Doxycycline Attenuates Cancer Cell Growth by Suppressing NLRP3-Mediated Inflammation

Mohammad Alsaadi, Gulcin Tezcan, Ekaterina E Garanina, Shaimaa Hamza, Alan McIntyre, Albert A Rizvanov, Svetlana F Khaiboullina, Mohammad Alsaadi, Gulcin Tezcan, Ekaterina E Garanina, Shaimaa Hamza, Alan McIntyre, Albert A Rizvanov, Svetlana F Khaiboullina

Abstract

NLR family pyrin domain containing 3 (NLRP3) inflammasome formation is triggered by the damaged mitochondria releasing reactive oxygen species. Doxycycline was shown to regulate inflammation; however, its effect on NLRP3 in cancer remains largely unknown. Therefore, we sought to determine the effect of doxycycline on NLRP3 regulation in cancer using an in vitro model. NLRP3 was activated in a prostate cancer cell line (PC3) and a lung cancer cell line (A549) before treatment with doxycycline. Inflammasome activation was assessed by analyzing RNA expression of NLRP3, Pro-CASP-1, and Pro-IL1β using RT-qPCR. Additionally, NLPR3 protein expression and IL-1β secretion were analyzed using Western blot and ELISA, respectively. Tumor cell viability was determined using Annexin V staining and a cell proliferation assay. Cytokine secretion was analyzed using a 41Plex assay for human cytokines. Data were analyzed using one-way ANOVA model with Tukey's post hoc tests. Doxycycline treatment decreased NLRP3 formation in PC3 and A549 cells compared to untreated and LPS only treated cells (p < 0.05). Doxycycline also decreased proliferation and caused cell death through apoptosis, a response that differed to the LPS-Nigericin mediated pyroptosis. Our findings suggest that doxycycline inhibits LPS priming of NLRP3 and reduces tumor progression through early apoptosis in cancer.

Keywords: apoptosis; cancer; doxycycline; inflammasome; nod-like receptor protein 3 (NLRP3).

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The experimental design. (A) The effect of LPS, Nigericin and Glibenclamide on NLRP3 activation. LPS as the signal 1 is a priming trigger inducing the NLRP3 and pro-IL-1β production. Nigericin is the signal 2 and plays role in polymerization of an active NLRP3 inflammasome complex which recruits pro-Caspase-1 and cleaved it to active form of Caspase-1. The Caspase-1 liberates functional IL-1β and IL-18, regulatory cytokines of inflammation. Glibenclamide is a potassium channel inhibitor and blocks the polymerization of NLRP3 protein complex. (B) The experimental control groups consisted of: 1. A549 and PC3 cells treated with glibenclamide for 24 h as the positive control of NLRP3 inhibition; 2. LPS-only for 3 h as the positive control of NLRP3 priming; 3. LPS+nigericin treatment for 24 h as the positive control of active NLRP3 inflammasome complex. The experimental test groups consisted of A549 and PC3 cells treated with doxycycline-only for 24 h and pretreated with LPS for 3 h. U: Untreated PC3 or A549 cells, G: Glibenclamide, L: LPS, N: Nigericin, D: Doxycycline, PRR: The cytosolic pattern recognition receptor, AC1: Active Caspase-1, PC1: Pro-Caspase-1, ASC: Apoptosis-associated speck-like protein containing a CARD, ROS: reactive oxygen species.
Figure 2
Figure 2
The effect of doxycycline on NLRP3 inflammasome activation. Doxycycline effects on: (AC) The RNA levels of NLRP3 downstream genes in PC3 (AC), and A549 cells (DF). The effect of doxycycline on NLRP3 protein translation (G), cell-secretion of IL-1β in PC3 (H), and A549 cells (I). U: Untreated, G: Glibenclamide, L: LPS, LN: LPS-Nigericin, D: Doxycycline, LD: LPS Doxycycline. * adjusted p < 0.05 compared to untreated cells; ◊: adjusted p < 0.05 compared to LN treated cells. Data were analyzed using one-way ANOVA and Tukey’s post hoc tests (n = 3).
Figure 3
Figure 3
The effect of doxycycline mediated inhibition of NLRP3 on proliferation and viability of cancer cells. (A) Doxycycline and LPS-doxycycline effect on PC3 cell proliferation; (B) Doxycycline and LPS-doxycycline effect on A549 cell proliferation; (C) PC3 cell viability, (D) A549 cell viability. The adjusted p-values were calculated using one-way ANOVA and Tukey’s post hoc tests. U: Untreated, L: LPS, D: Doxycycline, LD: LPS-Doxycycline. * p < 0.05 compared to untreated cells ◊ p < 0.05 compared to LPS treated cells; n = 3.
Figure 4
Figure 4
Effect of Doxycycline on cytokine release pattern in PC3 and A549 cells. (A,B). The heat map graphs of cytokine release pattern in PC3 and A549 cells. (B,C). The time-dependent secretion of IL-1β. (DH). The time-dependent secretion of EGF and GM-CSF in PC3 and A549 cells. U: Untreated, G: Glibenclamide, L: LPS, LN: LPS-Nigericin, D: Doxycycline, LD: LPS-Doxycycline.

References

    1. Greten F.R., Grivennikov S.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity. 2019;51:27–41. doi: 10.1016/j.immuni.2019.06.025.
    1. Wang Z., Zhang S., Xiao Y., Zhang W., Wu S., Qin T., Yue Y., Qian W., Li L. NLRP3 Inflammasome and Inflammatory Diseases. Oxidative Med. Cell. Longev. 2020;2020:4063562. doi: 10.1155/2020/4063562.
    1. Swanson K.V., Deng M., Ting J.P. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 2019;19:477–489. doi: 10.1038/s41577-019-0165-0.
    1. Okamoto M., Liu W., Luo Y., Tanaka A., Cai X., Norris D.A., Dinarello C.A., Fujita M. Constitutively active inflammasome in human melanoma cells mediating autoinflammation via caspase-1 processing and secretion of interleukin-1beta. J. Biol. Chem. 2010;285:6477–6488. doi: 10.1074/jbc.M109.064907.
    1. Kolb R., Liu G.H., Janowski A.M., Sutterwala F.S., Zhang W. Inflammasomes in cancer: A double-edged sword. Protein Cell. 2014;5:12–20. doi: 10.1007/s13238-013-0001-4.
    1. Lin C., Zhang J. Inflammasomes in Inflammation-Induced Cancer. Front. Immunol. 2017;8:271. doi: 10.3389/fimmu.2017.00271.
    1. Hamarsheh S., Zeiser R. NLRP3 Inflammasome Activation in Cancer: A Double-Edged Sword. Front. Immunol. 2020;11:1444. doi: 10.3389/fimmu.2020.01444.
    1. Balahura L.R., Selaru A., Dinescu S., Costache M. Inflammation and Inflammasomes: Pros and Cons in Tumorigenesis. J. Immunol. Res. 2020;2020:2549763. doi: 10.1155/2020/2549763.
    1. Tezcan G., Martynova E.V., Gilazieva Z.E., McIntyre A., Rizvanov A.A., Khaiboullina S.F. MicroRNA Post-transcriptional Regulation of the NLRP3 Inflammasome in Immunopathologies. Front. Pharmacol. 2019;10:451. doi: 10.3389/fphar.2019.00451.
    1. Tezcan G., Garanina E.E., Alsaadi M., Gilazieva Z.E., Martinova E.V., Markelova M.I., Arkhipova S.S., Hamza S., McIntyre A., Rizvanov A.A., et al. Therapeutic Potential of Pharmacological Targeting NLRP3 Inflammasome Complex in Cancer. Front. Immunol. 2021;11:607881. doi: 10.3389/fimmu.2020.607881.
    1. Tengesdal I.W., Menon D.R., Osborne D.G., Neff C.P., Powers N.E., Gamboni F., Mauro A.G., D’Alessandro A., Stefanoni D., Henen M.A., et al. Targeting tumor-derived NLRP3 reduces melanoma progression by limiting MDSCs expansion. Proc. Natl. Acad. Sci. USA. 2021;118:e2000915118. doi: 10.1073/pnas.2000915118.
    1. Kamp D.W., Shacter E., Weitzman S.A. Chronic inflammation and cancer: The role of the mitochondria. Oncology (Williston Park, N.Y.) 2011;25:400–413.
    1. Nakahira K., Haspel J.A., Rathinam V.A., Lee S.J., Dolinay T., Lam H.C., Englert J.A., Rabinovitch M., Cernadas M., Kim H.P., et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 2011;12:222–230. doi: 10.1038/ni.1980.
    1. Zhou R., Yazdi A.S., Menu P., Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469:221–225. doi: 10.1038/nature09663.
    1. Thacker J.D., Balin B.J., Appelt D.M., Sassi-Gaha S., Purohit M., Rest R.F., Artlett C.M. NLRP3 inflammasome is a target for development of broad-spectrum anti-infective drugs. Antimicrob. Agents Chemother. 2012;56:1921–1930. doi: 10.1128/AAC.06372-11.
    1. Mariathasan S., Weiss D.S., Newton K., McBride J., O’Rourke K., Roose-Girma M., Lee W.P., Weinrauch Y., Monack D.M., Dixit V.M. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006;440:228–232. doi: 10.1038/nature04515.
    1. Allam R., Darisipudi M.N., Rupanagudi K.V., Lichtnekert J., Tschopp J., Anders H.J. Cutting edge: Cyclic polypeptide and aminoglycoside antibiotics trigger IL-1β secretion by activating the NLRP3 inflammasome. J. Immunol. 2011;186:2714–2718. doi: 10.4049/jimmunol.1002657.
    1. Gao Y., Shang Q., Li W., Guo W., Stojadinovic A., Mannion C., Man Y.G., Chen T. Antibiotics for cancer treatment: A double-edged sword. J. Cancer. 2020;11:5135–5149. doi: 10.7150/jca.47470.
    1. Hernández D.L. Letter to the Editor: Use of Antibiotics, Gut Microbiota, and Risk of Type 2 Diabetes: Epigenetics Regulation. J. Clin. Endocrinol. Metab. 2016;101:L62–L63. doi: 10.1210/jc.2016-1151.
    1. Nelson M.L., Levy S.B. The history of the tetracyclines. Ann. N. Y. Acad. Sci. 2011;1241:17–32. doi: 10.1111/j.1749-6632.2011.06354.x.
    1. Fife R.S., Rougraff B.T., Proctor C., Sledge G.W., Jr. Inhibition of proliferation and induction of apoptosis by doxycycline in cultured human osteosarcoma cells. J. Lab. Clin. Med. 1997;130:530–534. doi: 10.1016/S0022-2143(97)90130-X.
    1. Fife R.S., Sledge G.W., Jr., Roth B.J., Proctor C. Effects of doxycycline on human prostate cancer cells in vitro. Cancer Lett. 1998;127:37–41. doi: 10.1016/S0304-3835(98)00003-2.
    1. Ferreri A.J., Govi S., Pasini E., Mappa S., Bertoni F., Zaja F., Montalbán C., Stelitano C., Cabrera M.E., Giordano Resti A., et al. Chlamydophila psittaci eradication with doxycycline as first-line targeted therapy for ocular adnexae lymphoma: Final results of an international phase II trial. J. Clin. Oncol. 2012;30:2988–2994. doi: 10.1200/JCO.2011.41.4466.
    1. Han J.J., Kim T.M., Jeon Y.K., Kim M.K., Khwarg S.I., Kim C.W., Kim I.H., Heo D.S. Long-term outcomes of first-line treatment with doxycycline in patients with previously untreated ocular adnexal marginal zone B cell lymphoma. Ann. Hematol. 2015;94:575–581. doi: 10.1007/s00277-014-2240-8.
    1. Zhang W., Xie X., Wu D., Jin X., Liu R., Hu X., Fu Y., Ding Z., Zhang N., Cao Y. Doxycycline Attenuates Leptospira-Induced IL-1β by Suppressing NLRP3 Inflammasome Priming. Front. Immunol. 2017;8:857. doi: 10.3389/fimmu.2017.00857.
    1. Lu A., Magupalli V.G., Ruan J., Yin Q., Atianand M.K., Vos M.R., Schröder G.F., Fitzgerald K.A., Wu H., Egelman E.H. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell. 2014;156:1193–1206. doi: 10.1016/j.cell.2014.02.008.
    1. Lamkanfi M., Mueller J.L., Vitari A.C., Misaghi S., Fedorova A., Deshayes K., Lee W.P., Hoffman H.M., Dixit V.M. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J. Cell Biol. 2009;187:61–70. doi: 10.1083/jcb.200903124.
    1. Ozsvari B., Sotgia F., Lisanti M.P. A new mutation-independent approach to cancer therapy: Inhibiting oncogenic RAS and MYC, by targeting mitochondrial biogenesis. Aging. 2017;9:2098–2116. doi: 10.18632/aging.101304.
    1. De Francesco E.M., Bonuccelli G., Maggiolini M., Sotgia F., Lisanti M.P. Vitamin C and Doxycycline: A synthetic lethal combination therapy targeting metabolic flexibility in cancer stem cells (CSCs) Oncotarget. 2017;8:67269–67286. doi: 10.18632/oncotarget.18428.
    1. Nadler R.B., Humphrey P.A., Smith D.S., Catalona W.J., Ratliff T.L. Effect of inflammation and benign prostatic hyperplasia on elevated serum prostate specific antigen levels. J. Urol. 1995;154:407–413. doi: 10.1016/S0022-5347(01)67064-2.
    1. Irani J., Levillain P., Goujon J.M., Bon D., Doré B., Aubert J. Inflammation in benign prostatic hyperplasia: Correlation with prostate specific antigen value. J. Urol. 1997;157:1301–1303. doi: 10.1016/S0022-5347(01)64957-7.
    1. Morote J., Lopez M., Encabo G., de Torres I.M. Effect of inflammation and benign prostatic enlargement on total and percent free serum prostatic specific antigen. Eur. Urol. 2000;37:537–540. doi: 10.1159/000020190.
    1. Schaeffer A.J., Wu S.C., Tennenberg A.M., Kahn J.B. Treatment of chronic bacterial prostatitis with levofloxacin and ciprofloxacin lowers serum prostate specific antigen. J. Urol. 2005;174:161–164. doi: 10.1097/01.ju.0000162017.24965.2b.
    1. Stevermer J.J., Easley S.K. Treatment of prostatitis. Am. Fam. Physician. 2000;61:3015–3026.
    1. Van den Bogert C., Dontje B.H., Kroon A.M. The antitumour effect of doxycycline on a T-cell leukaemia in the rat. Leuk. Res. 1985;9:617–623. doi: 10.1016/0145-2126(85)90142-0.
    1. Liu J., Kuszynski C.A., Baxter B.T. Doxycycline induces Fas/Fas ligand-mediated apoptosis in Jurkat T lymphocytes. Biochem. Biophys. Res. Commun. 1999;260:562–567. doi: 10.1006/bbrc.1999.0929.
    1. Mouradis PX E., Colston K.W., Dalgleish A.G. Doxycycline induces caspase dependent apoptosis in human pancreatic cancer cells. Int. J. Cancer. 2007;120:743–752. doi: 10.1002/ijc.22303.
    1. Song H., Fares M., Maguire K.R., Sidén Å., Potácová Z. Cytotoxic Effects of Tetracycline Analogues (Doxycycline, Minocycline and COL-3) in Acute Myeloid Leukemia HL-60 Cells. PLoS ONE. 2014;9:e114457. doi: 10.1371/journal.pone.0114457.
    1. Dijk S.N., Protasoni M., Elpidorou M., Kroon A.M., Taanman J.W. Mitochondria as target to inhibit proliferation and induce apoptosis of cancer cells: The effects of doxycycline and gemcitabine. Sci. Rep. 2020;10:4363. doi: 10.1038/s41598-020-61381-9.
    1. Wang Y., Shi P., Chen Q., Huang Z., Zou D., Zhang J., Gao X., Lin Z. Mitochondrial ROS promote macrophage pyroptosis by inducing GSDMD oxidation. J. Mol. Cell Biol. 2019;11:1069–1082. doi: 10.1093/jmcb/mjz020.
    1. Vande Walle L., Lamkanfi M. Pyroptosis. Pyroptosis. Curr. Biol. CB. 2016;26:R568–R572. doi: 10.1016/j.cub.2016.02.019.
    1. Man S.M., Karki R., Kanneganti T.D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol. Rev. 2017;277:61–75. doi: 10.1111/imr.12534.
    1. Xu S., Zhou Q., Fan C., Zhao H., Wang Y., Qiu X., Yang K., Ji Q. Doxycycline inhibits NAcht Leucine-rich repeat Protein 3 inflammasome activation and interleukin-1β production induced by Porphyromonas gingivalis-lipopolysaccharide and adenosine triphosphate in human gingival fibroblasts. Arch. Oral Biol. 2019;107:104514. doi: 10.1016/j.archoralbio.2019.104514.
    1. Apte R.N., Voronov E. Immunotherapeutic approaches of IL-1 neutralization in the tumor microenvironment. J. Leukoc. Biol. 2017;102:293–306. doi: 10.1189/jlb.3MR1216-523R.
    1. Culig Z., Puhr M. Interleukin-6 and prostate cancer: Current developments and unsolved questions. Mol. Cell Endocrinol. 2018;462:25–30. doi: 10.1016/j.mce.2017.03.012.
    1. Dinarello C.A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 2009;27:519–550. doi: 10.1146/annurev.immunol.021908.132612.
    1. Voronov E., Dotan S., Krelin Y., Song X., Elkabets M., Carmi Y., Rider P., Cohen I., Romzova M., Kaplanov I., et al. Unique versus redundant functions of IL-1α and IL-1β in the tumor microenvironment. Front. Immunol. 2013;4:177. doi: 10.3389/fimmu.2013.00177.
    1. Bent R., Moll L., Grabbe S., Bros M. Interleukin-1 Beta-A Friend or Foe in Malignancies? Int. J. Mol. Sci. 2018;19:2155. doi: 10.3390/ijms19082155.
    1. Graven S.N., Estrada-O S., Lardy H.A. Alkali metal cation release and respiratory inhibition induced by nigericin in rat liver mitochondria. Proc. Natl. Acad. Sci. USA. 1966;56:654–658. doi: 10.1073/pnas.56.2.654.
    1. Laliberte R.E., Eggler J., Gabel C.A. ATP treatment of human monocytes promotes caspase-1 maturation and externalization. J. Biol. Chem. 1999;274:36944–36951. doi: 10.1074/jbc.274.52.36944.
    1. Lagarkova M.A., Shutova M.V., Bogomazova A.N., Vassina E.M., Glazov E.A., Zhang P., Rizvanov A.A., Chestkov I.V., Kiselev S.L. Induction of pluripotency in human endothelial cells resets epigenetic profile on genome scale. Cell Cycle (Georgetown, Tex.) 2010;9:937–946. doi: 10.4161/cc.9.5.10869.
    1. Alexander-Savino C.V., Hayden M.S., Richardson C., Zhao J., Poligone B. Doxycycline is an NF-κB inhibitor that induces apoptotic cell death in malignant T-cells. Oncotarget. 2016;7:75954–75967. doi: 10.18632/oncotarget.12488.
    1. Pehlivan T., Mansour A., Spaczynski R.Z., Duleba A.J. Effects of transforming growth factors-alpha and -beta on proliferation and apoptosis of rat theca-interstitial cells. J. Endocrinol. 2001;170:639–645. doi: 10.1677/joe.0.1700639.
    1. Goodsell D.S. The molecular perspective: Epidermal growth factor. Oncol. 2003;21:702–703. doi: 10.1634/stemcells.21-6-702.
    1. Kim H.R., Heo Y.M., Jeong K.I., Kim Y.M., Jang H.L., Lee K.Y., Yeo C.Y., Kim S.H., Lee H.K., Kim S.R., et al. FGF-2 inhibits TNF-α mediated apoptosis through upregulation of Bcl2-A1 and Bcl-xL in ATDC5 cells. BMB Rep. 2012;45:287–292. doi: 10.5483/BMBRep.2012.45.5.287.
    1. Hong I.S. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types. Exp. Mol. Med. 2016;48:e242. doi: 10.1038/emm.2016.64.
    1. Rio D.C., Ares M., Jr., Hannon G.J., Nilsen T.W. Purification of RNA using TRIzol (TRI reagent) Cold Spring Harb. Protoc. 2010;2010:pdb.prot5439. doi: 10.1101/pdb.prot5439.
    1. Tezcan G., Garanina E.E., Zhuravleva M.N., Hamza S., Rizvanov A.A., Khaiboullina S.F. Rab GTPase Mediating Regulation of NALP3 in Colorectal Cancer. Molecules (Basel, Switzerland) 2020;25:4834. doi: 10.3390/molecules25204834.
    1. Miao E.A., Rajan J.V., Aderem A. Caspase-1-induced pyroptotic cell death. Immunol. Rev. 2011;243:206–214. doi: 10.1111/j.1600-065X.2011.01044.x.
    1. Babicki S., Arndt D., Marcu A., Liang Y., Grant J.R., Maciejewski A., Wishart D.S. Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. 2016;44:W147–W153. doi: 10.1093/nar/gkw419.

Source: PubMed

3
Subscribe