Food Chemicals Disrupt Human Gut Microbiota Activity And Impact Intestinal Homeostasis As Revealed By In Vitro Systems

Clémence Defois, Jérémy Ratel, Ghislain Garrait, Sylvain Denis, Olivier Le Goff, Jérémie Talvas, Pascale Mosoni, Erwan Engel, Pierre Peyret, Clémence Defois, Jérémy Ratel, Ghislain Garrait, Sylvain Denis, Olivier Le Goff, Jérémie Talvas, Pascale Mosoni, Erwan Engel, Pierre Peyret

Abstract

Growing evidence indicates that the human gut microbiota interacts with xenobiotics, including persistent organic pollutants and foodborne chemicals. The toxicological relevance of the gut microbiota-pollutant interplay is of great concern since chemicals may disrupt gut microbiota functions, with a potential impairment of host homeostasis. Herein we report within batch fermentation systems the impact of food contaminants (polycyclic aromatic hydrocarbons, polychlorobiphenyls, brominated flame retardants, dioxins, pesticides and heterocyclic amines) on the human gut microbiota by metatranscriptome and volatolome i.e. "volatile organic compounds" analyses. Inflammatory host cell response caused by microbial metabolites following the pollutants-gut microbiota interaction, was evaluated on intestinal epithelial TC7 cells. Changes in the volatolome pattern analyzed via solid-phase microextraction coupled to gas chromatography-mass spectrometry mainly resulted in an imbalance in sulfur, phenolic and ester compounds. An increase in microbial gene expression related to lipid metabolism processes as well as the plasma membrane, periplasmic space, protein kinase activity and receptor activity was observed following dioxin, brominated flame retardant and heterocyclic amine exposure. Conversely, all food contaminants tested induced a decreased in microbial transcript levels related to ribosome, translation and nucleic acid binding. Finally, we demonstrated that gut microbiota metabolites resulting from pollutant disturbances may promote the establishment of a pro-inflammatory state in the gut, as stated with the release of cytokine IL-8 by intestinal epithelial cells.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Transcript levels related to microbial GO slim terms that were up and downregulated after the 24 hr of pollutant exposure. Analysis was performed on the pooled rRNA-depleted RNA arising from five technical replicates. Variations are expressed as the Z-Score. Lines represent GO slim terms, columns represent pollutant samples.
Figure 2
Figure 2
Transcript levels related to microbial GO slim terms that were up and downregulated after the 24 hr of pollutant exposure. Variations are expressed as the log2 of the pollutant and the vehicle CPM abundance ratio (y-axis). Analysis was performed on the pooled rRNA-depleted RNA arising from five technical replicates. GO slim terms are represented on the x-axis. GO: gene ontology.
Figure 3
Figure 3
Differentially expressed microbial genes after the 24 hr of pollutant exposure. (A) Number of differentially expressed genes. (B) Mean abundances in CPM of the differentially expressed genes. Analysis was performed on the pooled rRNA-depleted RNA arising from five technical replicates. Only genes with at least a 3-fold change are represented, and values were derived from a comparison between the pollutant and the vehicle condition.
Figure 4
Figure 4
Microbial genes specifically induced by pollutants after the 24 hr of exposure. (A) Number of pollutant-specific genes shared between each couple of pollutants. (B) Representation of the core pollutant-specific genes. Analysis was performed on the pooled rRNA-depleted RNA arising from five technical replicates.
Figure 5
Figure 5
Percentage of necrotic and apoptotic TC7 cells after 4 hr of FDS and microbiota-free medium exposure. Values are the mean of the three replicates ± SEM. Significant variations were assessed using the Mann-Whitney test (p-value 

Figure 6

IL-8 release in the TC7…

Figure 6

IL-8 release in the TC7 cell culture supernatants. TC7 cells were exposed to…

Figure 6
IL-8 release in the TC7 cell culture supernatants. TC7 cells were exposed to FDS and microbiota-free medium for 4 hr. Values represent the mean of three replicates ± SEM. Significant variations were assessed using the Mann-Whitney test (p-value 
Similar articles
Cited by
References
    1. Jones KC, de Voogt P. Persistent Organic Pollutants (POPs): State of the Science. Environ. Pollut. 1999;100:209–221. doi: 10.1016/S0269-7491(99)00098-6. - DOI - PubMed
    1. Ruiz P, Perlina A, Mumtaz M, Fowler BA. A Systems Biology Approach Reveals Converging Molecular Mechanisms that Link Different POPs to Common Metabolic Diseases. Environ. Health Perspect. 2016;124:1034–1041. - PMC - PubMed
    1. Kinoshita H, et al. Breakdown of Mucosal Immunity in Gut by 2,3,7,8-Tetraclorodibenzo-p-dioxin (TCDD) Environ. Heal. Prev. Med. 2006;11:256–263. doi: 10.1007/BF02898015. - DOI - PMC - PubMed
    1. Liamin M, et al. Benzo[a]pyrene-induced DNA damage associated with mutagenesis in primary human activated T lymphocytes. Biochem. Pharmacol. 2017;137:113–124. doi: 10.1016/j.bcp.2017.04.025. - DOI - PubMed
    1. Yang P, et al. Urinary metabolites of polycyclic aromatic hydrocarbons, sperm DNA damage and spermatozoa apoptosis. J. Hazard. Mater. 2017;329:241–248. doi: 10.1016/j.jhazmat.2017.01.053. - DOI - PubMed
Show all 77 references
Publication types
MeSH terms
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Figure 6
Figure 6
IL-8 release in the TC7 cell culture supernatants. TC7 cells were exposed to FDS and microbiota-free medium for 4 hr. Values represent the mean of three replicates ± SEM. Significant variations were assessed using the Mann-Whitney test (p-value 

References

    1. Jones KC, de Voogt P. Persistent Organic Pollutants (POPs): State of the Science. Environ. Pollut. 1999;100:209–221. doi: 10.1016/S0269-7491(99)00098-6.
    1. Ruiz P, Perlina A, Mumtaz M, Fowler BA. A Systems Biology Approach Reveals Converging Molecular Mechanisms that Link Different POPs to Common Metabolic Diseases. Environ. Health Perspect. 2016;124:1034–1041.
    1. Kinoshita H, et al. Breakdown of Mucosal Immunity in Gut by 2,3,7,8-Tetraclorodibenzo-p-dioxin (TCDD) Environ. Heal. Prev. Med. 2006;11:256–263. doi: 10.1007/BF02898015.
    1. Liamin M, et al. Benzo[a]pyrene-induced DNA damage associated with mutagenesis in primary human activated T lymphocytes. Biochem. Pharmacol. 2017;137:113–124. doi: 10.1016/j.bcp.2017.04.025.
    1. Yang P, et al. Urinary metabolites of polycyclic aromatic hydrocarbons, sperm DNA damage and spermatozoa apoptosis. J. Hazard. Mater. 2017;329:241–248. doi: 10.1016/j.jhazmat.2017.01.053.
    1. Shen J, et al. Dependence of cancer risk from environmental exposures on underlying genetic susceptibility: an illustration with polycyclic aromatic hydrocarbons and breast cancer. Br. J. Cancer. 2017;116:1229–1233. doi: 10.1038/bjc.2017.81.
    1. Wei Y, et al. Benzo[a]pyrene promotes gastric cancer cell proliferation and metastasis likely through the Aryl hydrocarbon receptor and ERK-dependent induction of MMP9 and c-myc. Int. J. Oncol. 2016;49:2055–2063. doi: 10.3892/ijo.2016.3674.
    1. WHO & IARC. Some Naturally occuring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans56, (1993).
    1. Bouvard V, et al. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015;16:1599–600. doi: 10.1016/S1470-2045(15)00444-1.
    1. Jin Y, Wu S, Zeng Z, Fu Z. Effects of environmental pollutants on gut microbiota. Environ. Pollut. 2017;222:1–9. doi: 10.1016/j.envpol.2016.11.045.
    1. Roca-Saavedra, P. et al. Food additives, contaminants and other minor components: effects on human gut microbiota-a review. J. Physiol. Biochem. 1–15 (2017).
    1. Zhang L, et al. Persistent Organic Pollutants Modify Gut Microbiota – Host Metabolic Homeostasis in Mice Through Aryl Hydrocarbon Receptor Activation. Environ. Health Perspect. 2015;123:679–688.
    1. Lefever DE, et al. TCDD modulation of gut microbiome correlated with liver and immune toxicity in streptozotocin (STZ)-induced hyperglycemic mice. Toxicol. Appl. Pharmacol. 2016;304:48–58. doi: 10.1016/j.taap.2016.05.016.
    1. Stedtfeld RD, et al. TCDD influences reservoir of antibiotic resistance genes in murine gut microbiome. FEMS Microbiol. Ecol. 2017;93:1–8. doi: 10.1093/femsec/fix058.
    1. Choi JJ, et al. Exercise Attenuates PCB-Induced Changes in the Mouse Gut. Microbiome. 2013;121:725–730.
    1. Defois C, et al. Environmental Pollutant Benzo[a]Pyrene Impacts the Volatile Metabolome and Transcriptome of the Human Gut Microbiota. Front. Microbiol. 2017;8:1562. doi: 10.3389/fmicb.2017.01562.
    1. Claus SP, Guillou H, Ellero-Simatos S. The gut microbiota: a major player in the toxicity of environmental pollutants? Nat. Publ. Gr. Biofilms Microbiomes. 2016;2:16003. doi: 10.1038/npjbiofilms.2016.3.
    1. Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat. Rev. Microbiol. 2016;14:273–287. doi: 10.1038/nrmicro.2016.17.
    1. Maurice CF, Haiser HJ, Turnbaugh PJ. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell. 2013;152:39–50. doi: 10.1016/j.cell.2012.10.052.
    1. Mendel JL, Walton MS. Conversion of p,p’-DDT to p,p’-DDD by Intestinal Flora of the Rat. Science. 1966;151:1527–1528. doi: 10.1126/science.151.3717.1527.
    1. Van de Wiele T, et al. Human Colon Microbiota Transform Polycyclic Aromatic Hydrocarbons to Estrogenic Metabolites. Environ. Health Perspect. 2005;113:6–10. doi: 10.1289/ehp.7259.
    1. Vanhaecke L, et al. Metabolism of the Food-Associated Carcinogen 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by Human Intestinal Microbiota. J. Agric. Food Chem. 2006;54:3454–3461. doi: 10.1021/jf053170+.
    1. Fekry MI, et al. The strict anaerobic gut microbe Eubacterium hallii transforms the carcinogenic dietary heterocyclic amine 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP) Environ. Microbiol. Rep. 2016;8:201–209. doi: 10.1111/1758-2229.12369.
    1. Hakim M, et al. Volatile Organic Compounds of Lung Cancer and Possible Biochemical Pathways. Chem. Rev. 2012;112:5949–5966. doi: 10.1021/cr300174a.
    1. Berge P, et al. Use of volatile compound metabolic signatures in poultry liver to back-trace dietary exposure to rapidly metabolized xenobiotics. Environ. Sci. Technol. 2011;45:6584–6591. doi: 10.1021/es200747h.
    1. Ahmed I, Greenwood R, Costello BDL, Ratcliffe NM, Probert CS. An Investigation of Fecal Volatile Organic Metabolites in Irritable Bowel Syndrome. PLoS One. 2013;8:1–13.
    1. Ahmed I, Greenwood R, Costello B, Ratcliffe N, Probert CS. Investigation of faecal volatile organic metabolites as novel diagnostic biomarkers in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2016;43:596–611. doi: 10.1111/apt.13522.
    1. van Beilen JB, et al. Rubredoxins Involved in Alkane Oxidation. J. Bacteriol. 2002;184:1722–1732. doi: 10.1128/JB.184.6.1722-1732.2002.
    1. Shanklin J, Whittle E. Evidence linking the Pseudomonas oleovorans alkane g-hydroxylase, an integral membrane diiron enzyme, and the fatty acid desaturase family. FEBS Lett. 2003;545:188–192. doi: 10.1016/S0014-5793(03)00529-5.
    1. Ben Slima A, et al. Endocrine disrupting potential and reproductive dysfunction in male mice exposed to deltamethrin. Hum. Exp. Toxicol. 2017;36:218–226. doi: 10.1177/0960327116646617.
    1. Long AS, Lemieux CL, Gagné R, Lambert IB, White PA. Genetic Toxicity of Complex Mixtures of Polycyclic Aromatic Hydrocarbons: Evaluating Dose-Additivity in a Transgenic Mouse Model. Environ. Sci. Technol. 2017;51:8138–8148. doi: 10.1021/acs.est.7b00985.
    1. Szabo DT, Pathmasiri W, Sumner S, Birnbaum LS. Serum Metabolomic Profiles in Neonatal Mice following Oral Brominated Flame Retardant Exposures to HBCD Alpha, Gamma and Commercial Mixture. Environ. Health Perspect. 2017;125:651–659.
    1. Lesmes U, Beards EJ, Gibson GR, Tuohy KM, Shimoni E. Effects of resistant starch type III polymorphs on human colon microbiota and short chain fatty acids in human gut models. J. Agric. Food Chem. 2008;56:5415–5421. doi: 10.1021/jf800284d.
    1. Pompei A, et al. In vitro comparison of the prebiotic effects of two inulin-type fructans. Anaerobe. 2008;14:280–286. doi: 10.1016/j.anaerobe.2008.07.002.
    1. Takagi R, et al. A single-batch fermentation system to simulate human colonic microbiota for high-throughput evaluation of prebiotics. PLoS One. 2016;11:e0160533. doi: 10.1371/journal.pone.0160533.
    1. Maccaferri S, et al. Rifaximin modulates the colonic microbiota of patients with Crohn’s disease: an in vitro approach using a continuous culture colonic model system. J. Antimicrob. Chemother. 2010;65:2556–2565. doi: 10.1093/jac/dkq345.
    1. Tottey W, et al. In-vitro model for studying methanogens in human gut microbiota. Anaerobe. 2015;34:50–52. doi: 10.1016/j.anaerobe.2015.04.009.
    1. Schenkel D, Lemfack MC, Piechulla B, Splivallo R. A meta-analysis approach for assessing the diversity and specificity of belowground root and microbial volatiles. Front. Plant Sci. 2015;6:707. doi: 10.3389/fpls.2015.00707.
    1. Arasaradnam RP, Covington JA, Harmston C, Nwokolo CU. Review article: Next generation diagnostic modalities in gastroenterology - Gas phase volatile compound biomarker detection. Aliment. Pharmacol. Ther. 2014;39:780–789. doi: 10.1111/apt.12657.
    1. Agarwal SM, Sharma M. & Fatima, S. VOCC: a database of volatile organic compounds in cancer. RSC Adv. 2016;6:114783–114789. doi: 10.1039/C6RA24414A.
    1. Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B. MVOC: A database of microbial volatiles. Nucleic Acids Res. 2014;42:744–748. doi: 10.1093/nar/gkt1250.
    1. Abdullah AA, et al. Development and Mining of a Volatile Organic Compound Database. Biomed Res. Int. 2015;2015:139254. doi: 10.1155/2015/139254.
    1. Boots AW, Bos LD, van der Schee MP, van Schooten FJ, Sterk PJ. Exhaled Molecular Fingerprinting in Diagnosis and Monitoring: Validating Volatile Promises. Trends Mol. Med. 2015;21:633–644. doi: 10.1016/j.molmed.2015.08.001.
    1. De Preter V, et al. Faecal metabolite profiling identifies medium-chain fatty acids as discriminating compounds in IBD. Gut. 2015;64:447–458. doi: 10.1136/gutjnl-2013-306423.
    1. Sikkema J, De Bont JAM, Poolman B. Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 1994;269:8022–8028.
    1. Murínová, S. & Dercová, K. Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane. Int. J. Microbiol. 873081 (2014).
    1. Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Publ. Gr. 2014;12:35–48.
    1. Nie Y, et al. Diverse alkane hydroxylase genes in microorganisms and environments. Sci. Rep. 2014;4:4968. doi: 10.1038/srep04968.
    1. Hagelueken G, et al. Crystal structure of the electron transfer complex rubredoxin–rubredoxin reductase of Pseudomonas aeruginosa. PNAS. 2007;104:12276–12281. doi: 10.1073/pnas.0702919104.
    1. Kahng H, Byrne AM, Olsen RH, Kukor JJ. Characterization and Role of tbuX in Utilization of Toluene by Ralstonia pickettii PKO1. J. Bacteriol. 2000;182:1232–1242. doi: 10.1128/JB.182.5.1232-1242.2000.
    1. Wang Y, et al. Identification of a membrane protein and a truncated LysR-type regulator associated with the toluene degradation pathway in Pseudomonas putida F1. Mol. Gen. Genet. 1995;246:570–579. doi: 10.1007/BF00298963.
    1. Lee W-J, Hase K. Gut microbiota-generated metabolites in animal health and disease. Nat. Chem. Biol. 2014;10:416–424. doi: 10.1038/nchembio.1535.
    1. Ribière C, Peyret P, Parisot N, Darcha C, Déchelotte PJ. Oral exposure to environmental pollutant benzo[a]pyrene impacts the intestinal epithelium and induces gut microbial shifts in murine model. Sci. Rep. 2016;6:31027. doi: 10.1038/srep31027.
    1. Ajayi BO, Adedara IA, Farombi EO. Benzo(a)pyrene induces oxidative stress, pro-inflammatory cytokines, expression of nuclear factor-kappa B and deregulation of wnt/beta-catenin signaling in colons of BALB/c mice. Food Chem. Toxicol. 2016;95:42–51. doi: 10.1016/j.fct.2016.06.019.
    1. Khalil A, et al. Polycyclic aromatic hydrocarbons potentiate high-fat diet effects on intestinal inflammation. Toxicol. Lett. 2010;196:161–167. doi: 10.1016/j.toxlet.2010.04.010.
    1. Panja A, Siden E, Mayer L. Synthesis and regulation of accessory/proinflammatory cytokines by intestinal epithelial cells. Clin. Exp. Immunol. 1995;100:298–305. doi: 10.1111/j.1365-2249.1995.tb03668.x.
    1. Hyun J, et al. Immunity Human Intestinal Epithelial Cells Express Interleukin-10 through Toll-Like Receptor 4-Mediated Epithelial-Macrophage Crosstalk. J. Innate Immun. 2015;7:87–101. doi: 10.1159/000365417.
    1. Bahrami B, Child MW, Macfarlane S, Macfarlane GT. Adherence and Cytokine Induction in Caco-2 Cells by Bacterial Populations from a Three-Stage Continuous-Culture Model of the Large Intestine. Appl. Environ. Microbiol. 2011;77:2934–2942. doi: 10.1128/AEM.02244-10.
    1. Parlesak A, Haller D, Brinz S, Baeuerlein A, Bode C. Modulation of Cytokine Release by Differentiated CACO-2 Cells in a Compartmentalized Coculture Model with Mononuclear Leucocytes and Nonpathogenic Bacteria. Scand. J. Immunol. 2004;60:477–485. doi: 10.1111/j.0300-9475.2004.01495.x.
    1. Walle VD, et al. Y. Inflammatory parameters in Caco-2cells: Effect of stimuli nature, concentration, combination and cell differentiation. Toxicol. Vitr. 2010;24:1441–1449. doi: 10.1016/j.tiv.2010.04.002.
    1. Zeller P, et al. Multiparametric temporal analysis of the Caco-2/TC7 demonstrated functional and differentiated monolayers as early as 14 days of culture. Eur. J. Pharm. Sci. 2015;72:1–11. doi: 10.1016/j.ejps.2015.02.013.
    1. Pei X, et al. Polycyclic aromatic hydrocarbons induce Il-8 expression through nuclear factor b activation in A549 cell line. Cytokine. 2002;19:236–241. doi: 10.1006/cyto.2002.1967.
    1. Tamaki A, et al. Polycyclic Aromatic Hydrocarbon Increases mRNA Level for Interleukin 1 Beta in Human Fibroblast-Like Synoviocyte Line via Aryl Hydrocarbon Receptor. Biol. Pharm. Bull. 2004;27:407–410. doi: 10.1248/bpb.27.407.
    1. Henley DV, Bellone CJ, Williams DA, Ruh TS, Ruh MF. Aryl hydrocarbon receptor-mediated posttranscriptional regulation of IL-1 b. Arch. Biochem. Biophys. 2004;422:42–51. doi: 10.1016/j.abb.2003.11.022.
    1. Schiering C, et al. Feedback control of AHR signalling regulates intestinal immunity. Nature. 2017;542:242–245. doi: 10.1038/nature21080.
    1. Stockinger B, Di Meglio P, Gialitakis M, Duarte JH. The Aryl Hydrocarbon Receptor: Multitasking in the Immune System. Annu. Rev. Immunol. 2014;32:403–432. doi: 10.1146/annurev-immunol-032713-120245.
    1. Kobayashi S, et al. A role for the aryl hydrocarbon receptor and the dioxin TCDD in rheumatoid arthritis. Rheumatology. 2008;47:1317–1322. doi: 10.1093/rheumatology/ken259.
    1. Ramadoss P, Perdew GH. Use of 2-Azido-3-[125I]iodo-7,8-dibromodibenzo-p-dioxin as a Probe to Determine the Relative Ligand Affinity of Human versus Mouse Aryl Hydrocarbon Receptor in Cultured Cells. Mol. Pharmacol. 2004;66:129–136. doi: 10.1124/mol.66.1.129.
    1. Patterson JA, Ricke SC. Effect of ethanol and methanol on growth of ruminal bacteria Selenomonas ruminantium and Butyrivibrio fibrisolvens. J. Environ. Sci. Heal. 2015;50:62–67. doi: 10.1080/03601234.2015.965639.
    1. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170.
    1. Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–864. doi: 10.1093/bioinformatics/btr026.
    1. Aronesty E. Comparison of Sequencing Utility Programs. Open Bioinforma. J. 2013;7:1–8. doi: 10.2174/1875036201307010001.
    1. Kopylova E, Noe L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–3217. doi: 10.1093/bioinformatics/bts611.
    1. Abubucker S, et al. Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome. PLoS Comput. Biol. 2012;8:e1002358. doi: 10.1371/journal.pcbi.1002358.
    1. Khomtchouk BB, Hennessy JR, Wahlestedt C. Shinyheatmap: Ultra fast low memory heatmap web interface for big data genomics. PLoS One. 2017;12:e0176334. doi: 10.1371/journal.pone.0176334.
    1. Turco L, et al. Caco-2/TC7 cell line characterization for intestinal absorption: How reliable is this in vitro model for the prediction of the oral dose fraction absorbed in human? Toxicol. Vitr. 2011;25:13–20. doi: 10.1016/j.tiv.2010.08.009.
    1. Hu, M., Ling, J., Lin, H. & Chen, J. Use of Caco-2 cell monolayers to study drug absorption and metabolism. Methods Pharmacol. Toxicol. 19–35 (2004).

Source: PubMed

3
Subscribe