Pharmacology and therapeutic potential of sigma(1) receptor ligands

E J Cobos, J M Entrena, F R Nieto, C M Cendán, E Del Pozo, E J Cobos, J M Entrena, F R Nieto, C M Cendán, E Del Pozo

Abstract

Sigma (sigma) receptors, initially described as a subtype of opioid receptors, are now considered unique receptors. Pharmacological studies have distinguished two types of sigma receptors, termed sigma(1) and sigma(2). Of these two subtypes, the sigma(1) receptor has been cloned in humans and rodents, and its amino acid sequence shows no homology with other mammalian proteins. Several psychoactive drugs show high to moderate affinity for sigma(1) receptors, including the antipsychotic haloperidol, the antidepressant drugs fluvoxamine and sertraline, and the psychostimulants cocaine and methamphetamine; in addition, the anticonvulsant drug phenytoin allosterically modulates sigma(1) receptors. Certain neurosteroids are known to interact with sigma(1) receptors, and have been proposed to be their endogenous ligands. These receptors are located in the plasma membrane and in subcellular membranes, particularly in the endoplasmic reticulum, where they play a modulatory role in intracellular Ca(2+) signaling. Sigma(1) receptors also play a modulatory role in the activity of some ion channels and in several neurotransmitter systems, mainly in glutamatergic neurotransmission. In accordance with their widespread modulatory role, sigma(1) receptor ligands have been proposed to be useful in several therapeutic fields such as amnesic and cognitive deficits, depression and anxiety, schizophrenia, analgesia, and against some effects of drugs of abuse (such as cocaine and methamphetamine). In this review we provide an overview of the present knowledge of sigma(1) receptors, focussing on sigma(1) ligand neuropharmacology and the role of sigma(1) receptors in behavioral animal studies, which have contributed greatly to the potential therapeutic applications of sigma(1) ligands.

Keywords: Sigma-1 receptors; analgesia; cocaine.; depression and anxiety; drugs of abuse; learning and memory; pain; schizophrenia.

Figures

Fig (1)
Fig (1)
Putative model for σ1 receptors proposed by Pal and coworkers [159]. Open cylinders represent the two putative transmembrane domains. Closed cylinders represent the steroid binding domain-like sites and the open hexagon represents a putative σ1 ligand. A, Possible spatial arrangement of the ligand binding site involving both steroid binding domain-like sites. B, Alternative model for ligand interaction with the σ1 receptor.
Fig (2)
Fig (2)
Model of modulation by σ1 receptors of InsP3-mediated calcium efflux, proposed by Hayashi and Su [60, 63]. InsP3 receptors, ANK220 and σ1 receptor form a complex in lipid droplets on the endoplasmic reticulum, which contain moderate amounts of free cholesterol and neutral lipids. In the presence of a σ1 agonist, the σ1 receptor-ANK220 complex is dissociated from InsP3 receptors and translocated. As a result InsP3 binding to its receptor increases and Ca2+ efflux is enhanced. In the presence of a σ1 antagonist, ANK220 remains coupled to InsP3 receptor, but σ1 receptor is dissociated from the complex, impeding the potentiation of calcium efflux by σ1 agonists.

References

    1. Akiyama K, Kanzaki A, Tsuchida K, Ujike H. Methamphetamine-induced behavioral sensitization and its implications for relapse of schizophrenia. Schizophr. Res. 1994;12:251–257.
    1. Alonso G, Phan V, Guillemain I, Saunier M, Legrand A, Anoal M, Maurice T. Immunocytochemical localization of the sigma1 receptor in the adult rat central nervous system. Neuroscience. 2000;97:155–170.
    1. Aydar E, Palmer CP, Klyachko VA, Jackson MB. The sigma receptor as a ligand-regulated auxiliary potassium channel subunit. Neuron. 2002;34:399–410.
    1. Bartus RT. On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp. Neurol. 2000;163:495–529.
    1. Baulieu EE. Neurosteroids: a novel function of the brain. Psychoneuroendocrinology. 1998;23:963–987.
    1. Bergeron R, de Montigny C, Debonnel G. Potentiation of neuronal NMDA response induced by dehydroepiandrosterone and its suppression by progesterone: effects mediated via sigma receptors. J. Neurosci. 1996;16:1193–1202.
    1. Bergeron R, de Montigny C, Debonnel G. Pregnancy reduces brain sigma receptor function. Br. J. Pharmacol. 1999;127:1769–1776.
    1. Bermack JE, Debonnel G. Modulation of serotonergic neurotransmission by short- and long-term treatments with sigma ligands. Br. J. Pharmacol. 2001;134:691–699.
    1. Bermack JE, Debonnel G. The role of sigma receptors in depression. J. Pharmacol. Sci. 2005;97:317–336.
    1. Bermack JE, Debonnel G. Effects of OPC-14523, a combined sigma and 5-HT1a ligand, on pre- and post-synaptic 5-HT1a receptors. J. Psychopharmacol. 2007;21:85–92.
    1. Bluth LS, Rice KC, Jacobson AE, Bowen WD. Acylation of σ receptors by Metaphit, an isothiocyanate derivative of phencyclidine. Eur. J. Pharmacol. 1989;161:273–277.
    1. Bowen WD, Hellewell SB, McGarry KA. Evidence for a multi-site model of the rat brain σ receptor. Eur. J. Pharmacol. 1989;163:309–318.
    1. Bowen WD, Moses EL, Tolentino PJ, Walker JM. Metabolites of haloperidol display preferential activity at σ receptors compared to dopamine D-2 receptors. Eur. J. Pharmacol. 1990;177:111–118.
    1. Bowen WD. Sigma receptors: recent advances and new clinical potentials. Pharm. Acta Helv. 2000;74:211–218.
    1. Brammer MK, Gilmore DL, Matsumoto RR. Interactions between 3,4-methylenedioxymethamphetamine and σ1 receptors. Eur. J. Pharmacol. 2006;553:141–145.
    1. Bucolo C, Marrazzo A, Ronsisvalle S, Ronsisvalle G, Cuzzocrea S, Mazzon E, Caputi A, Drago F. A novel adamantane derivative attenuates retinal ischemia-reperfusion damage in the rat retina through σ1 receptors. Eur. J. Pharmacol. 2006;536:200–203.
    1. Cagnotto A, Bastone A, Mennini T. [3H](+)-pentazocine binding to rat brain sigma1 receptors. Eur. J. Pharmacol. 1994;266:131–138.
    1. Calabrese EJ, Baldwin LA. Hormesis: the dose-response revolution. Annu. Rev. Pharmacol. Toxicol. 2003;43:175–197.
    1. Calderon SN, Izenwasser S, Heller B, Gutkind JS, Mattson MV, Su TP, Newman AH. Novel 1-phenylcycloalkane-carboxylic acid derivatives are potent and selective σ1 ligands. J. Med. Chem. 1994;37:2285–2291.
    1. Campana G, Bucolo C, Murari G, Spampinato S. Ocular hypotensive action of topical flunarizine in the rabbit: role of σ1 recognition sites. J. Pharmacol. Exp. Ther. 2002;303:1086–1094.
    1. Castner SA, Goldman-Rakic PS, Williams GV. Animal models of working memory: insights for targeting cognitive dysfunction in schizophrenia. Psychopharmacology (Berl) 2004;174:111–125.
    1. Cendan CM, Pujalte JM, Portillo-Salido E, Baeyens JM. Antinociceptive effects of haloperidol and its metabolites in the formalin test in mice. Psychopharmacology (Berl) 2005;182:485–493.
    1. Cendan CM, Pujalte JM, Portillo-Salido E, Montoliu L, Baeyens JM. Formalin-induced pain is reduced in σ1 receptor knockout mice. Eur. J. Pharmacol. 2005;511:73–74.
    1. Chavez-Noriega LE, Marino MJ, Schaffhauser H, Campbell HUC, Conn PJ. Novel potential therapeutics for schizophrenia: focus on the modulation of metabotropic glutamate receptor function. Curr. Neuropharmacol. 2005;3:9–34.
    1. Chen HS, Lipton SA. The chemical biology of clinically tolerated NMDA receptor antagonists. J. Neurochem. 2006;97:1611–1626.
    1. Chen L, Dai XN, Sokabe M. Chronic administration of dehydroepiandrosterone sulfate (DHEAS) primes for facilitated induction of long-term potentiation via sigma 1 (σ1) receptor: optical imaging study in rat hippocampal slices. Neuropharmacology. 2006;50:380–392.
    1. Chen Y, Hajipour AR, Sievert MK, Arbabian M, Ruoho AE. Characterization of the cocaine binding site on the sigma-1 receptor. Biochemistry. 2007;46:3532–3542.
    1. Chien CC, Pasternak GW. Functional antagonism of morphine analgesia by (+)-pentazocine: evidence for an anti-opioid σ1 system. Eur. J. Pharmacol. 1993;250:R7–R8.
    1. Chien CC, Pasternak GW. Selective antagonism of opioid analgesia by a sigma system. J. Pharmacol. Exp. Ther. 1994;271:1583–1590.
    1. Chien CC, Pasternak GW. Sigma antagonists potentiate opioid analgesia in rats. Neurosci. Lett. 1995;190:137–139.
    1. Chien CC, Pasternak GW. (-)-Pentazocine analgesia in mice: interactions with a σ receptor system. Eur. J. Pharmacol. 1995;294:303–308.
    1. Cobos EJ, Baeyens JM, Del Pozo E. Phenytoin differentially modulates the affinity of agonist and antagonist ligands for σ1 receptors of guinea pig brain. Synapse. 2005;55:192–195.
    1. Cobos EJ, Lucena G, Baeyens JM, Del Pozo E. Differences in the allosteric modulation by phenytoin of the binding properties of the σ1ligands [3H](+)-pentazocine and [3H]NE-100. Synapse. 2006;59:152–161.
    1. Cobos EJ, del Pozo E, Baeyens JM. Irreversible blockade of sigma-1 receptors by haloperidol and its metabolites in guinea pig brain and SH-SY5Y human neuroblastoma cells. J. Neurochem. 2007;102:812–825.
    1. Collina S, Loddo G, Urbano M, Linati L, Callegari A, Ortuso F, Alcaro S, Laggner C, Langer T, Prezzavento O, Ronsisvalle G, Azzolina O. Design, synthesis, and SAR analysis of novel selective σ1 ligands. Bioorg. Med. Chem. 2007;15:771–783.
    1. Cormaci G, Mori T, Hayashi T, Su TP. Protein kinase A activation down-regulates, whereas extracellular signal-regulated kinase activation up-regulates σ-1 receptors in B-104 cells: Implication for neuroplasticity. J. Pharmacol. Exp. Ther. 2007;320:202–210.
    1. Daniels A, Ayala E, Chen W, Coop A, Matsumoto RR. N-[2-(m-methoxyphenyl)ethyl]-N-ethyl-2-(1-pyrrolidinyl) ethylamine (UMB 116) is a novel antagonist for cocaine-induced effects. Eur. J. Pharmacol. 2006;542:61–68.
    1. DeHaven-Hudkins DL, Lanyon LF, Ford-Rice FY, Ator MA. σ recognition sites in brain and peripheral tissues. Characterization and effects of cytochrome P450 inhibitors. Biochem. Pharmacol. 1994;47:1231–1239.
    1. Delgado PL, Moreno FA. Role of norepinephrine in depression. J. Clin. Psychiatry. 2000;61(Suppl 1):5–12.
    1. Depatie L, Lal S. Apomorphine and the dopamine hypothesis of schizophrenia: a dilemma? J. Psychiatry. Neurosci. 2001;26:203–220.
    1. Dhir A, Kulkarni SK. Involvement of sigma-1 receptor modulation in the antidepressant action of venlafaxine. Neurosci. Lett. 2007;420:204–208.
    1. Dong LY, Cheng ZX, Fu YM, Wang ZM, Zhu YH, Sun JL, Dong Y, Zheng P. Neurosteroid dehydroepiandrosterone sulfate enhances spontaneous glutamate release in rat prelimbic cortex through activation of dopamine D1 and sigma-1 receptor. Neuropharmacology. 2007;52:966–974.
    1. Dussossoy D, Carayon P, Belugou S, Feraut D, Bord A, Goubet C, Roque C, Vidal H, Combes T, Loison G, Casellas P. Colocalization of sterol isomerase and sigma1 receptor at endoplasmic reticulum and nuclear envelope level. Eur. J. Biochem. 1999;263:377–386.
    1. Egashira N, Harada S, Okuno R, Matsushita M, Nishimura R, Mishima K, Iwasaki K, Orito K, Fujiwara M. Involvement of the sigma1 receptor in inhibiting activity of fluvoxamine on marble-burying behavior: comparison with paroxetine. Eur. J. Pharmacol. 2007;563:149–154.
    1. Fleckenstein AE, Volz TJ, Riddle EL, Gibb JW, Hanson GR. New insights into the mechanism of action of amphetamines. Annu. Rev. Pharmacol. Toxicol. 2007;47:681–698.
    1. Gardner B, Zhu LX, Roth MD, Tashkin DP, Dubinett SM, Sharma S. Cocaine modulates cytokine and enhances tumor growth through sigma receptors. J. Neuroimmunol. 2004;147:95–98.
    1. Garrone B, Magnani M, Pinza M, Polenzani L. Effects of trazodone on neurotransmitter release from rat mossy fibre cerebellar synaptosomes. Eur. J. Pharmacol. 2000;400:35–41.
    1. Gear RW, Lee JS, Miaskowski C, Gordon NC, Paul SM, Levine JD. Neuroleptics antagonize nalbuphine antianalgesia. J. Pain. 2006;7:187–191.
    1. Gekker G, Hu S, Sheng WS, Rock RB, Lokensgard JR, Peterson PK. Cocaine-induced HIV-1 expression in microglia involves sigma-1 receptors and transforming growth factor-β1. Int. Immunopharmacol. 2006;6:1029–1033.
    1. Gewirtz GR, Gorman JM, Volavka J, Macaluso J, Gribkoff G, Taylor DP, Borison R. BMY 14802, a sigma receptor ligand for the treatment of schizophrenia. Neuropsychopharmacology. 1994;10:37–40.
    1. Green AR, Mechan AO, Elliott JM, O'Shea E, Colado MI. The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") Pharmacol. Rev. 2003;55:463–508.
    1. Gue M, Junien JL, Del Rio C, Bueno L. Neuropeptide Y and sigma ligand (JO 1784) suppress stress-induced colonic motor disturbances in rats through sigma and cholecystokinin receptors. J. Pharmacol. Exp. Ther. 1992;261:850–855.
    1. Guitart X, Codony X, Ballarín M, Dordal A, Farré AJ. E-5842: a new potent and preferential σ ligand: preclinical pharmacological profile. CNS Drug Rev. 1998;4:201–224.
    1. Guitart X, Codony X, Monroy X. Sigma receptors: biology and therapeutic potential. Psychopharmacology (Berl) 2004;174:301–319.
    1. Hanner M, Moebius FF, Flandorfer A, Knaus HG, Striessnig J, Kempner E, Glossmann H. Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc. Natl. Acad. Sci. USA. 1996;93:8072–8077.
    1. Hashimoto K, London ED. Interactions of erythro-ifenprodil, threo-ifenprodil, erythro-iodoifenprodil, and eliprodil with subtypes of σ receptors. Eur. J. Pharmacol. 1995;273:307–310.
    1. Hashimoto K, Fujita Y, Shimizu E, Iyo M. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of clozapine, but not haloperidol. Eur. J. Pharmacol. 2005;519:114–117.
    1. Hashimoto K, Fujita Y, Iyo M. Phencyclidine-Induced Cognitive Deficits in Mice are Improved by Subsequent Subchronic Administration of Fluvoxamine: role of sigma-1 receptors. Neuropsychopharmacology. 2006;32:514–522.
    1. Hayashi T, Maurice T, Su TP. Ca2+ signaling via σ1-receptors: novel regulatory mechanism affecting intracellular Ca2+ concentration. J. Pharmacol. Exp. Ther. 2000;293:788–798.
    1. Hayashi T, Su TP. Regulating ankyrin dynamics: Roles of sigma-1 receptors. Proc. Natl. Acad. Sci. USA. 2001;98:491–496.
    1. Hayashi T, Su TP. σ-1 receptor ligands: potential in the treatment of neuropsychiatric disorders. CNS. Drugs. 2004;18:269–284.
    1. Hayashi T, Su TP. The potential role of sigma-1 receptors in lipid transport and lipid raft reconstitution in the brain: implication for drug abuse. Life Sci. 2005;77:1612–1624.
    1. Hayashi T, Su TP. The Sigma Receptor: Evolution of the Concept in Neuropsychopharmacology. Curr. Neuropharmacol. 2005;3:1–15.
    1. Hellewell SB, Bowen WD. A sigma-like binding site in rat pheochromocytoma (PC12) cells: decreased affinity for (+)-benzomorphans and lower molecular weight suggest a different sigma receptor form from that of guinea pig brain. Brain Res. 1990;527:244–253.
    1. Hellewell SB, Bruce A, Feinstein G, Orringer J, Williams W, Bowen WD. Rat liver and kidney contain high densities of σ1 and σ2 receptors: characterization by ligand binding and photoaffinity labeling. Eur. J. Pharmacol. 1994;268:9–18.
    1. Hiramatsu M, Hoshino T, Kameyama T, Nabeshima T. Involvement of κ-opioid and σ receptors in short-term memory in mice. Eur. J. Pharmacol. 2002;453:91–98.
    1. Hiramatsu M, Hoshino T. Involvement of κ-opioid receptors and σ receptors in memory function demonstrated using an antisense strategy. Brain Res. 2004;1030:247–255.
    1. Hofner G, Wanner KT. [3H]ifenprodil binding to NMDA receptors in porcine hippocampal brain membranes. Eur. J. Pharmacol. 2000;394:211–219.
    1. Hong W, Werling LL. Binding of σ receptor ligands and their effects on muscarine-induced Ca2+ changes in SH-SY5Y cells. Eur. J. Pharmacol. 2002;436:35–45.
    1. Hong W, Nuwayhid SJ, Werling LL. Modulation of bradykinin-induced calcium changes in SH-SY5Y cells by neurosteroids and sigma receptor ligands via a shared mechanism. Synapse. 2004;54:102–110.
    1. Horan B, Gifford AN, Matsuno K, Mita S, Ashby CR Jr. Effect of SA4503 on the electrically evoked release of 3H-acetylcholine from striatal and hippocampal rat brain slices. Synapse. 2002;46:1–3.
    1. Introini-Collison IB, McGaugh JL. Cocaine enhances memory storage in mice. Psychopharmacology (Berl) 1989;99:537–541.
    1. Ishikawa M, Ishiwata K, Ishii K, Kimura Y, Sakata M, Naganawa M, Oda K, Miyatake R, Fujisaki M, Shimizu E, Shirayama Y, Iyo M, Hashimoto K. High occupancy of sigma-1 receptors in the human brain after single oral administration of fluvoxamine: A positron emission tomography study using [11C]SA4503. Biol. Psychiatry. 2007;62:878–883.
    1. Itzhak Y, Stein I, Zhang SH, Kassim CO, Cristante D. Binding of σ-ligands to C57BL/6 mouse brain membranes: effects of monoamine oxidase inhibitors and subcellular distribution studies suggest the existence of σ-receptor subtypes. J. Pharmacol. Exp. Ther. 1991;257:141–148.
    1. Jaen JC, Caprathe BW, Pugsley TA, Wise LD, Akunne H. Evaluation of the effects of the enantiomers of reduced haloperidol, azaperol, and related 4-amino-1-arylbutanols on dopamine and σ receptors. J. Med. Chem. 1993;36:3929–3936.
    1. Jiang G, Mysona B, Dun Y, Gnana-Prakasam JP, Pabla N, Li W, Dong Z, Ganapathy V, Smith SB. Expression, subcellular localization, and regulation of sigma receptor in retinal muller cells. Invest. Ophthalmol. Vis. Sci. 2006;47:5576–5582.
    1. John CS, Vilner BJ, Bowen WD. Synthesis and characterization of [125I]-N-(N-benzylpiperidin-4-yl)-4- iodobenzamide, a new σ receptor radiopharmaceutical: high-affinity binding to MCF-7 breast tumor cells. J. Med. Chem. 1994;37:1737–1739.
    1. Kalasinsky KS, Bosy TZ, Schmunk GA, Ang L, Adams V, Gore SB, Smialek J, Furukawa Y, Guttman M, Kish SJ. Regional distribution of cocaine in postmortem brain of chronic human cocaine users. J. Forensic Sci. 2000;45:1041–1048.
    1. Kamei H, Kameyama T, Nabeshima T. (+)-SKF-10,047 and dextromethorphan ameliorate conditioned fear stress through the activation of phenytoin-regulated σ1 sites. Eur. J. Pharmacol. 1996;299:21–28.
    1. Kamei H, Noda Y, Kameyama T, Nabeshima T. Role of (+)-SKF-10,047-sensitive sub-population of σ1 receptors in amelioration of conditioned fear stress in rats: association with mesolimbic dopaminergic systems. Eur. J. Pharmacol. 1997;319:165–172.
    1. Katnik C, Guerrero WR, Pennypacker KR, Herrera Y, Cuevas J. Sigma-1 receptor activation prevents intracellular calcium dysregulation in cortical neurons during in vitro ischemia. J. Pharmacol. Exp. Ther. 2006;319:1355–1365.
    1. Kato K, Hayako H, Ishihara Y, Marui S, Iwane M, Miyamoto M. TAK-147, an acetylcholinesterase inhibitor, increases choline acetyltransferase activity in cultured rat septal cholinergic neurons. Neurosci. Lett. 1999;260:5–8.
    1. Katz JL, Libby TA, Kopajtic T, Husbands SM, Newman AH. Behavioral effects of rimcazole analogues alone and in combination with cocaine. Eur. J. Pharmacol. 2003;468:109–119.
    1. Kekuda R, Prasad PD, Fei YJ, Leibach FH, Ganapathy V. Cloning and functional expression of the human type 1 sigma receptor (hSigmaR1) Biochem. Biophys. Res. Commun. 1996;229:553–558.
    1. Kibaly C, Meyer L, Patte-Mensah C, Mensah-Nyagan AG. Biochemical and functional evidence for the control of pain mechanisms by dehydroepiandrosterone endogenously synthesized in the spinal cord. FASEB J. 2008;22:93–104.
    1. Kim HW, Kwon YB, Roh DH, Yoon SY, Han HJ, Kim KW, Beitz AJ, Lee JH. Intrathecal treatment with σ1 receptor antagonists reduces formalin-induced phosphorylation of NMDA receptor subunit 1 and the second phase of formalin test in mice. Br. J. Pharmacol. 2006;148:490–498.
    1. King M, Pan YX, Mei J, Chang A, Xu J, Pasternak GW. Enhanced κ-opioid receptor-mediated analgesia by antisense targeting the σ1 receptor. Eur. J. Pharmacol. 1997;331:R5–R6.
    1. Kitaichi K, Chabot JG, Moebius FF, Flandorfer A, Glossmann H, Quirion R. Expression of the purported sigma1 (σ1) receptor in the mammalian brain and its possible relevance in deficits induced by antagonism of the NMDA receptor complex as revealed using an antisense strategy. J. Chem. Neuroanat. 2000;20:375–387.
    1. Kofman O. The role of prenatal stress in the etiology of developmental behavioural disorders. Neurosci. Biobehav. Rev. 2002;26:457–470.
    1. Kurtz MM. Neurocognitive impairment across the lifespan in schizophrenia: an update. Schizophr. Res. 2005;74:15–26.
    1. Langa F, Codony X, Tovar V, Lavado A, Gimenez E, Cozar P, Cantero M, Dordal A, Hernandez E, Perez R, Monroy X, Zamanillo D, Guitart X, Montoliu L. Generation and phenotypic analysis of sigma receptor type I (σ 1) knockout mice. Eur. J. Neurosci. 2003;18:2188–2196.
    1. Law AJ, Deakin JF. Asymmetrical reductions of hippocampal NMDAR1 glutamate receptor mRNA in the psychoses. Neuroreport. 2001;12:2971–2974.
    1. LePage KT, Ishmael JE, Low CM, Traynelis SF, Murray TF. Differential binding properties of [3H]dextrorphan and [3H]MK-801 in heterologously expressed NMDA receptors. Neuropharmacology. 2005;49:1–16.
    1. Li Z, Zhou R, Cui S, Xie G, Cai W, Sokabe M, Chen L. Dehydroepiandrosterone sulfate prevents ischemia-induced impairment of long-term potentiation in rat hippocampal CA1 by up-regulating tyrosine phosphorylation of NMDA receptor. Neuropharmacology. 2006;51:958–966.
    1. Liu X, Banister SD, Christie MJ, Banati R, Meikle S, Coster MJ, Kassiou M. Trishomocubanes: novel σ ligands modulate cocaine-induced behavioural effects. Eur. J. Pharmacol. 2007;555:37–42.
    1. Liu Y, Chen GD, Lerner MR, Brackett DJ, Matsumoto RR. Cocaine up-regulates Fra-2 and σ-1 receptor gene and protein expression in brain regions involved in addiction and reward. J. Pharmacol. Exp. Ther. 2005;314:770–779.
    1. Lupardus PJ, Wilke RA, Aydar E, Palmer CP, Chen Y, Ruoho AE, Jackson MB. Membrane-delimited coupling between sigma receptors and K+ channels in rat neurohypophysial terminals requires neither G-protein nor ATP. J. Physiol. 2000;526(3):527–539.
    1. Marrazzo A, Prezzavento O, Pappalardo MS, Bousquet E, Iadanza M, Pike VW, Ronsisvalle G. Synthesis of (+)- and (-)-cis-2-[(1-adamantylamino)-methyl]-1-phenylcyclopropane derivatives as high affinity probes for σ1 and σ2 binding sites. Farmaco. 2002;57:45–53.
    1. Marrazzo A, Caraci F, Salinaro ET, Su TP, Copani A, Ronsisvalle G. Neuroprotective effects of sigma-1 receptor agonists against beta-amyloid-induced toxicity. Neuroreport. 2005;16:1223–1226.
    1. Marrazzo A, Parenti C, Scavo V, Ronsisvalle S, Scoto GM, Ronsisvalle G. In vivo evaluation of (+)-MR200 as a new selective sigma ligand modulating MOP, DOP and KOP supraspinal analgesia. Life Sci. 2006;78:2449–2453.
    1. Martin-Fardon R, Maurice T, Aujla H, Bowen WD, Weiss F. Differential effects of σ1 receptor blockade on self-administration and conditioned reinstatement motivated by cocaine vs natural reward. Neuropsychopharmacology. 2007;32:1967–1973.
    1. Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE. The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J. Pharmacol. Exp. Ther. 1976;197:517–532.
    1. Martina M, Turcotte ME, Halman S, Bergeron R. The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. J. Physiol. 2007;578:143–157.
    1. Maruo J, Yoshida A, Shimohira I, Matsuno K, Mita S, Ueda H. Binding of [35S]GTPγS stimulated by (+)-pentazocine sigma receptor agonist, is abundant in the guinea pig spleen. Life Sci. 2000;67:599–603.
    1. Mateo Y, Budygin EA, John CE, Jones SR. Role of serotonin in cocaine effects in mice with reduced dopamine transporter function. Proc. Natl. Acad. Sci. USA. 2004;101:372–377.
    1. Matos FF, Korpinen C, Yocca FD. 5-HT1A receptor agonist effects of BMY-14802 on serotonin release in dorsal raphe and hippocampus. Eur. J. Pharmacol. 1996;317:49–54.
    1. Matsumoto RR, Bowen WD, Tom MA, Vo VN, Truong DD, De Costa BR. Characterization of two novel σ receptor ligands: antidystonic effects in rats suggest σ receptor antagonism. Eur. J. Pharmacol. 1995;280:301–310.
    1. Matsumoto RR, Pouw B. Correlation between neuroleptic binding to σ1 and σ2 receptors and acute dystonic reactions. Eur. J. Pharmacol. 2000;401:155–160.
    1. Matsumoto RR, McCracken KA, Friedman MJ, Pouw B, De Costa BR, Bowen WD. Conformationally restricted analogs of BD1008 and an antisense oligodeoxynucleotide targeting σ1 receptors produce anti-cocaine effects in mice. Eur. J. Pharmacol. 2001;419:163–174.
    1. Matsumoto RR, Hewett KL, Pouw B, Bowen WD, Husbands SM, Cao JJ, Hauck NA. Rimcazole analogs attenuate the convulsive effects of cocaine: correlation with binding to sigma receptors rather than dopamine transporters. Neuropharmacology. 2001;41:878–886.
    1. Matsumoto RR, McCracken KA, Pouw B, Zhang Y, Bowen WD. Involvement of sigma receptors in the behavioral effects of cocaine: evidence from novel ligands and antisense oligodeoxynucleotides. Neuropharmacology. 2002;42:1043–1055.
    1. Matsumoto RR, Liu Y, Lerner M, Howard EW, Brackett DJ. σ receptors: potential medications development target for anti-cocaine agents. Eur. J. Pharmacol. 2003;469:1–12.
    1. Matsumoto RR, Gilmore DL, Pouw B, Bowen WD, Williams W, Kausar A, Coop A. Novel analogs of the σ receptor ligand BD1008 attenuate cocaine-induced toxicity in mice. Eur. J. Pharmacol. 2004;492:21–26.
    1. Matsumoto RR, Pouw B, Mack AL, Daniels A, Coop A. Effects of UMB24 and (+/-)-SM 21, putative σ2-preferring antagonists, on behavioral toxic and stimulant effects of cocaine in mice. Pharmacol. Biochem. Behav. 2007;86:86–91.
    1. Matsuno K, Senda T, Matsunaga K, Mita S, Kaneto H. Similar ameliorating effects of benzomorphans and 5-HT2 antagonists on drug-induced impairment of passive avoidance response in mice: comparison with acetylcholinesterase inhibitors. Psychopharmacology (Berl) 1993;112:134–141.
    1. Matsuno K, Senda T, Matsunaga K, Mita S. Ameliorating effects of σ receptor ligands on the impairment of passive avoidance tasks in mice: involvement in the central acetylcholinergic system. Eur. J. Pharmacol. 1994;261:43–51.
    1. Maurice T, Roman FJ, Privat A. Modulation by neurosteroids of the in vivo (+)-[3H]SKF-10,047 binding to σ1 receptors in the mouse forebrain. J. Neurosci. Res. 1996;46:734–743.
    1. Maurice T, Lockhart BP. Neuroprotective and anti-amnesic potentials of sigma (σ) receptor ligands. Prog. Neuropsychopharmacol. Biol. Psychiatry. 1997;21:69–102.
    1. Maurice T, Su TP, Privat A. Sigma1 (σ1) receptor agonists and neurosteroids attenuate B25-35-amyloid peptide-induced amnesia in mice through a common mechanism. Neuroscience. 1998;83:413–428.
    1. Maurice T, Phan VL, Urani A, Kamei H, Noda Y, Nabeshima T. Neuroactive neurosteroids as endogenous effectors for the sigma1 (σ1) receptor: pharmacological evidence and therapeutic opportunities. Jpn. J. Pharmacol. 1999;81:125–155.
    1. Maurice T, Urani A, Phan VL, Romieu P. The interaction between neuroactive steroids and the σ1 receptor function: behavioral consequences and therapeutic opportunities. Brain Res. Brain Res. Rev. 2001;37:116–132.
    1. Maurice T, Phan VL, Urani A, Guillemain I. Differential involvement of the sigma1 (σ1) receptor in the anti-amnesic effect of neuroactive steroids, as demonstrated using an in vivo antisense strategy in the mouse. Br. J. Pharmacol. 2001;134:1731–1741.
    1. Maurice T, Phan VL, Privat A. The anti-amnesic effects of sigma1 (σ1) receptor agonists confirmed by in vivo antisense strategy in the mouse. Brain Res. 2001;898:113–121.
    1. Maurice T, Martin-Fardon R, Romieu P, Matsumoto RR. Sigma1 (σ1) receptor antagonists represent a new strategy against cocaine addiction and toxicity. Neurosci. Biobehav. Rev. 2002;26:499–527.
    1. Maurice T, Casalino M, Lacroix M, Romieu P. Involvement of the sigma1 receptor in the motivational effects of ethanol in mice. Pharmacol. Biochem. Behav. 2003;74:869–876.
    1. Maurice T, Meunier J, Feng B, Ieni J, Monaghan DT. Interaction with σ1 protein, but not N-methyl-D-aspartate receptor, is involved in the pharmacological activity of donepezil. J. Pharmacol. Exp. Ther. 2006;317:606–614.
    1. Maurice T, Gregoire C, Espallergues J. Neuro(active) steroids actions at the neuromodulatory sigma1 (σ1) receptor: biochemical and physiological evidences, consequences in neuroprotection. Pharmacol. Biochem. Behav. 2006;84:581–597.
    1. Mavlyutov TA, Ruoho AE. Ligand-dependent localization and intracellular stability of sigma-1 receptors in CHO-K1 cells. J. Mol. Signal. 2007;2:8.
    1. McCracken KA, Bowen WD, De Costa BR, Matsumoto RR. Two novel σ receptor ligands, BD1047 and LR172, attenuate cocaine-induced toxicity and locomotor activity. Eur. J. Pharmacol. 1999;370:225–232.
    1. Mei J, Pasternak GW. σ1 receptor modulation of opioid analgesia in the mouse. J. Pharmacol. Exp. Ther. 2002;300:1070–1074.
    1. Mei J, Pasternak GW. Modulation of brainstem opiate analgesia in the rat by σ1 receptors: a microinjection study. J. Pharmacol. Exp. Ther. 2007;322:1278–1285.
    1. Mennini T, Gobbi M. The antidepressant mechanism of Hypericum perforatum. Life Sci. 2004;75:1021–1027.
    1. Meunier J, Maurice T. Beneficial effects of the sigma1 receptor agonists igmesine and dehydroepiandrosterone against learning impairments in rats prenatally exposed to cocaine. Neurotoxicol. Teratol. 2004;26:783–797.
    1. Meunier J, Gue M, Recasens M, Maurice T. Attenuation by a sigma1 (σ1) receptor agonist of the learning and memory deficits induced by a prenatal restraint stress in juvenile rats. Br. J. Pharmacol. 2004;142:689–700.
    1. Meunier J, Ieni J, Maurice T. Antiamnesic and neuroprotective effects of donepezil against learning impairments induced in mice by exposure to carbon monoxide gas. J. Pharmacol. Exp. Ther. 2006;317:1307–1319.
    1. Meunier J, Demeilliers B, Celerier A, Maurice T. Compensatory effect by sigma1 (σ1) receptor stimulation during alcohol withdrawal in mice performing an object recognition task. Behav. Brain. Res. 2006;166:166–176.
    1. Meunier J, Ieni J, Maurice T. The anti-amnesic and neuroprotective effects of donepezil against amyloid β25-35 peptide-induced toxicity in mice involve an interaction with the σ1 receptor. Br. J. Pharmacol. 2006;149:998–1012.
    1. Meyer DA, Carta M, Partridge LD, Covey DF, Valenzuela CF. Neurosteroids enhance spontaneous glutamate release in hippocampal neurons.Possible role of metabotropic σ1-like receptors. J. Biol. Chem. 2002;277:28725–28732.
    1. Miyatake R, Furukawa A, Matsushita S, Higuchi S, Suwaki H. Functional polymorphisms in the sigma1 receptor gene associated with alcoholism. Biol. Psychiatry. 2004;55:85–90.
    1. Mizuno T, Yotsuyanagi S, Nagasaka Y, Namiki M. Dehydroepiandrosterone alleviates copulatory disorder induced by social stress in male rats. J. Sex. Med. 2006;3:612–618.
    1. Moebius FF, Reiter RJ, Hanner M, Glossmann H. High affinity of sigma1-binding sites for sterol isomerization inhibitors: evidence for a pharmacological relationship with the yeast sterol C8-C7 isomerase. Br. J. Pharmacol. 1997;121:1–6.
    1. Monassier L, Manoury B, Bellocq C, Weissenburger J, Greney H, Zimmermann D, Ehrhardt JD, Jaillon P, Baro I, Bousquet P. σ2-receptor ligand-mediated inhibition of inwardly rectifying K+ channels in the heart. J. Pharmacol. Exp. Ther. 2007;322:341–350.
    1. Monnet FP, Debonnel G, Bergeron R, Gronier B, de Montigny C. The effects of sigma ligands and of neuropeptide Y on N-methyl-D-aspartate-induced neuronal activation of CA3 dorsal hippocampus neurones are differentially affected by pertussin toxin. Br. J. Pharmacol. 1994;112:709–715.
    1. Monnet FP, Morin-Surun MP, Leger J, Combettes L. Protein kinase C-dependent potentiation of intracellular calcium influx by σ1 receptor agonists in rat hippocampal neurons. J. Pharmacol. Exp. Ther. 2003;307:705–712.
    1. Monnet FP. Sigma-1 receptor as regulator of neuronal intracellular Ca2+: clinical and therapeutic relevance. Biol. Cell. 2005;97:873–883.
    1. Monnet FP, Maurice T. The sigma1 protein as a target for the non-genomic effects of neuro(active)steroids: molecular, physiological, and behavioral aspects. J. Pharmacol. Sci. 2006;100:93–118.
    1. Morin-Surun MP, Collin T, Denavit-Saubie M, Baulieu EE, Monnet FP. Intracellular σ1 receptor modulates phospholipase C and protein kinase C activities in the brainstem. Proc. Natl. Acad. Sci. USA. 1999;96:8196–8199.
    1. Mtchedlishvili Z, Kapur J. A presynaptic action of the neurosteroid pregnenolone sulfate on GABAergic synaptic transmission. Mol. Pharmacol. 2003;64:857–864.
    1. Narita N, Hashimoto K, Tomitaka S, Minabe Y. Interactions of selective serotonin reuptake inhibitors with subtypes of σ receptors in rat brain. Eur. J. Pharmacol. 1996;307:117–119.
    1. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron. 2002;34:13–25.
    1. Nguyen EC, McCracken KA, Liu Y, Pouw B, Matsumoto RR. Involvement of sigma (σ) receptors in the acute actions of methamphetamine: receptor binding and behavioral studies. Neuropharmacology. 2005;49:638–645.
    1. Nobile M, Lagostena L. A discriminant block among K+ channel types by phenytoin in neuroblastoma cells. Br. J. Pharmacol. 1998;124:1698–1702.
    1. Noda Y, Kamei H, Kamei Y, Nagai T, Nishida M, Nabeshima T. Neurosteroids ameliorate conditioned fear stress: an association with sigma1 receptors. Neuropsychopharmacology. 2000;23:276–284.
    1. Novakova M, Bruderova V, Sulova Z, Kopacek J, Lacinova L, Kvetnansky R, Vasku A, Kaplan P, Krizanova O, Jurkovicova D. Modulation of expression of the sigma receptors in the heart of rat and mouse in normal and pathological conditions. Gen. Physiol. Biophys. 2007;26:110–117.
    1. Nudmamud-Thanoi S, Reynolds GP. The NR1 subunit of the glutamate/NMDA receptor in the superior temporal cortex in schizophrenia and affective disorders. Neurosci. Lett. 2004;372:173–177.
    1. Nuwayhid SJ, Werling LL. Sigma2 (σ2) receptors as a target for cocaine action in the rat striatum. Eur. J. Pharmacol. 2006;535:98–103.
    1. Okuyama S, Imagawa Y, Tomisawa K. Behavioral Evidence for Modulation by Sigma Ligands of (+)MK-801-induced Hyperlocomotion in Monoamine-depleted Mice. Neuropharmacology. 1996;35:467–474.
    1. Okuyama S, Nakazato A. NE-100: a novel sigma receptor antagonist. CNS Drug Rev. 1996;2:226–237.
    1. Pal A, Hajipour AR, Fontanilla D, Ramachandran S, Chu UB, Mavlyutov T, Ruoho AE. Identification of regions of the σ-1 receptor ligand binding site using a novel photoprobe. Mol. Pharmacol. 2007;72:921–933.
    1. Palacios G, Muro A, Vela JM, Molina-Holgado E, Guitart X, Ovalle S, Zamanillo D. Immunohistochemical localization of the σ1-receptor in oligodendrocytes in the rat central nervous system. Brain Res. 2003;961:92–99.
    1. Pan YX, Mei J, Xu J, Wan BL, Zuckerman A, Pasternak GW. Cloning and characterization of a mouse σ1 receptor. J. Neurochem. 1998;70:2279–2285.
    1. Peeters M, Romieu P, Maurice T, Su TP, Maloteaux JM, Hermans E. Involvement of the sigma1 receptor in the modulation of dopaminergic transmission by amantadine. Eur. J. Neurosci. 2004;19:2212–2220.
    1. Phan VL, Miyamoto Y, Nabeshima T, Maurice T. Age-related expression of σ1 receptors and antidepressant efficacy of a selective agonist in the senescence-accelerated (SAM) mouse. J. Neurosci. Res. 2005;79:561–572.
    1. Poncelet M, Santucci V, Paul R, Gueudet C, Lavastre S, Guitard J, Steinberg R, Terranova JP, Breliere JC, Soubrie P. Neuropharmacological profile of a novel and selective ligand of the sigma site: SR 31742A. Neuropharmacology. 1993;32:605–615.
    1. Quirion R, Bowen WD, Itzhak Y, Junien JL, Musacchio JM, Rothman RB, Su TP, Tam SW, Taylor DP. A proposal for the classification of σ binding sites. Trends Pharmacol. Sci. 1992;13:85–86.
    1. Riedel G, Platt B, Micheau J. Glutamate receptor function in learning and memory. Behav. Brain Res. 2003;140:1–47.
    1. Rogoz Z, Skuza G. Mechanism of synergistic action following co-treatment with pramipexole and fluoxetine or sertraline in the forced swimming test in rats. Pharmacol. Rep. 2006;58:493–500.
    1. Romieu P, Martin-Fardon R, Maurice T. Involvement of the sigma1 receptor in the cocaine-induced conditioned place preference. Neuroreport. 2000;11:2885–2888.
    1. Romieu P, Phan VL, Martin-Fardon R, Maurice T. Involvement of the sigma1 receptor in cocaine-induced conditioned place preference: possible dependence on dopamine uptake blockade. Neuropsychopharmacology. 2002;26:444–455.
    1. Romieu P, Meunier J, Garcia D, Zozime N, Martin-Fardon R, Bowen WD, Maurice T. The sigma1 (σ1) receptor activation is a key step for the reactivation of cocaine conditioned place preference by drug priming. Psychopharmacology (Berl.) 2004;175:154–162.
    1. Romieu P, Lucas M, Maurice T. σ1 receptor ligands and related neuroactive steroids interfere with the cocaine-induced state of memory. Neuropsychopharmacology. 2006;31:1431–1443.
    1. Ronsisvalle G, Marrazzo A, Prezzavento O, Pasquinucci L, Falcucci B, Di Toro RD, Spampinato S. Substituted 1-phenyl-2-cyclopropylmethylamines with high affinity and selectivity for sigma sites. Bioorg. Med. Chem. 2000;8:1503–1513.
    1. Ronsisvalle G, Marrazzo A, Prezzavento O, Cagnotto A, Mennini T, Parenti C, Scoto GM. Opioid and sigma receptor studies. New developments in the design of selective sigma ligands. Pure Appl. Chem. 2001;73:1499–1509.
    1. Roth MD, Whittaker KM, Choi R, Tashkin DP, Baldwin GC. Cocaine and σ-1 receptors modulate HIV infection, chemokine receptors, and the HPA axis in the huPBL-SCID model. J. Leukoc. Biol. 2005;78:1198–1203.
    1. Rothman RB, Baumann MH. Monoamine transporters and psychostimulant drugs. Eur. J. Pharmacol. 2003;479:23–40.
    1. Rückert NG, Schmidt WJ. The σ receptor ligand 1,3-di-(2-tolyl)guanidine in animal models of schizophrenia. Eur. J. Pharmacol. 1993;233:261–267.
    1. Rush AM, Elliott JR. Phenytoin and carbamazepine: differential inhibition of sodium currents in small cells from adult rat dorsal root ganglia. Neurosci. Lett. 1997;226:95–98.
    1. Schwarz S, Pohl P, Zhou GZ. Steroid binding at sigma-"opioid" receptors. Science. 1989;246:1635–1638.
    1. Seth P, Leibach FH, Ganapathy V. Cloning and structural analysis of the cDNA and the gene encoding the murine type 1 sigma receptor. Biochem. Biophys. Res. Commun. 1997;241:535–540.
    1. Seth P, Fei YJ, Li HW, Huang W, Leibach FH, Ganapathy V. Cloning and functional characterization of a σ receptor from rat brain. J. Neurochem. 1998;70:922–931.
    1. Seth P, Ganapathy ME, Conway SJ, Bridges CD, Smith SB, Casellas P, Ganapathy V. Expression pattern of the type 1 sigma receptor in the brain and identity of critical anionic amino acid residues in the ligand-binding domain of the receptor. Biochim. Biophys. Acta. 2001;1540:59–67.
    1. Shin EJ, Nah SY, Kim WK, Ko KH, Jhoo WK, Lim YK, Cha JY, Chen CF, Kim HC. The dextromethorphan analog dimemorfan attenuates kainate-induced seizures via σ1 receptor activation: comparison with the effects of dextromethorphan. Br. J. Pharmacol. 2005;144:908–918.
    1. Silvers JM, Wallace DR, Harrod SB, Mactutus CF, Booze RM. Prenatal cocaine alters dopamine and sigma receptor binding in nucleus accumbens and striatum in dams and adolescent offspring. Neurotoxicol. Teratol. 2006;28:173–180.
    1. Skuza G. Effect of sigma ligands on the cocaine-induced convulsions in mice. Pol. J. Pharmacol. 1999;51:477–483.
    1. Skuza G, Rogoz Z. A potential antidepressant activity of SA4503, a selective σ1 receptor agonist. Behav. Pharmacol. 2002;13:537–543.
    1. Skuza G, Rogoz Z. The synergistic effect of selective sigma receptor agonists and uncompetitive NMDA receptor antagonists in the forced swim test in rats. J. Physiol. Pharmacol. 2006;57:217–229.
    1. Skuza G, Rogoz Z. Effect of BD 1047, a sigma1 receptor antagonist, in the animal models predictive of antipsychotic activity. Pharmacol. Rep. 2006;58:626–635.
    1. Soriani O, Foll FL, Roman F, Monnet FP, Vaudry H, Cazin L. A-Current down-modulated by σ receptor in frog pituitary melanotrope cells through a G protein-dependent pathway. J. Pharmacol. Exp. Ther. 1999;289:321–328.
    1. Soriani O, Le Foll F, Galas L, Roman F, Vaudry H, Cazin L. The σ-ligand (+)-pentazocine depresses M current and enhances calcium conductances in frog melanotrophs. Am. J. Physiol. 1999;277:E73–E80.
    1. South SM, Kohno T, Kaspar BK, Hegarty D, Vissel B, Drake CT, Ohata M, Jenab S, Sailer AW, Malkmus S, Masuyama T, Horner P, Bogulavsky J, Gage FH, Yaksh TL, Woolf CJ, Heinemann SF, Inturrisi CE. A conditional deletion of the NR1 subunit of the NMDA receptor in adult spinal cord dorsal horn reduces NMDA currents and injury-induced pain. J. Neurosci. 2003;23:5031–5040.
    1. Stefanski R, Justinova Z, Hayashi T, Takebayashi M, Goldberg SR, Su TP. Sigma1 receptor upregulation after chronic methamphetamine self-administration in rats: a study with yoked controls. Psychopharmacology (Berl.) 2004;175:68–75.
    1. Stone JM, Arstad E, Erlandsson K, Waterhouse RN, Ell PJ, Pilowsky LS. [123I]TPCNE-a novel SPET tracer for the sigma-1 receptor: first human studies and in vivo haloperidol challenge. Synapse. 2006;60:109–117.
    1. Su TP, London ED, Jaffe JH. Steroid binding at σ receptors suggests a link between endocrine, nervous, and immune systems. Science. 1988;240:219–221.
    1. Su TP, Hayashi T. Cocaine affects the dynamics of cytoskeletal proteins via sigma1 receptors. Trends Pharmacol. Sci. 2001;22:456–458.
    1. Takahashi S, Sonehara K, Takagi K, Miwa T, Horikomi K, Mita N, Nagase H, Iizuka K, Sakai K. Pharmacological profile of MS-377, a novel antipsychotic agent with selective affinity for σ receptors. Psychopharmacology (Berl) 1999;145:295–302.
    1. Takahashi S, Miwa T, Horikomi K. Involvement of σ1 receptors in methamphetamine-induced behavioral sensitization in rats. Neurosci. Lett. 2000;289:21–24.
    1. Takahashi S, Horikomi K, Kato T. MS-377, a novel selective σ1 receptor ligand, reverses phencyclidine-induced release of dopamine and serotonin in rat brain. Eur. J. Pharmacol. 2001;427:211–219.
    1. Takebayashi M, Hayashi T, Su TP. Nerve growth factor-induced neurite sprouting in PC12 cells involves σ-1 receptors implications for antidepressants. J. Pharmacol. Exp. Ther. 2002;303:1227–1237.
    1. Takebayashi M, Hayashi T, Su TP. σ-1 receptors potentiate epidermal growth factor signaling towards neuritogenesis in PC12 cells: potential relation to lipid raft reconstitution. Synapse. 2004;53:90–103.
    1. Tam SW, Steinfels GF, Gilligan PJ, Schmidt WK, Cook L. DuP 734 [1-(cyclopropylmethyl)-4-(2'(4''-fluorophenyl)-2'-oxoethyl)- piperidine HBr] a sigma and 5-hydroxytryptamine2 receptor antagonist: receptor-binding, electrophysiological and neuropharmacological profiles. J. Pharmacol. Exp. Ther. 1992;263:1167–1174.
    1. Taylor DP, Eison MS, Moon SL, Schlemmer RF Jr, Shukla UA, VanderMaelen CP, Yocca FD, Gallant DJ, Behling SH, Boissard CG. A role for σ binding in the antipsychotic profile of BMY 14802? NIDA. Res. Monogr. 1993;133:125–157.
    1. Todorovic SM, Lingle CJ. Pharmacological properties of T-type Ca2+ current in adult rat sensory neurons: effects of anticonvulsant and anesthetic agents. J. Neurophysiol. 1998;79:240–252.
    1. Tottori K, Miwa T, Uwahodo Y, Yamada S, Nakai M, Oshiro Y, Kikuchi T, Altar CA. Antidepressant-like responses to the combined sigma and 5-HT1A receptor agonist OPC-14523. Neuropharmacology. 2001;41:976–988.
    1. Ueda H, Inoue M, Yoshida A, Mizuno K, Yamamoto H, Maruo J, Matsuno K, Mita S. Metabotropic neurosteroid/σ-receptor involved in stimulation of nociceptor endings of mice. J. Pharmacol. Exp. Ther. 2001;298:703–710.
    1. Ujike H, Kanzaki A, Okumura K, Akiyama K, Otsuki S. Sigma (σ) antagonist BMY 14802 prevents methamphetamine-induced sensitization. Life Sci. 1992;50:L129–L134.
    1. Ujike H, Kuroda S, Otsuki S. σ Receptor antagonists block the development of sensitization to cocaine. Eur. J. Pharmacol. 1996;296:123–128.
    1. Ukai M, Maeda H, Nanya Y, Kameyama T, Matsuno K. Beneficial effects of acute and repeated administrations of σ receptor agonists on behavioral despair in mice exposed to tail suspension. Pharmacol. Biochem. Behav. 1998;61:247–252.
    1. Urani A, Roman FJ, Phan VL, Su TP, Maurice T. The antidepressant-like effect induced by σ1-receptor agonists and neuroactive steroids in mice submitted to the forced swimming test. J. Pharmacol. Exp. Ther. 2001;298:1269–1279.
    1. Urani A, Romieu P, Roman FJ, Maurice T. Enhanced antidepressant effect of sigma1 (σ1) receptor agonists in β25-35--amyloid peptide-treated mice. Behav. Brain Res. 2002;134:239–247.
    1. Urani A, Romieu P, Portales-Casamar E, Roman FJ, Maurice T. The antidepressant-like effect induced by the sigma1 (σ1) receptor agonist igmesine involves modulation of intracellular calcium mobilization. Psychopharmacology (Berl.) 2002;163:26–35.
    1. Urani A, Romieu P, Roman FJ, Yamada K, Noda Y, Kamei H, Manh TH, Nagai T, Nabeshima T, Maurice T. Enhanced antidepressant efficacy of σ1 receptor agonists in rats after chronic intracerebroventricular infusion of β-amyloid-(1-40) protein. Eur. J. Pharmacol. 2004;486:151–161.
    1. van Berckel BNM. glutamate and schizophrenia. Curr. Neuropharmacol. 2003;1:351–370.
    1. Volz HP, Stoll KD. Clinical trials with sigma ligands. Pharmacopsychiatry. 2004;37(Suppl 3):S214–S220.
    1. Walker JM, Bowen WD, Walker FO, Matsumoto RR, De Costa B, Rice KC. Sigma receptors: biology and function. Pharmacol. Rev. 1990;42:355–402.
    1. Walker JM, Bowen WD, Patrick SL, Williams WE, Mascarella SW, Bai X, Carroll FI. A comparison of (-)-deoxybenzomorphans devoid of opiate activity with their dextrorotatory phenolic counterparts suggests role of σ2 receptors in motor function. Eur. J. Pharmacol. 1993;231:61–68.
    1. Wang D, Noda Y, Tsunekawa H, Zhou Y, Miyazaki M, Senzaki K, Nitta A, Nabeshima T. Role of N-methyl-D-aspartate Receptors in Antidepressant-Like Effects of σ1 Receptor Agonist 1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)piperazine Dihydrochloride (SA-4503) in Olfactory Bulbectomized Rats. J. Pharmacol. Exp. Ther. 2007;322:1305–1314.
    1. Wang HH, Chien JW, Chou YC, Liao JF, Chen CF. Anti-amnesic effect of dimemorfan in mice. Br. J. Pharmacol. 2003;138:941–949.
    1. Wang J, Mack AL, Coop A, Matsumoto RR. Novel sigma (σ) receptor agonists produce antidepressant-like effects in mice. Eur. Neuropsychopharmacol. 2007;17:708–716.
    1. Waterhouse RN, Chang RC, Atuehene N, Collier TL. In vitro and in vivo binding of neuroactive steroids to the sigma-1 receptor as measured with the positron emission tomography radioligand [18F]FPS. Synapse. 2007;61:540–546.
    1. Wilke RA, Lupardus PJ, Grandy DK, Rubinstein M, Low MJ, Jackson MB. K+ channel modulation in rodent neurohypophysial nerve terminals by sigma receptors and not by dopamine receptors. J. Physiol. 1999;517(2):391–406.
    1. Witkin JM, Terry P, Menkel M, Hickey P, Pontecorvo M, Ferkany J, Katz JL. Effects of the selective sigma receptor ligand, 6-[6-(4-hydroxypiperidinyl)hexyloxy]-3-methylflavone (NPC 16377), on behavioral and toxic effects of cocaine. J. Pharmacol. Exp. Ther. 1993;266:473–482.
    1. Yagasaki Y, Numakawa T, Kumamaru E, Hayashi T, Su TP, Kunugi H. Chronic antidepressants potentiate via sigma-1 receptors the brain-derived neurotrophic factor-induced signaling for glutamate release. J. Biol. Chem. 2006;281:12941–12949.
    1. Zhang D, Zhang L, Tang Y, Zhang Q, Lou D, Sharp FR, Zhang J, Xu M. Repeated cocaine administration induces gene expression changes through the dopamine D1 receptors. Neuropsychopharmacology. 2005;30:1443–1454.
    1. Zhang H, Cuevas J. σ Receptor activation blocks potassium channels and depresses neuroexcitability in rat intracardiac neurons. J. Pharmacol. Exp. Ther. 2005;313:1387–1396.

Source: PubMed

3
Subscribe