allograft dysfunction in renal transplantation: the MYSS follow-up randomized, controlled clinical trial. J Am Soc Nephrol. 2007;18:1973–85. doi: 10.1681/ASN.2006101153
    1. Shah S, Collett D, Johnson R, Thuraisingham RC, Raftery MJ, Rudge CJ, et al.. Long-term graft outcome with mycophenolate mofetil and azathioprine: A paired kidney analysis. Transplantation. 2006;82:1634–9. doi: 10.1097/01.tp.0000250713.65004.35
    1. Germani G, Pleguezuelo M, Villamil F, Vaghjiani S, Tsochatzis E, Andreana L, et al.. Azathioprine in liver transplantation: a reevaluation of its use and a comparison with mycophenolate mofetil. Am J Transplant. 2009;9:1725–31. doi: 10.1111/j.1600-6143.2009.02705.x
    1. Knight SR, Russell NK, Barcena L, Morris PJ. Mycophenolate mofetil decreases acute rejection and may improve graft survival in renal transplant recipients when compared with azathioprine: a systematic review. Transplantation. 2009;87:785–94. doi: 10.1097/TP.0b013e3181952623
    1. Wagner M, Earley AK, Webster AC, Schmid CH, Balk EM, Uhlig K. Mycophenolic acid versus azathioprine as primary immunosuppression for kidney transplant recipients. Cochrane Database Syst Rev. 2015: CD007746. doi: 10.1002/14651858.CD007746.pub2
    1. Keown P, Niese D. Cyclosporine microemulsion increases drug exposure and reduces acute rejection without incremental toxicity in de novo renal transplantation. International Sandimmun Neoral Study Group. Kidney Int. 1998;54:938–44. doi: 10.1046/j.1523-1755.1998.00042.x
    1. Pollard SG, Lear PA, Ready AR, Moore RH, Johnson RW. Comparison of microemulsion and conventional formulations of cyclosporine A in preventing acute rejection in de novo kidney transplant patients. The U.K. Neoral Renal Study Group. Transplantation. 1999;68:1325–31. doi: 10.1097/00007890-199911150-00018
    1. Suhail SM, Vathsala A, Lou HX, Woo KT. Safety and efficacy of mycophenolate mofetil for prophylaxis in Asian renal transplant recipients. Transplant Proc. 2000;32:1757–8. doi: 10.1016/s0041-1345(00)01388-9
    1. Miladipour AH, Ghods AJ, Nejadgashti H. Effect of mycophenolate mofetil on the prevention of acute renal allograft rejection. Transplant Proc. 2002;34:2089–90. doi: 10.1016/s0041-1345(02)02863-4
    1. Merville P, Berge F, Deminiere C, Morel D, Chong G, Durand D, et al.. Lower incidence of chronic allograft nephropathy at 1 year post-transplantation in patients treated with mycophenolate mofetil. Am J Transplant. 2004;4:1769–75. doi: 10.1111/j.1600-6143.2004.00533.x
    1. Joh JW, Lee HH, Lee DS, Lee KW, Lee SK, Kim SJ. The influence of mycophenolate mofetil and azathioprine on the same cadaveric donor renal transplantation. J Korean Med Sci. 2005;20:79–81. doi: 10.3346/jkms.2005.20.1.79
    1. Cravedi P, Perna A, Ruggenenti P, Remuzzi G. Mycophenolate mofetil versus azathioprine in organ transplantation. Am J Transplant. 2009;9:2856–7. doi: 10.1111/j.1600-6143.2009.02853.x
    1. Burke GW, Ciancio G. Show me the money—immunosuppression in kidney transplantation. Lancet. 2004;364:481–3. doi: 10.1016/S0140-6736(04)16822-0
    1. Ciancio G, Burke GW, Suzart K, Roth D, Kupin W, Rosen A, et al.. Daclizumab induction, tacrolimus, mycophenolate mofetil and steroids as an immunosuppression regimen for primary kidney transplant recipients. Transplantation. 2002;73:1100–6. doi: 10.1097/00007890-200204150-00015
    1. Khwaja K, Asolati M, Harmon J, Melancon JK, Dunn T, Gillingham K, et al.. Outcome at 3 years with a prednisone-free maintenance regimen: a single-center experience with 349 kidney transplant recipients. Am J Transplant. 2004;4:980–7. doi: 10.1111/j.1600-6143.2004.00443.x
    1. ter Meulen CG, van Riemsdijk I, Hene RJ, Christiaans MH, Borm GF, van Gelder T, et al.. Steroid-withdrawal at 3 days after renal transplantation with anti-IL-2 receptor alpha therapy: a prospective, randomized, multicenter study. Am J Transplant. 2004;4:803–10. doi: 10.1111/j.1600-6143.2004.00419.x
    1. Gaber AO, Monaco AP, Russell JA, Lebranchu Y, Mohty M. Rabbit antithymocyte globulin (thymoglobulin): 25 years and new frontiers in solid organ transplantation and haematology. Drugs. 2010;70:691–732. doi: 10.2165/11315940-000000000-00000
    1. McKeage K, McCormack PL. Basiliximab: a review of its use as induction therapy in renal transplantation. BioDrugs. 2010;24:55–76. doi: 10.2165/11203990-000000000-00000
    1. Ruggenenti P, Codreanu I, Cravedi P, Perna A, Gotti E, Remuzzi G. Basiliximab combined with low-dose rabbit anti-human thymocyte globulin: a possible further step toward effective and minimally toxic T cell-targeted therapy in kidney transplantation. Clin J Am Soc Nephrol. 2006;1:546–54. doi: 10.2215/CJN.01841105
    1. Gennarini A, Cravedi P, Marasa M, Perna A, Rota G, Bontempelli M, et al.. Perioperative Minimal Induction Therapy: A Further Step toward More Effective Immunosuppression in Transplantation. J Transp Secur. 2012;426042:2012. doi: 10.1155/2012/426042
    1. Todeschini M, Cortinovis M, Perico N, Poli F, Innocente A, Cavinato RA, et al.. In kidney transplant patients, alemtuzumab but not basiliximab/low-dose rabbit anti-thymocyte globulin induces B cell depletion and regeneration, which associates with a high incidence of de novo donor-specific anti-HLA antibody development. J Immunol. 2013;191:2818–28. doi: 10.4049/jimmunol.1203261
    1. Sis B, Mengel M, Haas M, Colvin RB, Halloran PF, Racusen LC, et al.. Banff ’09 meeting report: antibody mediated graft deterioration and implementation of Banff working groups. Am J Transplant. 2010;10:464–71. doi: 10.1111/j.1600-6143.2009.02987.x
    1. Rush D, Nickerson P, Gough J, McKenna R, Grimm P, Cheang M, et al.. Beneficial effects of treatment of early subclinical rejection: a randomized study. J Am Soc Nephrol. 1998;9:2129–34. doi: 10.1681/ASN.V9112129
    1. Zhang W, Yi Z, Keung KL, Shang H, Wei C, Cravedi P, et al.. A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection. J Am Soc Nephrol. 2019;30:1481–94. doi: 10.1681/ASN.2018111098
    1. Vincenti F, Rostaing L, Grinyo J, Rice K, Steinberg S, Gaite L, et al.. Belatacept and Long-Term Outcomes in Kidney Transplantation. N Engl J Med. 2016;374:333–43. doi: 10.1056/NEJMoa1506027
    1. Durrbach A, Pestana JM, Florman S, Del Carmen Rial M, Rostaing L, Kuypers D, et al.. Long-Term Outcomes in Belatacept- Versus Cyclosporine-Treated Recipients of Extended Criteria Donor Kidneys: Final Results From BENEFIT-EXT, a Phase III Randomized Study. Am J Transplant. 2016;16:3192–201. doi: 10.1111/ajt.13830
    1. Davis S, Gralla J, Klem P, Tong S, Wedermyer G, Freed B, et al.. Lower tacrolimus exposure and time in therapeutic range increase the risk of de novo donor-specific antibodies in the first year of kidney transplantation. Am J Transplant. 2018;18:907–15. doi: 10.1111/ajt.14504
    1. Jouve T, Noble J, Rostaing L, Malvezzi P. Tailoring tacrolimus therapy in kidney transplantation. Expert Rev Clin Pharmacol. 2018;11:581–8. doi: 10.1080/17512433.2018.1479638
    1. Thomas JM, Neville DM, Contreras JL, Eckhoff DE, Meng G, Lobashevsky AL, et al.. Preclinical studies of allograft tolerance in rhesus monkeys: a novel anti-CD3-immunotoxin given peritransplant with donor bone marrow induces operational tolerance to kidney allografts. Transplantation. 1997;64:124–35. doi: 10.1097/00007890-199707150-00022
    1. Myburgh JA, Smit JA, Hill RR, Browde S. Transplantation tolerance in primates following total lymphoid irradiation and allogeneic bone marrow injection. II Renal allografts. Transplantation. 1980;29:405–8. doi: 10.1097/00007890-198005000-00012
    1. Knechtle SJ, Vargo D, Fechner J, Zhai Y, Wang J, Hanaway MJ, et al.. FN18-CRM9 immunotoxin promotes tolerance in primate renal allografts. Transplantation. 1997;63:1–6. doi: 10.1097/00007890-199701150-00002
    1. Gentile G, Somma C, Gennarini A, Mastroluca D, Rota G, Lacanna F, et al.. Low-dose RATG with or without basiliximab in renal transplantation: a matched-cohort observational study. Am J Nephrol. 2015;41:16–27. doi: 10.1159/000371728
    1. Bansal SB, Saxena V, Pokhariyal S, Gupta P, Kher V, Ahlawat R, et al.. Comparison of azathioprine with mycophenolate mofetil in a living donor kidney transplant programme. Indian J Nephrol. 2011;21:258–63. doi: 10.4103/0971-4065.85483
    1. Yao G, Albon E, Adi Y, Milford D, Bayliss S, Ready A, et al.. A systematic review and economic model of the clinical and cost-effectiveness of immunosuppressive therapy for renal transplantation in children. Health Technol Assess. 2006; 10: iii-iv, ix-xi, 1–157. doi: 10.3310/hta10490
    1. Molnar AO, Fergusson D, Tsampalieros AK, Bennett A, Fergusson N, Ramsay T, et al.. Generic immunosuppression in solid organ transplantation: systematic review and meta-analysis. BMJ. 2015;h3163:350. doi: 10.1136/bmj.h3163
    1. Reigner B, Grange S, Bentley D, Banken L, Abt M, Hughes R, et al.. Generics in transplantation medicine: Randomized comparison of innovator and substitution products containing mycophenolate mofetil. Int J Clin Pharmacol Ther. 2019;57:506–19. doi: 10.5414/CP203487
    1. Alloway RR, Woodle ES, Abramowicz D, Segev DL, Castan R, Ilsley JN, et al.. Rabbit anti-thymocyte globulin for the prevention of acute rejection in kidney transplantation. Am J Transplant. 2019;19:2252–61. doi: 10.1111/ajt.15342
    1. Brennan DC. Cytomegalovirus in renal transplantation. J Am Soc Nephrol. 2001;12:848–55. doi: 10.1681/ASN.V124848
    1. Martin ST, Powell JT, Patel M, Tsapepas D. Risk of posttransplant lymphoproliferative disorder associated with use of belatacept. Am J Health Syst Pharm. 2013;70:1977–83. doi: 10.2146/ajhp120770
    1. Collins AJ, Foley RN, Chavers B, Gilbertson D, Herzog C, Johansen K, et al.. ’United States Renal Data System 2011 Annual Data Report: Atlas of chronic kidney disease & end-stage renal disease in the United States. Am J Kidney Dis. 2012; 59: A7, e1–420. doi: 10.1053/j.ajkd.2011.11.015
    1. Sharif A, Baboolal K. Complications associated with new-onset diabetes after kidney transplantation. Nat Rev Nephrol. 2011;8:34–42. doi: 10.1038/nrneph.2011.174
    1. Hariharan S, McBride MA, Cohen EP. Evolution of endpoints for renal transplant outcome. Am J Transplant. 2003;3:933–41. doi: 10.1034/j.1600-6143.2003.00176.x
    1. Nankivell BJ, Shingde M, Keung KL, Fung CL, Borrows RJ, O’Connell PJ, et al.. The causes, significance and consequences of inflammatory fibrosis in kidney transplantation: The Banff i-IFTA lesion. Am J Transplant. 2018;18:364–76. doi: 10.1111/ajt.14609
    1. Viglietti D, Loupy A, Vernerey D, Bentlejewski C, Gosset C, Aubert O, et al.. Value of Donor-Specific Anti-HLA Antibody Monitoring and Characterization for Risk Stratification of Kidney Allograft Loss. J Am Soc Nephrol. 2017;28:702–15. doi: 10.1681/ASN.2016030368
    1. Lundh A, Lexchin J, Mintzes B, Schroll JB, Bero L. Industry sponsorship and research outcome. Cochrane Database Syst Rev. 2017;2:MR000033. doi: 10.1002/14651858.MR000033.pub3
    1. Isoniemi H, Taskinen E, Hayry P. Histological chronic allograft damage index accurately predicts chronic renal allograft rejection. Transplantation. 1994;58:1195–8.
    1. Nankivell BJ, Fenton-Lee CA, Kuypers DR, Cheung E, Allen RD, O’Connell PJ, et al.. Effect of histological damage on long-term kidney transplant outcome. Transplantation. 2001;71:515–23. doi: 10.1097/00007890-200102270-00006

Source: PubMed

3
Subscribe