MMP-14 (MT1-MMP) Is a Biomarker of Surgical Outcome and a Potential Mediator of Hearing Loss in Patients With Vestibular Schwannomas

Yin Ren, Hiroshi Hyakusoku, Jessica E Sagers, Lukas D Landegger, D Bradley Welling, Konstantina M Stankovic, Yin Ren, Hiroshi Hyakusoku, Jessica E Sagers, Lukas D Landegger, D Bradley Welling, Konstantina M Stankovic

Abstract

Improved biomarkers are needed for vestibular schwannoma (VS), the most common tumor of the cerebellopontine angle, as existing clinical biomarkers have poor predictive value. Factors such as tumor size or growth rate do not shed light on the pathophysiology of associated sensorineural hearing loss (SNHL) and suffer from low specificity and sensitivity, whereas histological markers only sample a fraction of the tumor and are difficult to ascertain before tumor treatment or surgical intervention. Proteases play diverse and critical roles in tumorigenesis and could be leveraged as a new class of VS biomarkers. Using a combination of in silico, in vitro, and ex vivo approaches, we identified matrixmetalloprotease 14 (MMP-14; also known as MT1-MMP), from a panel of candidate proteases that were differentially expressed through the largest meta-analysis of human VS transcriptomes. The abundance and proteolytic activity of MMP-14 in the plasma and tumor secretions from VS patients correlated with clinical parameters and the degree of SNHL. Further, MMP-14 plasma levels correlated with surgical outcomes such as the extent of resection. Finally, the application of MMP-14 at physiologic concentrations to cochlear explant cultures led to damage to spiral ganglion neuronal fibers and synapses, thereby providing mechanistic insight into VS-associated SNHL. Taken together, MMP-14 represents a novel molecular biomarker that merits further validation in both diagnostic and prognostic applications for VS.

Keywords: MMP-14; biomarker; hearing loss; surgical outcome; vestibular schwannoma.

Copyright © 2020 Ren, Hyakusoku, Sagers, Landegger, Welling and Stankovic.

Figures

Figure 1
Figure 1
Identification of protease candidates differentially expressed in vestibular schwannoma (VS). (A) Schematic of workflow utilizing the Human Degradome and meta-analysis of genome-wide expression in VS, yielding 16 differentially expressed proteases with 10 being significantly upregulated after Bonferroni correction (P < 0.05). (B) Matrixmetalloprotease 14 (MMP-14) levels are significantly elevated in VS secretions (n = 16) when compared to great auricular nerve (GAN) controls (n = 6). The mean ± SEM is denoted by a bar and error bars; two-tailed Student’s t-test, *P < 0.05. (C) Gene expression of several members of the MMP family in HEI-193 human schwannoma cell line as determined by qRT-PCR. N = 4 independent experiments. Error bars represent SEM, ns, not significant by one-way ANOVA with Tukey’s post hoc multiple comparison tests between MMP-14 gene expression and expression of other proteases. (D) MMP gene expression in primary VS cultures (n = 5). Error bars represent SEM, ***P < 0.001 for all comparisons between the expression of and other proteases, by one-way ANOVA with Tukey’s post hoc multiple comparison tests.
Figure 2
Figure 2
Expression of MMP-14 protein in human VS. (A–D) Immunohistochemical staining (IHC) of MMP-14 protein in archived VS specimens from patients with sporadic, unilateral VS. Staining is graded ranging from mild (0+, A) to mildly moderate (1+, B), moderate (2+, C), and intense (3+, D). Representative IHC from 10–12 histological sections per specimen is shown. A total of 21 different VS and 6 GAN specimens were analyzed. Scale bar, 100 μm. (E) Corresponding MMP-14 IHC staining scores for VS (n = 21) vs. GAN controls (n = 6).
Figure 3
Figure 3
Correlation of MMP-14 with preoperative sensorineural hearing loss (SNHL) in VS patients. (A) Plasma MMP-14 levels positively and significantly correlate with tumor secreted MMP-14 from the same patients (n = 19). (B) MMP-14 plasma levels correlate positively and significantly with the degree of ipsilateral SNHL as measured by pure tone average (PTA; dB). (C) MMP-14 plasma levels correlate negatively with word recognition (WR) scores (%). P-values are shown and rho represents Spearman’s rank correlation coefficient.
Figure 4
Figure 4
Development of a functional assay to sense plasma MMP-14 activity in VS. (A) Fluorescence de-quenching measurements of protease-mediated cleavage of MMP-14 specific fluorescent resonance energy transfer (FRET) substrate, using plasma samples obtained from VS patients. Controls indicate no added specimen. (B) Fluorescence de-quenching is MMP-14 specific and is inhibited by both Marimastat (blue), a broad-spectrum protease inhibitor, and NSC 405020 (green), an MMP-14 specific inhibitor. Controls (orange) indicate no added specimen. Error bars represent SEM from n = 6 independent experiments. (C) Relative fluorescence measurements of MMP-14 cleavage in the presence of protease inhibitors. Controls (orange) indicate no added specimen. Error bars represent SEM from n = 6 independent experiments. (D) Dose-dependent inhibition of MMP-14 activity by NSC 405020. Error bars represent SEM from four to six independent experiments. **P < 0.01, ***P < 0.001 by one-way ANOVA.
Figure 5
Figure 5
Elevated MMP-14 is associated with subtotal tumor resection (STR). (A) Comparison of the level of MMP-14 enzyme found in tumor secretions obtained from GTR (n = 7) vs. STR (n = 11) cohorts. Mean ± SEM is denoted by a horizontal line and error bars; two-tailed unpaired Student’s t-test, **P < 0.01. (B) Comparison of the total proteolytic activity of MMP-14, as determined by the plasma level of MMP-14 and its proteolytic activity, between patients who underwent GTR (n = 7) or STR (n = 9). Mean ± SEM is denoted by a horizontal line and error bars; two-tailed unpaired Student’s t-test, *P < 0.05. A.u., arbitrary units. (C) Receiver operating curves (ROC) and calculated area under curve (AUC) values for MMP-14 proteolytic activity, secreted MMP-14, plasma MMP-14, tumor volume, and growth rate. The gray line represents a predictor with no discriminatory power (AUC = 0.50).
Figure 6
Figure 6
Application of MMP-14 to murine cochlear explants leads to loss of spiral ganglion neurites and cochlear synapses. (A) Representative images of cochlear explants receiving no treatment (Ctrl, n = 10 different explants), incubated with 10 ng/ml of murine MMP-14 (mMMP-14) for 72 h (n = 15 different explants), or with 30 ng/ml of murine MMP-14 for 72 h (n = 16 different explants). Myo7a (green) marks hair cells and NF-H (red) marks spiral ganglion neurites. Scale bar, 20 μm. (B) Representative images of untreated cochlear synapses (Ctrl, left column, n = 10 explants), synapses after incubation with 10 ng/ml of mMMP-14 (middle column, n = 15 explants), or 30 ng/ml of mMMP-14 (right column, n = 16 explants). CtBP2 (red) marks pre-synaptic ribbons and PSD95 (green) marks post-synaptic densities. Scale bar, 10 μm. (C–E) Quantification of the number of IHCs per 100 μm (C), spiral ganglion neuron (SGN) fiber bundles per IHC measured 10 μm below the basolateral poles of hair cells, normalized to no-treatment controls (D), and CtBP2-PSD95 juxtapositions per IHC normalized to no-treatment controls (E). Error bars represent SEM. **P < 0.01, ***P < 0.001 by one-way ANOVA.

References

    1. Agnihotri S., Gugel I., Remke M., Bornemann A., Pantazis G., Mack S. C., et al. . (2014). Gene-expression profiling elucidates molecular signaling networks that can be therapeutically targeted in vestibular schwannoma. J. Neurosurg. 121, 1434–1445. 10.3171/2014.6.jns131433
    1. Babu R., Sharma R., Bagley J. H., Hatef J., Friedman A. H., Adamson C. (2013). Vestibular schwannomas in the modern era: epidemiology, treatment trends, and disparities in management. J. Neurosurg. 119, 121–130. 10.3171/2013.1.jns121370
    1. Bianchetti E., Bates S. J., Carroll S. L., Siegelin M. D., Roth K. A. (2018). Usp9X regulates cell death in malignant peripheral nerve sheath tumors. Sci. Rep. 8:17390. 10.1038/s41598-018-35806-5
    1. Bloch D. C., Oghalai J. S., Jackler R. K., Osofsky M., Pitts L. H. (2004). The fate of the tumor remnant after less-than-complete acoustic neuroma resection. Otolaryngol. Head Neck Surg. 130, 104–112. 10.1016/s0194-5998(03)01598-5
    1. Borgoño C. A., Diamandis E. P. (2004). The emerging roles of human tissue kallikreins in cancer. Nat. Rev. Cancer 4, 876–890. 10.1038/nrc1474
    1. Carlson M. L., Habermann E. B., Wagie A. E., Driscoll C. L., Van Gompel J. J., Jacob J. T., et al. . (2015a). The changing landscape of vestibular schwannoma management in the united states—a shift toward conservatism. Otolaryngol. Head Neck Surg. 153, 440–446. 10.1177/0194599815590105
    1. Carlson M. L., Tveiten O. V., Driscoll C. L., Goplen F. K., Neff B. A., Pollock B. E., et al. . (2015b). Long-term quality of life in patients with vestibular schwannoma: an international multicenter cross-sectional study comparing microsurgery, stereotactic radiosurgery, observation, and nontumor controls. J. Neurosurg. 122, 833–842. 10.3171/2014.11.jns14594
    1. Carlson M. L., Van Abel K. M., Driscoll C. L., Neff B. A., Beatty C. W., Lane J. I., et al. . (2012). Magnetic resonance imaging surveillance following vestibular schwannoma resection. Laryngoscope 122, 378–388. 10.1002/lary.22411
    1. Cayé-Thomasen P., Baandrup L., Jacobsen G. K., Thomsen J., Stangerup S.-E. (2003). Immunohistochemical demonstration of vascular endothelial growth factor in vestibular schwannomas correlates to tumor growth rate. Laryngoscope 113, 2129–2134. 10.1097/00005537-200312000-00014
    1. Comey C. H., Jannetta P. J., Sheptak P. E., Joh H. D., Burkhart L. E. (1995). Staged removal of acoustic tumors: techniques and lessons learned from a series of 83 patients. Neurosurgery 37, 915–920; discussion 920–901. 10.1227/00006123-199511000-00010
    1. Dilwali S., Kao S.-Y., Fujita T., Landegger L. D., Stankovic K. M. (2015a). Nonsteroidal anti-inflammatory medications are cytostatic against human vestibular schwannomas. Transl. Res. 166, 1–11. 10.1016/j.trsl.2014.12.007
    1. Dilwali S., Landegger L. D., Soares V. Y. R., Deschler D. G., Stankovic K. M. (2015b). Secreted factors from human vestibular schwannomas can cause cochlear damage. Sci. Rep. 5:18599. 10.1038/srep18599
    1. Dilwali S., Patel P. B., Roberts D. S., Basinsky G. M., Harris G. J., Emerick K. S., et al. . (2014). Primary culture of human Schwann and schwannoma cells: improved and simplified protocol. Hear. Res. 315, 25–33. 10.1016/j.heares.2014.05.006
    1. Fuse M. A., Plati S. K., Burns S. S., Dinh C. T., Bracho O., Yan D., et al. . (2017). Combination therapy with c-Met and Src inhibitors induces caspase-dependent apoptosis of merlin-deficient schwann cells and suppresses growth of schwannoma cells. Mol. Cancer Ther. 16, 2387–2398. 10.1158/1535-7163.mct-17-0417
    1. Gautier L., Cope L., Bolstad B. M., Irizarry R. A. (2004). Affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307–315. 10.1093/bioinformatics/btg405
    1. Genther D. J., Frick K. D., Chen D., Betz J., Lin F. R. (2013). Association of hearing loss with hospitalization and burden of disease in older adults. JAMA 309, 2322–2324. 10.1001/jama.2013.5912
    1. Graamans K., Van Dijk J. E., Janssen L. W. (2003). Hearing deterioration in patients with a non-growing vestibular schwannoma. Acta Otolaryngol. 123, 51–54. 10.1080/0036554021000028075
    1. Gurgel R. K., Theodosopoulos P. V., Jackler R. K. (2012). Subtotal/near-total treatment of vestibular schwannomas. Curr. Opin. Otolaryngol. Head Neck Surg. 20, 380–384. 10.1097/moo.0b013e328357b220
    1. Hanemann C. O., Blakeley J. O., Nunes F. P., Robertson K., Stemmer-Rachamimov A., Mautner V., et al. . (2016). Current status and recommendations for biomarkers and biobanking in neurofibromatosis. Neurology 87, S40–S48. 10.1212/WNL.0000000000002932
    1. Hori S. S., Gambhir S. S. (2011). Mathematical model identifies blood biomarker-based early cancer detection strategies and limitations. Sci. Transl. Med. 3:109ra116. 10.1126/scitranslmed.3003110
    1. Kandathil C. K., Cunnane M. E., McKenna M. J., Curtin H. D., Stankovic K. M. (2016). Correlation between aspirin intake and reduced growth of human vestibular schwannoma: volumetric analysis. Otol. Neurotol. 37, 1428–1434. 10.1097/mao.0000000000001180
    1. Katsumi S., Sahin M. I., Lewis R. M., Iyer J. S., Landegger L. D., Stankovic K. M. (2020). Intracochlear perfusion of tumor necrosis factor-α induces sensorineural hearing loss and synaptic degeneration in guinea pigs. Front. Neurol. 10:1353. 10.3389/fneur.2019.01353
    1. Kessenbrock K., Plaks V., Werb Z. (2010). Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67. 10.1016/j.cell.2010.03.015
    1. Kujawa S. G., Liberman M. C. (2015). Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear. Res. 330, 191–199. 10.1016/j.heares.2015.02.009
    1. Kwong G. A., Dudani J. S., Carrodeguas E., Mazumdar E. V., Zekavat S. M., Bhatia S. N. (2015). Mathematical framework for activity-based cancer biomarkers. Proc. Natl. Acad. Sci. U S A 112, 12627–12632. 10.1073/pnas.1506925112
    1. Kwong G. A., von Maltzahn G., Murugappan G., Abudayyeh O., Mo S., Papayannopoulos I. A., et al. . (2013). Mass-encoded synthetic biomarkers for multiplexed urinary monitoring of disease. Nat. Biotechnol. 31, 63–70. 10.1038/nbt.2464
    1. López-Otín C., Bond J. S. (2008). Proteases: multifunctional enzymes in life and disease. J. Biol. Chem. 283, 30433–30437. 10.1074/jbc.r800035200
    1. López-Otín C., Overall C. M. (2002). Protease degradomics: a new challenge for proteomics. Nat. Rev. Mol. Cell Biol. 3, 509–519. 10.1038/nrm858
    1. Landegger L. D., Sagers J. E., Dilwali S., Fujita T., Sahin M. I., Stankovic K. M. (2017). A unified methodological framework for vestibular schwannoma research. J. Vis. Exp. 124:e55827. 10.3791/55827
    1. Lumley T. (2018). Package “rmeta”. Available online at: .
    1. Lysaght A. C., Kao S.-Y., Paulo J. A., Merchant S. N., Steen H., Stankovic K. M. (2011). Proteome of human perilymph. J. Proteome Res. 10, 3845–3851. 10.1021/pr200346q
    1. Møller M. N., Werther K., Nalla A., Stangerup S.-E., Thomsen J., Bøg-Hansen T. C., et al. . (2010). Angiogenesis in vestibular schwannomas: expression of extracellular matrix factors MMP-2, MMP-9, and TIMP-1. Laryngoscope 120, 657–662. 10.1002/lary.20834
    1. Mahaley M. S., Jr., Mettlin C., Natarajan N., Jr., Laws E. R., Peace B. B. (1990). Analysis of patterns of care of brain tumor patients in the united states: a study of the brain tumor section of the AANS and the CNS and the commission on cancer of the ACS. Clin Neurosurg. 36, 347–352.
    1. Michael M., Babic B., Khokha R., Tsao M., Ho J., Pintilie M., et al. . (1999). Expression and prognostic significance of metalloproteinases and their tissue inhibitors in patients with small-cell lung cancer. J. Clin. Oncol. 17, 1802–1808. 10.1200/JCO.1999.17.6.1802
    1. Monfared A., Corrales C. E., Theodosopoulos P. V., Blevins N. H., Oghalai J. S., Selesnick S. H., et al. . (2016). Facial nerve outcome and tumor control rate as a function of degree of resection in treatment of large acoustic neuromas: preliminary report of the acoustic neuroma subtotal resection study (ANSRS). Neurosurgery 79, 194–203. 10.1227/NEU.0000000000001162
    1. Moon K.-S., Jung S., Seo S.-K., Jung T.-Y., Kim I.-Y., Ryu H.-H., et al. . (2007). Cystic vestibular schwannomas: a possible role of matrix metalloproteinase-2 in cyst development and unfavorable surgical outcome. J. Neurosurg. 106, 86–871. 10.3171/jns.2007.106.5.866
    1. Niemczyk K., Vaneecloo F. M., Lecomte M. H., Lejeune J. P., Lemaitre L., Skarzyński H., et al. . (2000). Correlation between Ki-67 index and some clinical aspects of acoustic neuromas (vestibular schwannomas). Otolaryngol. Head Neck Surg. 123, 779–783. 10.1067/mhn.2000.111356
    1. Nishida Y., Miyamori H., Thompson E. W., Takino T., Endo Y., Sato H. (2008). Activation of matrix metalloproteinase-2 (MMP-2) by membrane type 1 matrix metalloproteinase through an artificial receptor for proMMP-2 generates active MMP-2. Cancer Res. 68, 9096–9104. 10.1158/0008-5472.can-08-2522
    1. Packard B. Z., Artym V. V., Komoriya A., Yamada K. M. (2009). Direct visualization of protease activity on cells migrating in three-dimensions. Matrix Biol. 28, 3–10. 10.1016/j.matbio.2008.10.001
    1. Plotkin S. R., Blakeley J. O., Dombi E., Fisher M. J., Hanemann C. O., Walsh K. S., et al. . (2013). Achieving consensus for clinical trials: the REiNS international collaboration. Neurology 81, S1–S5. 10.1212/01.wnl.0000435743.49414.b6
    1. Ramsden R. T. (1995). The bloody angle: 100 years of acoustic neuroma surgery. J. R. Soc. Med. 88, 464P–468P.
    1. Remacle A. G., Golubkov V. S., Shiryaev S. A., Dahl R., Stebbins J. L., Chernov A. V., et al. . (2012). Novel MT1-MMP small-molecule inhibitors based on insights into hemopexin domain function in tumor growth. Cancer Res. 72, 2339–2349. 10.1158/0008-5472.can-11-4149
    1. Ricci S., Guadagno E., Bruzzese D., Del Basso De Caro M., Peca C., Sgulò F. G., et al. . (2017). Evaluation of matrix metalloproteinase type IV-collagenases in serum of patients with tumors of the central nervous system. J. Neurooncol. 131, 223–232. 10.1007/s11060-016-2297-4
    1. Ritchie M. E., Phipson B., Wu D., Hu Y., Law C. W., Shi W., et al. . (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:e47. 10.1093/nar/gkv007
    1. Sagers J. E., Brown A. S., Vasilijic S., Lewis R. M., Sahin M. I., Landegger L. D., et al. . (2018). Computational repositioning and preclinical validation of mifepristone for human vestibular schwannoma. Sci. Rep. 8:17449. 10.1038/s41598-018-36016-9
    1. Sanman L. E., Bogyo M. (2014). Activity-based profiling of proteases. Annu. Rev. Biochem. 83, 249–273. 10.1146/annurev-biochem-060713-035352
    1. Sato H., Takino T. (2010). Coordinate action of membrane-type matrix metalloproteinase-1 (MT1-MMP) and MMP-2 enhances pericellular proteolysis and invasion. Cancer Sci. 101, 843–847. 10.1111/j.1349-7006.2010.01498.x
    1. Seol H. J., Kim C.-H., Park C.-K., Kim C. H., Kim D. G., Chung Y.-S., et al. . (2006). Optimal extent of resection in vestibular schwannoma surgery: relationship to recurrence and facial nerve preservation. Neurol. Med. Chir. 46, 176–180; discussion 180–181. 10.2176/nmc.46.176
    1. Torres-Martín M., Lassaletta L., San-Roman-Montero J., De Campos J. M., Isla A., Gavilán J., et al. . (2013). Microarray analysis of gene expression in vestibular schwannomas reveals SPP1/MET signaling pathway and androgen receptor deregulation. Int. J. Oncol. 42, 848–862. 10.3892/ijo.2013.1798

Source: PubMed

3
Subscribe