Fluvoxamine: A Review of Its Mechanism of Action and Its Role in COVID-19

Vikas P Sukhatme, Angela M Reiersen, Sharat J Vayttaden, Vidula V Sukhatme, Vikas P Sukhatme, Angela M Reiersen, Sharat J Vayttaden, Vidula V Sukhatme

Abstract

Fluvoxamine is a well-tolerated, widely available, inexpensive selective serotonin reuptake inhibitor that has been shown in a small, double-blind, placebo-controlled, randomized study to prevent clinical deterioration of patients with mild coronavirus disease 2019 (COVID-19). Fluvoxamine is also an agonist for the sigma-1 receptor, through which it controls inflammation. We review here a body of literature that shows important mechanisms of action of fluvoxamine and other SSRIs that could play a role in COVID-19 treatment. These effects include: reduction in platelet aggregation, decreased mast cell degranulation, interference with endolysosomal viral trafficking, regulation of inositol-requiring enzyme 1α-driven inflammation and increased melatonin levels, which collectively have a direct antiviral effect, regulate coagulopathy or mitigate cytokine storm, which are known hallmarks of severe COVID-19.

Keywords: SARS-CoV-2; acute respiratory distress syndrome; cytokine storm; inflammation; interleukins.

Conflict of interest statement

Author VVS was employed by the company GlobalCures, Inc. Author AR has received research support for clinical trials of fluvoxamine for COVID-19 from the Taylor Family Institute for Innovative Psychiatric Treatment at Washington University, Fast Grants, and the COVID-19 Early Treatment Fund, and she is an inventor on a patent application filed by Washington University in St. Louis, which is relevant to methods of treating COVID-19, including fluvoxamine. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Sukhatme, Reiersen, Vayttaden and Sukhatme.

Figures

FIGURE 1
FIGURE 1
Potential anti-COVID-19 mechanisms of action of fluvoxamine. Figure created using Biorender.

References

    1. Ackermann M., Verleden S. E., Kuehnel M., Haverich A., Welte T., Laenger F., et al. (2020). Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in covid-19. N. Engl. J. Med. 383 (2), 120–128. 10.1056/nejmoa2015432
    1. Alidjinou E. K., Bertin A., Sane F., Caloone D., Engelmann I., Hober D. (2019). Emergence of fluoxetine-resistant variants during treatment of human pancreatic cell cultures persistently infected with coxsackievirus B4. Viruses 11 (6), 486. 10.3390/v11060486
    1. Althaus K., Marini I., Zlamal J., Pelzl L., Singh A., Häberle H., et al. (2020). Antibody-induced procoagulant platelets in severe COVID-19 infection. Blood 137 (8), 1061–1071. 10.1182/blood.2020008762
    1. Armocida D., Palmieri M., Frati A., Santoro A., Pesce A. (2020). How SARS-Cov-2 can involve the central nervous system. A systematic analysis of literature of the department of human neurosciences of Sapienza University, Italy. J. Clin. Neurosci. 79, 231–236. 10.1016/j.jocn.2020.07.007
    1. Baharav E., Bar M., Taler M., Gil-Ad I., Karp L., Weinberger A., et al. (2012). Immunomodulatory effect of sertraline in a rat model of rheumatoid arthritis. Neuroimmunomodulation 19 (5), 309–318. 10.1159/000339109
    1. Bale J. F., Jr. (2015). Virus and immune-mediated encephalitides: epidemiology, diagnosis, treatment, and prevention. Pediatr. Neurol. 53 (1), 3–12. 10.1016/j.pediatrneurol.2015.03.013
    1. Bauer L., Manganaro R., Zonsics B., Strating J. R. P. M., El Kazzi P., Lorenzo Lopez M., et al. (2019). Fluoxetine inhibits enterovirus replication by targeting the viral 2C protein in a stereospecific manner. ACS Infect. Dis. 5 (9), 1609–1623. 10.1021/acsinfecdis.9b00179
    1. Berger M., Gray J. A., Roth B. L. (2009). The expanded biology of serotonin. Annu. Rev. Med. 60, 355–366. 10.1146/annurev.med.60.042307.110802
    1. Bernales S., McDonald K. L., Walter P. (2006). Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. Plos Biol. 4 (12), e423. 10.1371/journal.pbio.0040423
    1. Breiden B., Sandhoff K. (2019). Emerging mechanisms of drug-induced phospholipidosis. Biol. Chem. 401 (1), 31–46. 10.1515/hsz-2019-0270
    1. Carneiro A. M. D., Cook E. H., Murphy D. L., Blakely R. D. (2008). Interactions between integrin αIIbβ3 and the serotonin transporter regulate serotonin transport and platelet aggregation in mice and humans. J. Clin. Invest. 118 (4), 1544–1552. 10.1172/jci33374
    1. Carpinteiro A., Edwards M. J., Hoffmann M., Kochs G., Gripp B., Weigang S., et al. (2020). Pharmacological inhibition of acid sphingomyelinase prevents uptake of SARS-CoV-2 by epithelial cells. Cel Rep. Med. 1 (8), 100142. 10.1016/j.xcrm.2020.100142
    1. Castano-Rodriguez C., Honrubia J. M., Gutierrez-Alvarez J., DeDiego M. L., Nieto-Torres J. L., Jimenez-Guardeno J. M., et al. (2018). Role of severe acute respiratory syndrome coronavirus viroporins E, 3a, and 8a in replication and pathogenesis. mBio 9 (3), e02325–17. 10.1128/mbio.02325-17
    1. Celada P., Dolera M., Alvarez E., Artigas F. (1992). Effects of acute and chronic treatment with fluvoxamine on extracellular and platelet serotonin in the blood of major depressive patients. Relationship to clinical improvement. J. Affective Disord. 25 (4), 243–249. 10.1016/0165-0327(92)90082-h
    1. Chan C.-P., Siu K.-L., Chin K.-T., Yuen K.-Y., Zheng B., Jin D.-Y. (2006). Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein. Jvi 80 (18), 9279–9287. 10.1128/jvi.00659-06
    1. Chen G., Wu D., Guo W., Cao Y., Huang D., Wang H., et al. (2020a). Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 130 (5), 2620–2629. 10.1172/jci137244
    1. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., et al. (2020b). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet 395 (10223), 507–513. 10.1016/s0140-6736(20)30211-7
    1. Chen Z.-H., Xiao L., Chen J.-H., Luo H.-S., Wang G.-H., Huang Y.-L., et al. (2008). Effects of fluoxetine on mast cell morphology and protease-1 expression in gastric antrum in a rat model of depression. Wjg 14 (45), 6993–6998. 10.3748/wjg.14.6993
    1. Cheng Z., Yang J., Xia H., Qiu Y., Wang Z., Han Y., et al. (2013). The nonstructural protein 2C of a Picorna-like virus displays nucleic acid helix destabilizing activity that can be functionally separated from its ATPase activity. J. Virol. 87 (9), 5205–5218. 10.1128/jvi.00245-13
    1. Chu H., Chan C.-M., Zhang X., Wang Y., Yuan S., Zhou J., et al. (2018). Middle East respiratory syndrome coronavirus and bat coronavirus HKU9 both can utilize GRP78 for attachment onto host cells. J. Biol. Chem. 293 (30), 11709–11726. 10.1074/jbc.ra118.001897
    1. Cloutier N., Allaeys I., Marcoux G., Machlus K. R., Mailhot B., Zufferey A., et al. (2018). Platelets release pathogenic serotonin and return to circulation after immune complex-mediated sequestration. Proc. Natl. Acad. Sci. USA 115 (7), E1550–E1559. 10.1073/pnas.1720553115
    1. Cottam E. M., Maier H. J., Manifava M., Vaux L. C., Chandra-Schoenfelder P., Gerner W., et al. (2011). Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate. Autophagy 7 (11), 1335–1347. 10.4161/auto.7.11.16642
    1. DeDiego M. L., Nieto-Torres J. L., Jimenez-Guardeno J. M., Regla-Nava J. A., Alvarez E., Oliveros J. C., et al. (2011). Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis. Plos Pathog. 7 (10), e1002315. 10.1371/journal.ppat.1002315
    1. Dell'Osso B., Allen A., Hollander E. (2005). Fluvoxamine: a selective serotonin re-uptake inhibitor for the treatment of obsessive-compulsive disorder. Expert Opin. Pharmacother. 6 (15), 2727–2740. 10.1517/14656566.6.15.2727
    1. DrugBank (2005). Fluvoxamine, December 27, 2020. from .
    1. Dube M., Le Coupanec A., Wong A. H. M., Rini J. M., Desforges M., Talbot P. J. (2018). Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. J. Virol. 92 (17), e00404–18. 10.1128/jvi.00404-18
    1. Duerschmied D., Suidan G. L., Demers M., Herr N., Carbo C., Brill A., et al. (2013). Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood 121 (6), 1008–1015. 10.1182/blood-2012-06-437392
    1. Fajgenbaum D. C., June C. H. (2020). Cytokine storm. N. Engl. J. Med. 383 (23), 2255–2273. 10.1056/nejmra2026131
    1. FDA (2012). Fluvoxamine maleate tablets label. from (Retrieved December 27, 2020).
    1. FDA (2020a). EUA for bamlanivimab for the treatment of mild to moderate COVID-19. from (Retrieved December 27, 2020).
    1. FDA (2020b). EUA for casirivimab and imdevimab for the treatment of mild to moderate COVID-19. from (Retrieved December 27, 2020).
    1. Ferjan I., Erjavec F. (1996). Changes in histamine and serotonin secretion from rat peritoneal mast cells caused by antidepressants. Inflamm. Res. 45 (3), 141–144. 10.1007/bf02265168
    1. Friesland M., Mingorance L., Chung J., Chisari F. V., Gastaminza P. (2013). Sigma-1 receptor regulates early steps of viral RNA replication at the onset of hepatitis C virus infection. J. Virol. 87 (11), 6377–6390. 10.1128/jvi.03557-12
    1. Fukuda M., Ushio H., Kawasaki J., Niyonsaba F., Takeuchi M., Baba T., et al. (2013). Expression and functional characterization of retinoic acid-inducible gene-I-like receptors of mast cells in response to viral infection. J. Innate Immun. 5 (2), 163–173. 10.1159/000343895
    1. Fung T. S., Liao Y., Liu D. X. (2016). Regulation of stress responses and translational control by coronavirus. Viruses 8 (7), 184. 10.3390/v8070184
    1. Fung T. S., Liu D. X. (2019). The ER stress sensor IRE1 and MAP kinase ERK modulate autophagy induction in cells infected with coronavirus infectious bronchitis virus. Virology 533, 34–44. 10.1016/j.virol.2019.05.002
    1. García J. A., Volt H., Venegas C., Doerrier C., Escames G., Acuña-Castroviejo L. C., et al. (2015). Disruption of the NF-κB/NLRP3 connection by melatonin requires retinoid-related orphan receptor-α and blocks the septic response in mice. FASEB J. 29 (9), 3863–3875. 10.1096/fj.15-273656
    1. Geiser F., Conrad R., Imbierowicz K., Meier C., Liedtke R., Klingmüller D., et al. (2011). Coagulation activation and fibrinolysis impairment are reduced in patients with anxiety and depression when medicated with serotonergic antidepressants. Psychiatry Clin. Neurosci. 65 (5), 518–525. 10.1111/j.1440-1819.2011.02241.x
    1. Gekker G., Hu S., Sheng W. S., Rock R. B., Lokensgard J. R., Peterson P. K. (2006). Cocaine-induced HIV-1 expression in microglia involves sigma-1 receptors and transforming growth factor-β1. Int. Immunopharmacology 6 (6), 1029–1033. 10.1016/j.intimp.2005.12.005
    1. Ghareghani M., Zibara K., Sadeghi H., Dokoohaki S., Sadeghi H., Aryanpour R., et al. (2017). Fluvoxamine stimulates oligodendrogenesis of cultured neural stem cells and attenuates inflammation and demyelination in an animal model of multiple sclerosis. Sci. Rep. 7 (1), 4923. 10.1038/s41598-017-04968-z
    1. Ghosh S., Dellibovi-Ragheb T. A., Kerviel A., Pak E., Qiu Q., Fisher M., et al. (2020). β-Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway. Cell 183 (6), 1520–1535. e1514. 10.1016/j.cell.2020.10.039
    1. Gordon D. E., Hiatt J., Bouhaddou M., Rezelj V. V., Ulferts S., Braberg H., et al. (2020). Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. JScience 370 (6521), eabe9403. 10.1126/science.abe9403
    1. Grunwell J. R., Giacalone V. D., Stephenson S., Margaroli C., Dobosh B. S., Brown M. R., et al. (2019). Neutrophil dysfunction in the airways of children with acute respiratory failure due to lower respiratory tract viral and bacterial coinfections. Sci. Rep. 9 (1), 2874. 10.1038/s41598-019-39726-w
    1. Gulbins E., Palmada M., Reichel M., Lüth A., Böhmer C., Amato D., et al. (2013). Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs. Nat. Med. 19 (7), 934–938. 10.1038/nm.3214
    1. Ha D. P., Van Krieken R., Carlos A. J., Lee A. S. (2020). The stress-inducible molecular chaperone GRP78 as potential therapeutic target for coronavirus infection. J. Infect. 81 (3), 452–482. 10.1016/j.jinf.2020.06.017
    1. Hallifax D., Houston J. B. (2007). Saturable uptake of lipophilic amine drugs into isolated hepatocytes: mechanisms and consequences for quantitative clearance prediction. Drug Metab. Dispos 35 (8), 1325–1332. 10.1124/dmd.107.015131
    1. Hanner M., Moebius F. F., Flandorfer A., Knaus H. G., Striessnig J., Kempner E., et al. (1996). Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc. Natl. Acad. Sci. 93 (15), 8072–8077. 10.1073/pnas.93.15.8072
    1. Härtter S., Wang X., Weigmann H., Friedberg T., Arand M., Oesch F., et al. (2001). Differential effects of fluvoxamine and other antidepressants on the biotransformation of melatonin. J. Clin. Psychopharmacol. 21 (2), 167–174. 10.1097/00004714-200104000-00008
    1. Hashimoto K. (2015). Activation of sigma-1 receptor chaperone in the treatment of neuropsychiatric diseases and its clinical implication. J. Pharmacol. Sci. 127 (1), 6–9. 10.1016/j.jphs.2014.11.010
    1. Hashimoto K. (2021). Repurposing of CNS drugs to treat COVID-19 infection: targeting the sigma-1 receptor. Eur. Arch. Psychiatry Clin. Neurosci. 271 (2), 249–258. 10.1162/2e3983f5.c37587dd
    1. Hayashi T., Su T.-P. (2007). Sigma-1 receptor chaperones at the ER- mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131 (3), 596–610. 10.1016/j.cell.2007.08.036
    1. Helms J., Kremer S., Merdji H., Clere-Jehl R., Schenck M., Kummerlen C., et al. (2020a). Neurologic features in severe SARS-CoV-2 infection. N. Engl. J. Med. 382 (23), 2268–2270. 10.1056/nejmc2008597
    1. Helms J., Kremer S., Merdji H., Schenck M., Severac F., Clere-Jehl R., et al. (2020b). Delirium and encephalopathy in severe COVID-19: a cohort analysis of ICU patients. Crit. Care 24 (1), 491. 10.1186/s13054-020-03200-1
    1. Hinte F., van Anken E., Tirosh B., Brune W. (2020). Repression of viral gene expression and replication by the unfolded protein response effector XBP1u. Elife 9, e51804. 10.7554/elife.51804
    1. Hoertel N., Sánchez-Rico M., Vernet R., Beeker N., Jannot A.-S., Neuraz A., et al. (2021). Association between antidepressant use and reduced risk of intubation or death in hospitalized patients with COVID-19: results from an observational study. Mol. Psychiat. 10.1038/s41380-021-01021-4
    1. Homolak J., Kodvanj I. (2020). Widely available lysosome targeting agents should be considered as potential therapy for COVID-19. Int. J. Antimicrob. Agents 56 (2), 106044. 10.1016/j.ijantimicag.2020.106044
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 395 (10223), 497–506. 10.1016/s0140-6736(20)30183-5
    1. Irons J. (2005). Fluvoxamine in the treatment of anxiety disorders. Neuropsychiatr. Dis. Treat. 1 (4), 289–299.
    1. Ishima T., Fujita Y., Hashimoto K. (2014). Interaction of new antidepressants with sigma-1 receptor chaperones and their potentiation of neurite outgrowth in PC12 cells. Eur. J. Pharmacol. 727, 167–173. 10.1016/j.ejphar.2014.01.064
    1. Javors M. A., Houston J. P., Tekell J. L., Brannan S. K., Frazer A. (2000). Reduction of platelet serotonin content in depressed patients treated with either paroxetine or desipramine. Int. J. Neuropsychopharm. 3 (3), 229–235. 10.1017/s146114570000198x
    1. Joseph D., Puttaswamy R. K., Krovvidi H. (2013). Non-respiratory functions of the lung. Continuing Educ. Anaesth. Crit. Care Pain 13 (3), 98–102. 10.1093/bjaceaccp/mks060
    1. Kalkman H. O., Feuerbach D. (2016). Antidepressant therapies inhibit inflammation and microglial M1-polarization. Pharmacol. Ther. 163, 82–93. 10.1016/j.pharmthera.2016.04.001
    1. Kazmi F., Hensley T., Pope C., Funk R. S., Loewen G. J., Buckley D. B., et al. (2013). Lysosomal sequestration (trapping) of lipophilic amine (cationic amphiphilic) drugs in immortalized human hepatocytes (Fa2N-4 cells). Drug Metab. Dispos 41 (4), 897–905. 10.1124/dmd.112.050054
    1. Kim I., Xu W., Reed J. C. (2008). Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 7 (12), 1013–1030. 10.1038/nrd2755
    1. Kornhuber J., Tripal P., Reichel M., Terfloth L., Bleich S., Wiltfang J., et al. (2008). Identification of new functional inhibitors of acid sphingomyelinase using a Structure−Property−Activity relation model. J. Med. Chem. 51 (2), 219–237. 10.1021/jm070524a
    1. Lee Y. R., Kuo S. H., Lin C. Y., Fu P. J., Lin Y. S., Yeh T. M., et al. (2018). Dengue virus-induced ER stress is required for autophagy activation, viral replication, and pathogenesis both in vitro and in vivo . Sci. Rep. 8 (1), 489. 10.1038/s41598-017-18909-3
    1. Lenze E. (2020). Fluvoxamine for early treatment of covid-19 (stop covid 2).from . (Retrieved December 27, 2020).
    1. Lenze E. J., Mattar C., Zorumski C. F., Stevens A., Schweiger J., Nicol G. E., et al. (2020). Fluvoxamine vs placebo and clinical deterioration in outpatients with symptomatic COVID-19. JAMA 324 (22), 2292–2300. 10.1001/jama.2020.22760
    1. Leung M., Shore R. (1996). Fluvoxamine-associated bleeding. Can. J. Psychiatry 41 (9), 604–605. 10.1177/070674379604100919
    1. Lu W., Zheng B.-J., Xu K., Schwarz W., Du L., Wong C. K. L., et al. (2006). Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. Proc. Natl. Acad. Sci. 103 (33), 12540–12545. 10.1073/pnas.0605402103
    1. Manganaro R., Zonsics B., Bauer L., Lorenzo Lopez M., Donselaar T., Zwaagstra M., et al. (2020). Synthesis and antiviral effect of novel fluoxetine analogues as enterovirus 2C inhibitors. Antiviral Res. 178, 104781. 10.1016/j.antiviral.2020.104781
    1. Martin W. R., Eades C. G., Thompson J. A., Huppler R. E., Gilbert P. E. (1976). The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J. Pharmacol. Exp. Ther. 197 (3), 517–532.
    1. Martinon F., Chen X., Lee A.-H., Glimcher L. H. (2010). TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat. Immunol. 11 (5), 411–418. 10.1038/ni.1857
    1. McCloskey D. J., Postolache T. T., Vittone B. J., Nghiem K. L., Monsale J. L., Wesley R. A., et al. (2008). Selective serotonin reuptake inhibitors: measurement of effect on platelet function. Translational Res. 151 (3), 168–172. 10.1016/j.trsl.2007.10.004
    1. Motta Junior J. D. S., Miggiolaro A., Nagashima S., de Paula C. B. V., Baena C. P., Scharfstein J., et al. (2020). Mast cells in alveolar septa of COVID-19 patients: a pathogenic pathway that may link interstitial edema to immunothrombosis. Front. Immunol. 11, 574862. 10.3389/fimmu.2020.574862
    1. Naji Esfahani H., Rafiee L., Haghjooy Javanmard S. (2019). Evaluation of the effect of antidepressant drug, fluvoxamine, on cyclooxygenase-2 protein expression in lipopolysaccharide-stimulated macrophages. Adv. Biomed. Res. 8, 5. 10.4103/abr.abr_141_18
    1. Narayan M., Cellar J., Mallison R. T., Price L. H., Nelson J. C., Nelson J. C. (1998). Serotonin transporter-blocking properties of nefazodone assessed by measurement of platelet serotonin. J. Clin. Psychopharmacol. 18 (1), 67–71. 10.1097/00004714-199802000-00011
    1. Narita N., Hashimoto K., Tomitaka S.-i., Minabe Y. (1996). Interactions of selective serotonin reuptake inhibitors with subtypes of σ receptors in rat brain. Eur. J. Pharmacol. 307 (1), 117–119. 10.1016/0014-2999(96)00254-3
    1. Nazimek K., Strobel S., Bryniarski P., Kozlowski M., Filipczak-Bryniarska I., Bryniarski K. (2017). The role of macrophages in anti-inflammatory activity of antidepressant drugs. Immunobiology 222 (6), 823–830. 10.1016/j.imbio.2016.07.001
    1. Nazy I., Jevtic S. D., Moore J. C., Huynh A., Smith J. W., Kelton J. G., et al. (2021). Platelet-activating immune complexes identified in critically ill COVID-19 patients suspected of heparin-induced thrombocytopenia. J. Thromb. Haemost. 10.1111/jth.15283
    1. NHLBI (2020). NIH ACTIV trial of blood thinners pauses enrollment of critically ill COVID-19 patients. from (Retrieved December 27, 2020).
    1. Ni W., Watts S. W. (2006). 5-hydroxytryptamine in the cardiovascular system: focus on the serotonin transporter (SERT). Clin. Exp. Pharmacol. Physiol. 33 (7), 575–583. 10.1111/j.1440-1681.2006.04410.x
    1. Nishimura T., Ishima T., Iyo M., Hashimoto K. (2008). Potentiation of nerve growth factor-induced neurite outgrowth by fluvoxamine: role of sigma-1 receptors, IP3 receptors and cellular signaling pathways. PLoS One 3 (7), e2558. 10.1371/journal.pone.0002558
    1. Ogata M., Hino S.-i., Saito A., Morikawa K., Kondo S., Kanemoto S., et al. (2006). Autophagy is activated for cell survival after endoplasmic ReticulumStress. Mcb 26 (24), 9220–9231. 10.1128/mcb.01453-06
    1. Prentice E., McAuliffe J., Lu X., Subbarao K., Denison M. R. (2004). Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins. Jvi 78 (18), 9977–9986. 10.1128/jvi.78.18.9977-9986.2004
    1. Qiu Q., Zheng Z., Chang L., Zhao Y.-S., Tan C., Dandekar A., et al. (2013). Toll-like receptor-mediated IRE1α activation as a therapeutic target for inflammatory arthritis. EMBO J. 32 (18), 2477–2490. 10.1038/emboj.2013.183
    1. Rafiee L., Hajhashemi V., Javanmard S. H. (2016). Fluvoxamine inhibits some inflammatory genes expression in LPS/stimulated human endothelial cells, U937 macrophages, and carrageenan-induced paw edema in rat. Iran J. Basic Med. Sci. 19 (9), 977–984. 10.22038/ijbms.2016.7598
    1. Ramlall V., Zucker J., Tatonetti N. (2020). Melatonin is significantly associated with survival of intubated COVID-19 patients. medRxiv. 10.1101/2020.10.15.20213546
    1. Ratajczak M. Z., Kucia M. (2020). SARS-CoV-2 infection and overactivation of Nlrp3 inflammasome as a trigger of cytokine "storm" and risk factor for damage of hematopoietic stem cells. Leukemia 34 (7), 1726–1729. 10.1038/s41375-020-0887-9
    1. Rosen D. A., Seki S. M., Fernandez-Castaneda A., Beiter R. M., Eccles J. D., Woodfolk J. A., et al. (2019). Modulation of the sigma-1 receptor-IRE1 pathway is beneficial in preclinical models of inflammation and sepsis. Sci. Transl Med. 11 (478), eaau5266. 10.1126/scitranslmed.aau5266
    1. Schloer S., Brunotte L., Goretzko J., Mecate-Zambrano A., Korthals N., Gerke V., et al. (2020). Targeting the endolysosomal host-SARS-CoV-2 interface by clinically licensed functional inhibitors of acid sphingomyelinase (FIASMA) including the antidepressant fluoxetine. Emerging Microbes & Infections 9 (1), 2245–2255. 10.1080/22221751.2020.1829082
    1. Seftel D., Boulware D. R. (2021). Prospective cohort of fluvoxamine for early treatment of COVID-19. Open Forum Infect. Dis. 8 (2), ofab050. 10.1093/ofid/ofab050
    1. Sukhatme V., Sukhatme V. (2021). A call to action: immediate deployment of select repurposed drugs for COVID-19 outpatient treatment. February 12, 2021. from .
    1. Sundstrom J. B., Little D. M., Villinger F., Ellis J. E., Ansari A. A. (2004). Signaling through Toll-like receptors triggers HIV-1 replication in latently infected mast cells. J. Immunol. 172 (7), 4391–4401. 10.4049/jimmunol.172.7.4391
    1. Szabo A., Kovacs A., Frecska E., Rajnavolgyi E. (2014). Psychedelic N,N-dimethyltryptamine and 5-methoxy-N,N-dimethyltryptamine modulate innate and adaptive inflammatory responses through the sigma-1 receptor of human monocyte-derived dendritic cells. PLoS One 9 (8), e106533. 10.1371/journal.pone.0106533
    1. Taler M., Gil-Ad I., Korob I., Weizman A. (2011). The immunomodulatory effect of the antidepressant sertraline in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Neuroimmunomodulation 18 (2), 117–122. 10.1159/000321634
    1. Taler M., Gil-Ad I., Lomnitski L., Korov I., Baharav E., Bar M., et al. (2007). Immunomodulatory effect of selective serotonin reuptake inhibitors (SSRIs) on human T lymphocyte function and gene expression. Eur. Neuropsychopharmacol. 17 (12), 774–780. 10.1016/j.euroneuro.2007.03.010
    1. Tay M. Z., Poh C. M., Rénia L., MacAry P. A., Ng L. F. P. (2020). The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 20 (6), 363–374. 10.1038/s41577-020-0311-8
    1. Theoharides T. C. (2020). COVID ‐19, pulmonary mast cells, cytokine storms, and beneficial actions of luteolin. Biofactors 46 (3), 306–308. 10.1002/biof.1633
    1. Thomas D. P., Vane J. R. (1967). 5-hydroxytryptamine in the circulation of the dog. Nature 216 (5113), 335–338. 10.1038/216335a0
    1. Tynan R. J., Weidenhofer J., Hinwood M., Cairns M. J., Day T. A., Walker F. R. (2012). A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia. Brain Behav. Immun. 26 (3), 469–479. 10.1016/j.bbi.2011.12.011
    1. Ulferts R., van der Linden L., Thibaut H. J., Lanke K. H. W., Leyssen P., Coutard B., et al. (2013). Selective serotonin reuptake inhibitor fluoxetine inhibits replication of human enteroviruses B and D by targeting viral protein 2C. Antimicrob. Agents Chemother. 57 (4), 1952–1956. 10.1128/aac.02084-12
    1. van den Berg D. F., Te Velde A. A. (2020). Severe COVID-19: NLRP3 inflammasome dysregulated. Front. Immunol. 11, 1580. 10.3389/fimmu.2020.01580
    1. Vanhoutte P. M. (1991). Platelet-derived serotonin, the endothelium, and cardiovascular disease. J. Cardiovasc. Pharmacol. 17 (Suppl. 5), S13–S12. 10.1097/00005344-199100175-00003
    1. Vela J. M. (2020). Repurposing sigma-1 receptor ligands for COVID-19 therapy? Front. Pharmacol. 11, 582310. 10.3389/fphar.2020.582310
    1. Versteeg G. A., van de Nes P. S., Bredenbeek P. J., Spaan W. J. M. (2007). The coronavirus spike protein induces endoplasmic reticulum stress and upregulation of intracellular chemokine mRNA concentrations. J. Virol. 81 (20), 10981–10990. 10.1128/jvi.01033-07
    1. Wang Z., Lai Y., Bernard J. J., Macleod D. T., Cogen A. L., Moss B., et al. (2012). Skin mast cells protect mice against vaccinia virus by triggering mast cell receptor S1PR2 and releasing antimicrobial peptides. J.I. 188 (1), 345–357. 10.4049/jimmunol.1101703
    1. Wishart D. S., Feunang Y. D., Guo A. C., Lo E. J., Marcu A., Grant J. R., et al. (2018). DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46 (D1), D1074–D1082. 10.1093/nar/gkx1037
    1. Xue M., Fu F., Ma Y., Zhang X., Li L., Feng L., et al. (2018). The PERK arm of the unfolded protein response negatively regulates transmissible gastroenteritis virus replication by suppressing protein translation and promoting type I interferon production. J. Virol. 92 (15), e00431–18. 10.1128/jvi.00431-18
    1. Yang N., Shen H.-M. (2020). Targeting the endocytic pathway and autophagy process as a novel therapeutic strategy in COVID-19. Int. J. Biol. Sci. 16 (10), 1724–1731. 10.7150/ijbs.45498
    1. Yesilkaya U. H., Balcioglu Y. H., Sahin S. (2020). Reissuing the sigma receptors for SARS-CoV-2. J. Clin. Neurosci. 80, 72–73. 10.1016/j.jocn.2020.08.014
    1. Yue Y., Nabar N. R., Shi C. S., Kamenyeva O., Xiao X., Hwang I. Y., et al. (2018). SARS-Coronavirus Open Reading Frame-3a drives multimodal necrotic cell death. Cell Death Dis 9 (9), 904. 10.1038/s41419-018-0917-y
    1. Zaid Y., Guessous F., Puhm F., Elhamdani W., Chentoufi L., Morris A. C., et al. (2021). Platelet reactivity to thrombin differs between patients with COVID-19 and those with ARDS unrelated to COVID-19. Blood Adv. 5 (3), 635–639. 10.1182/bloodadvances.2020003513
    1. Zuo J., Quinn K. K., Kye S., Cooper P., Damoiseaux R., Krogstad P. (2012). Fluoxetine is a potent inhibitor of coxsackievirus replication. Antimicrob. Agents Chemother. 56 (9), 4838–4844. 10.1128/aac.00983-12

Source: PubMed

3
Subscribe