New developments in neurofibromatosis type 2 and vestibular schwannoma

Yin Ren, Divya A Chari, Sasa Vasilijic, D Bradley Welling, Konstantina M Stankovic, Yin Ren, Divya A Chari, Sasa Vasilijic, D Bradley Welling, Konstantina M Stankovic

Abstract

Neurofibromatosis type 2 (NF2) is a rare autosomal dominant disorder characterized by the development of multiple nervous system tumors due to mutation in the NF2 tumor suppressor gene. The hallmark feature of the NF2 syndrome is the development of bilateral vestibular schwannomas (VS). Although there is nearly 100% penetrance by 60 years of age, some patients suffer from a severe form of the disease and develop multiple tumors at an early age, while others are asymptomatic until later in life. Management options for VS include surgery, stereotactic radiation, and observation with serial imaging; however, currently, there are no FDA-approved pharmacotherapies for NF2 or VS. Recent advancements in the molecular biology underlying NF2 have led to a better understanding of the etiology and pathogenesis of VS. These novel signaling pathways may be used to identify targeted therapies for these tumors. This review discusses the clinical features and treatment options for sporadic- and NF2-associated VS, the diagnostic and screening criteria, completed and ongoing clinical trials, quality of life metrics, and opportunities for future research.

Keywords: NF2; acoustic neuroma; clinical trials; drug repositioning; hearing loss; neurofibromatosis type 2; vestibular schwannoma.

© The Author(s) 2020. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology.

Figures

Figure 1.
Figure 1.
Schematic illustrating vestibular schwannoma arising from a vestibular nerve within the internal auditory canal. The figure was modified from SMART (Servier Medical Art), licensed under a Creative Common Attribution 3.0 Generic License. http://smart.servier.com/.
Figure 2.
Figure 2.
Merlin-regulated signaling pathways and current therapeutic targets in vestibular schwannoma. Merlin protein suppresses cell growth and proliferation by acting at multiple levels in a cell. Details are included in Supplementary Materials.
Figure 3.
Figure 3.
Examples illustrating that vestibular schwannoma (VS) size does not correlate with hearing loss. PTA, pure tone average. Yellow arrow points to VS in all scans. Details are included in Supplementary Materials.

References

    1. Halliday D, Emmanouil B, Pretorius P, et al. Genetic Severity Score predicts clinical phenotype in NF2. J Med Genet. 2017;54(10):657–664.
    1. Marinelli JP, Lohse CM, Carlson ML. Incidence of vestibular schwannoma over the past half-century: a population-based study of olmsted county, minnesota. Otolaryngol - Head Neck Surg (United States). 2018;159(4):717–723.
    1. Evans DGR, Huson SM, Donnai D, et al. A genetic study of type 2 neurofibromatosis in the United Kingdom. I. Prevalence, mutation rate, fitness, and confirmation of maternal transmission effect on severity. J Med Genet. 1992;29(12):841–846.
    1. Evans DGR, Moran A, King A, Saeed S, Gurusinghe N, Ramsden R. Incidence of vestibular schwannoma and neurofibromatosis 2 in the North West of England over a 10-year period: Higher incidence than previously thought. Otol Neurotol. 2005;26(1):93–97.
    1. Evans DGR Neurofibromatosis type 2 (NF2): a clinical and molecular review. Orphanet J Rare Dis. 2009;4:16.
    1. Shaw RJ, Paez JG, Curto M, et al. The Nf2 tumor suppressor, merlin, functions in rac-dependent signaling. Dev Cell. 2001;1(1):63–72.
    1. Ammoun S, Hanemann CO. Emerging therapeutic targets in schwannomas and other merlin-deficient tumors. Nat Rev Neurol. 2011;7(7):392–399.
    1. Li W, You L, Cooper J, et al. Merlin/NF2 suppresses tumorigenesis by inhibiting the E3 ubiquitin ligase CRL4DCAF1 in the Nucleus. Cell. 2010;140(4):477–490.
    1. Hamaratoglu F, Willecke M, Kango-Singh M, et al. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol. 2006;8(1):27–36.
    1. Fernandez-Valle C, Tang Y, Ricard J, et al. Paxillin binds schwannomin and regulates its density-dependent localization and effect on cell morphology. Nat Genet. 2002;31(4):354–362.
    1. McClatchey AI, Giovannini M. Membrane organization and tumorigenesis–the NF2 tumor suppressor, Merlin. Genes Dev. 2005;19(19):2265–2277.
    1. Welling DB, Guida M, Goll F, et al. Mutational spectrum in the neurofibromatosis type 2 gene in sporadic and familial schwannomas. Hum Genet. 1996;98(2):189–193.
    1. Roosli C, Linthicum FH Jr, Cureoglu S, Merchant SN. Dysfunction of the cochlea contributing to hearing loss in acoustic neuromas: an underappreciated entity. Otol Neurotol. 2012;33(3):473–480.
    1. Caye-Thomasen P, Dethloff T, Hansen S, Stangerup SE, Thomsen J. Hearing in patients with intracanalicular vestibular schwannomas. Audiol Neurootol. 2007;12(1):1–12.
    1. Kanzaki J, Ogawa K, Inoue Y, Shiobara R, Toya S. Quality of hearing preservation in acoustic neuroma surgery. Am J Otol. 1998;19(5):644–648.
    1. Sughrue ME, Kaur R, Kane AJ, et al. Intratumoral hemorrhage and fibrosis in vestibular schwannoma: a possible mechanism for hearing loss. J Neurosurg. 2011;114(2):386–393.
    1. Badie B, Pyle GM, Nguyen PH, Hadar EJ. Elevation of internal auditory canal pressure by vestibular schwannomas. Otol Neurotol. 2001;22(5):696–700.
    1. Dilwali S, Landegger LD, Soares VY, Deschler DG, Stankovic KM. Secreted factors from human vestibular schwannomas can cause cochlear damage. Sci Rep. 2015;5:18599.
    1. Plotkin SR, Stemmer-Rachamimov AO, Barker FG 2nd, et al. Hearing improvement after bevacizumab in patients with neurofibromatosis type 2. N Engl J Med. 2009;361(4):358–367.
    1. Soares VY, Atai NA, Fujita T, et al. Extracellular vesicles derived from human vestibular schwannomas associated with poor hearing damage cochlear cells. Neuro Oncol. 2016;18(11):1498–1507.
    1. Ruggieri M, Huson SM. The clinical and diagnostic implications of mosaicism in the neurofibromatoses. Neurology. 2001;56(11):1433–1443.
    1. Evans DGR, Baser ME, O’Reilly B, et al. Management of the patient and family with neurofibromatosis 2: a consensus conference statement. Br J Neurosurg. 2005;19(1):5–12.
    1. Evans DG, King AT, Bowers NL, et al. ; English Specialist NF2 Research Group Identifying the deficiencies of current diagnostic criteria for neurofibromatosis 2 using databases of 2777 individuals with molecular testing. Genet Med. 2019;21(7):1525–1533.
    1. Choi JW, Lee JIY, Phi JIH, et al. Clinical course of vestibular schwannoma in pediatric neurofibromatosis Type 2: clinical article. J Neurosurg Pediatr. 2014;13(6):650–657.
    1. Baser ME, Friedman JM, Aeschliman D, et al. Predictors of the risk of mortality in neurofibromatosis 2. Am J Hum Genet. 2002;71(4):715–723.
    1. Dow G, Biggs N, Evans G, Gillespie J, Ramsden R, King A. Spinal tumors in neurofibromatosis type 2. Is emerging knowledge of genotype predictive of natural history? J Neurosurg Spine. 2005;2(5):574–579.
    1. Fukuda M, Oishi M, Hiraishi T, Natsumeda M, Fujii Y. Clinicopathological factors related to regrowth of vestibular schwannoma after incomplete resection. J Neurosurg. 2011;114(5):1224–1231.
    1. Plotkin SR, Merker VL, Halpin C, et al. Bevacizumab for progressive vestibular schwannoma in neurofibromatosis type 2: a retrospective review of 31 patients. Otol Neurotol. 2012;33(6):1046–1052.
    1. Lewis D, Roncaroli F, Agushi E, et al. Inflammation and vascular permeability correlate with growth in sporadic vestibular schwannoma. Neuro Oncol. 2019;21(3):314–325.
    1. Wong HK, Lahdenranta J, Kamoun WS, et al. Anti-vascular endothelial growth factor therapies as a novel therapeutic approach to treating neurofibromatosis-related tumors. Cancer Res. 2010;70(9):3483–3493.
    1. Blakeley JO, Ye X, Duda DG, et al. Efficacy and biomarker study of bevacizumab for hearing loss resulting from neurofibromatosis type 2-associated vestibular schwannomas. J Clin Oncol. 2016;34(14):1669–1675.
    1. Dilwali S, Roberts D, Stankovic KM. Interplay between VEGF-A and cMET signaling in human vestibular schwannomas and schwann cells. Cancer Biol Ther. 2015;16(1):170–175.
    1. Huang X, Xu J, Shen Y, et al. Protein profiling of cerebrospinal fluid from patients undergoing vestibular schwannoma surgery and clinical significance. Biomed Pharmacother. 2019;116:108985.
    1. Ren Y, Sethi RKV, Stankovic KM. National trends in surgical resection of vestibular schwannomas. Otolaryngol - Head Neck Surg. 2020;163(6):1244–1249.
    1. Pandrangi VC, Han AY, Alonso JE, Peng KA, St John MA. An update on epidemiology and management trends of vestibular schwannomas. Otol Neurotol. 2020;41(3):411–417.
    1. Sagers JE, Beauchamp RL, Zhang Y, et al. Combination therapy with mTOR kinase inhibitor and dasatinib as a novel therapeutic strategy for vestibular schwannoma. Sci Rep. 2020;10(1):4211.
    1. Zhao Y, Liu P, Zhang N, et al. Targeting the cMET pathway augments radiation response without adverse effect on hearing in NF2 schwannoma models. Proc Natl Acad Sci USA. 2018;115(9):E2077–E2084.
    1. Sagers JE, Brown AS, Vasilijic S, et al. Computational repositioning and preclinical validation of mifepristone for human vestibular schwannoma. Sci Rep. 2018;8(1):5437.
    1. Nakanishi H, Kawashima Y, Kurima K, et al. NLRP3 mutation and cochlear autoinflammation cause syndromic and nonsyndromic hearing loss DFNA34 responsive to anakinra therapy. Proc Natl Acad Sci USA. 2017;114(37):E7766–E7775.
    1. Sagers JE, Sahin MI, Moon I, et al. NLRP3 inflammasome activation in human vestibular schwannoma: Implications for tumor-induced hearing loss. Hear Res. 2019;381:107770.
    1. Pyonteck SM, Akkari L, Schuhmacher AJ, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19(10):1264–1272.
    1. Zuris JA, Thompson DB, Shu Y, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33(1):73–80.
    1. Prabhakar S, Taherian M, Gianni D, et al. Regression of schwannomas induced by adeno-associated virus-mediated delivery of caspase-1. Hum Gene Ther. 2013;24(2):152–162.
    1. Mautner VF, Nguyen R, Kutta H, et al. Bevacizumab induces regression of vestibular schwannomas in patients with neurofibromatosis type 2. Neuro Oncol. 2010;12(1):14–18.
    1. Karajannis MA, Legault G, Hagiwara M, et al. Phase II trial of lapatinib in adult and pediatric patients with neurofibromatosis type 2 and progressive vestibular schwannomas. Neuro Oncol. 2012;14(9):1163–1170.
    1. Plotkin SR, Halpin C, McKenna MJ, Loeffler JS, Batchelor TT, Barker FG 2nd. Erlotinib for progressive vestibular schwannoma in neurofibromatosis 2 patients. Otol Neurotol. 2010;31(7):1135–1143.
    1. Karajannis MA, Legault G, Fisher MJ, et al. Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. Neuro Oncol. 2014;16(10):1408–1416.
    1. Goutagny S, Raymond E, Esposito-Farese M, et al. Phase II study of mTORC1 inhibition by everolimus in neurofibromatosis type 2 patients with growing vestibular schwannomas. J Neurooncol. 2015;122(2):313–320.
    1. Dilwali S, Briët MC, Kao SY, et al. Preclinical validation of anti-nuclear factor-kappa B therapy to inhibit human vestibular schwannoma growth. Mol Oncol. 2015;9(7):1359–1370.
    1. Dilwali S, Kao SY, Fujita T, Landegger LD, Stankovic KM. Nonsteroidal anti-inflammatory medications are cytostatic against human vestibular schwannomas. Transl Res. 2015;166(1):1–11.
    1. Kandathil CK, Cunnane ME, McKenna MJ, Curtin HD, Stankovic KM. Correlation between aspirin intake and reduced growth of human vestibular schwannoma: Volumetric analysis. Otol Neurotol. 2016;37(9):1428–1434.
    1. Van Gompel JJ, Agazzi S, Carlson ML, et al. Congress of neurological surgeons systematic review and evidence-based guidelines on emerging therapies for the treatment of patients with vestibular schwannomas. Neurosurgery. 2018;82(2):E52–E54.
    1. Ren Y, Landegger LD, Stankovic KM. Gene therapy for human sensorineural hearing loss. Front Cell Neurosci. 2019;13:323.
    1. Ahmed SG, Abdelnabi A, Maguire CA, et al. Gene therapy with apoptosis-associated speck-like protein, a newly described schwannoma tumor suppressor, inhibits schwannoma growth in vivo. Neuro Oncol. 2019;21(7):854–866.
    1. Akil O, Dyka F, Calvet C, et al. Dual AAV-mediated gene therapy restores hearing in a DFNB9 mouse model. Proc Natl Acad Sci USA. 2019;116(10):4496–4501.
    1. Tomaszewski W, Sanchez-Perez L, Gajewski TF, Sampson JH. Brain tumor microenvironment and host state: implications for immunotherapy. Clin Cancer Res. 2019;25(14):4202–4210.
    1. de Vries WM, Briaire-de Bruijn IH, van Benthem PPG, van der Mey AGL, Hogendoorn PCW. M-CSF and IL-34 expression as indicators for growth in sporadic vestibular schwannoma. Virchows Arch. 2019;474(3):375–381.
    1. Wang S, Liechty B, Patel S, et al. Programmed death ligand 1 expression and tumor infiltrating lymphocytes in neurofibromatosis type 1 and 2 associated tumors. J Neurooncol. 2018;138(1):183–190.
    1. Perry A, Graffeo CS, Carlstrom LP, et al. Predominance of M1 subtype among tumor-associated macrophages in phenotypically aggressive sporadic vestibular schwannoma. J Neurosurg. 2019;1(aop):1–9.
    1. Plotkin SR, Ardern-Holmes SL, Barker FG 2nd, et al. ; REiNS International Collaboration Hearing and facial function outcomes for neurofibromatosis 2 clinical trials. Neurology. 2013;81(21 Suppl 1):S25–S32.
    1. Cosetti MK, Golfinos JG, Roland JT Jr. Quality of Life (QoL) assessment in patients with neurofibromatosis type 2 (NF2). Otolaryngol Head Neck Surg. 2015;153(4):599–605.
    1. Hornigold RE, Golding JF, Leschziner G, et al. The NFTI-QOL: a diseasespecific quality of life questionnaire for neurofibromatosis 2. J Neurol Surgery, Part B Skull Base. 2013;73(2):104–111.
    1. Lysaght AC, Kao SY, Paulo JA, Merchant SN, Steen H, Stankovic KM. Proteome of human perilymph. J Proteome Res. 2011;10(9):3845–3851.
    1. Early S, Moon IS, Bommakanti K, Hunter I, Stankovic KM. A novel microneedle device for controlled and reliable liquid biopsy of the human inner ear. Hear Res. 2019;381:107761.
    1. Agnihotri S, Jalali S, Wilson MR, et al. The genomic landscape of schwannoma. Nat Genet. 2016;48(11):1339–1348.
    1. Hung G, Li X, Faudoa R, et al. Establishment and characterization of a schwannoma cell line from a patient with neurofibromatosis 2. Int J Oncol. 2002;20(3):475–482.
    1. Nadol JB Jr, Diamond PF, Thornton AR. Correlation of hearing loss and radiologic dimensions of vestibular schwannomas (acoustic Neuromas). Am J Otol. 1996;17(2):312–316.
    1. Salt AN, Plontke SK. Principles of local drug delivery to the inner ear. Audiol Neurootol. 2009;14(6):350–360.
    1. Wang Y, Li P, Wang B, Wang S, Liu P. Identification of myeloid-derived suppressor cells that have an immunosuppressive function in NF2 patients. J Cancer Res Clin Oncol. 2019;145(2):523–533.

Source: PubMed

3
Subscribe