Phase I Study of the Focal Adhesion Kinase Inhibitor BI 853520 in Japanese and Taiwanese Patients with Advanced or Metastatic Solid Tumors

Toshihiko Doi, James Chih-Hsin Yang, Kohei Shitara, Yoichi Naito, Ann-Lii Cheng, Akiko Sarashina, Linda C Pronk, Yoshito Takeuchi, Chia-Chi Lin, Toshihiko Doi, James Chih-Hsin Yang, Kohei Shitara, Yoichi Naito, Ann-Lii Cheng, Akiko Sarashina, Linda C Pronk, Yoshito Takeuchi, Chia-Chi Lin

Abstract

Background: Focal adhesion kinase (FAK) inhibitors have demonstrated anti-tumor activity preclinically and are currently being evaluated in humans. A first-in-human study evaluating the novel FAK inhibitor BI 853520 in a predominantly Caucasian population with advanced or metastatic non-hematologic malignancies demonstrated acceptable tolerability and favorable pharmacokinetics.

Objective: This study was undertaken to investigate the safety, tolerability, and maximum tolerated dose (MTD) of BI 853520 in Japanese and Taiwanese patients with advanced solid tumors.

Patients and methods: In this open-label, phase I, dose-finding study, BI 853520 was administered once daily (QD) in a continuous daily dosing regimen with 28-day cycles and escalating doses to sequential cohorts of patients. Twenty-one patients (62% male; median age 65 years) were treated at two sites in Japan and Taiwan.

Results: The median duration of treatment was 1.2 months (range 0.2-7.7). As no dose-limiting toxicities were observed during cycle 1 in the 50, 100, or 200 mg cohorts, the MTD of BI 853520 was determined to be 200 mg QD. Drug-related adverse events were reported in 19 patients (90%), and all except one were of grade 1 or 2. Pharmacokinetic parameters were supportive of a once-daily dosing schedule. A confirmed objective response rate of 5% and disease control rate of 29% were achieved; median duration of disease control was 3.7 months.

Conclusions: This trial demonstrated a manageable and acceptable safety profile, favorable pharmacokinetics, and potential anti-tumor activity of BI 853520 in pretreated Japanese and Taiwanese patients with advanced or metastatic solid tumors.

Clinical trials registration: NCT01905111.

Conflict of interest statement

James Chih-Hsin Yang has consulted for and received honoraria from Eli Lilly, Boehringer Ingelheim, Bayer, Roche/Genentech, Chugai, Astellas, MSD, Merck Serono, Pfizer, Novartis, Celgene, Merrimack, Yuhan Pharmaceuticals, BMS, Ono Pharmaceutical Co., Ltd., Daiichi Sankyo, AstraZeneca, Takeda, and Hansoh Pharmaceuticals. Kohei Shitara has consulted for or received honoraria from Astellas Pharma, Lilly, BMS, Takeda, Pfizer, Ono Pharmaceutical Co., Ltd., Novartis, AbbVie, and Yakult, and also reports research funding from Lilly, Ono Pharmaceutical Co., Ltd., Dainippon Sumoitomo Pharma, Daiichi Sankyo, Taiho Pharmaceutical, Chugai Pharma, and MSD. Ann-Lii Cheng has consulted for or received honoraria from Bayer, BMS, Eisai, MSD, Merck, Novartis, BeiGene, and Ono Pharmaceutical Co., Ltd. Akiko Sarashina and Yoshito Takeuchi are employees of Nippon Boehringer Ingelheim Co., Ltd. Linda C. Pronk is an employee of Boehringer Ingelheim. Toshihiko Doi, Yoichi Naito, and Chia-Chi Lin declare that they have no conflicts of interest. This trial was sponsored by Nippon Boehringer Ingelheim. Co., Ltd. in Japan, and Boehringer Ingelheim Taiwan Ltd. in Taiwan. This work was supported by Boehringer Ingelheim, Ingelheim am Rhein, Germany. BI 853520 is an asset of Boehringer Ingelheim.

Figures

Fig. 1
Fig. 1
Arithmetic mean plasma concentration–time profiles of BI 853520 after single-dose and multiple-dose oral administration of 50, 100, and 200 mg once daily of BI 853520 in cycle 1: a linear scale (error bars represent standard deviation); and b logarithmic scale. a One patient was not evaluable for pharmacokinetic parameters due to incomplete data

References

    1. Hao H, Naomoto Y, Bao X, Watanabe N, Sakurama K, Noma K, et al. Focal adhesion kinase as potential target for cancer therapy (review) Oncol Rep. 2009;22(5):973–979.
    1. Sulzmaier FJ, Jean C, Schlaepfer DD. FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer. 2014;14(9):598–610. doi: 10.1038/nrc3792.
    1. Tai YL, Chen LC, Shen TL. Emerging roles of focal adhesion kinase in cancer. Biomed Res Int. 2015;2015:690690.
    1. Zhao J, Guan JL. Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev. 2009;28(1–2):35–49. doi: 10.1007/s10555-008-9165-4.
    1. Lee BY, Timpson P, Horvath LG, Daly RJ. FAK signaling in human cancer as a target for therapeutics. Pharmacol Ther. 2015;146:132–149. doi: 10.1016/j.pharmthera.2014.10.001.
    1. Fujii T, Koshikawa K, Nomoto S, Okochi O, Kaneko T, Inoue S, et al. Focal adhesion kinase is overexpressed in hepatocellular carcinoma and can be served as an independent prognostic factor. J Hepatol. 2004;41(1):104–111. doi: 10.1016/j.jhep.2004.03.029.
    1. Judson PL, He X, Cance WG, Van Le L. Overexpression of focal adhesion kinase, a protein tyrosine kinase, in ovarian carcinoma. Cancer. 1999;86(8):1551–1556. doi: 10.1002/(SICI)1097-0142(19991015)86:6<1551::AID-CNCR23>;2-P.
    1. Lark AL, Livasy CA, Calvo B, Caskey L, Moore DT, Yang X, et al. Overexpression of focal adhesion kinase in primary colorectal carcinomas and colorectal liver metastases: immunohistochemistry and real-time PCR analyses. Clin Cancer Res. 2003;9(1):215–222.
    1. Miyazaki T, Kato H, Nakajima M, Sohda M, Fukai Y, Masuda N, et al. FAK overexpression is correlated with tumour invasiveness and lymph node metastasis in oesophageal squamous cell carcinoma. Br J Cancer. 2003;89(1):140–145. doi: 10.1038/sj.bjc.6601050.
    1. Owens LV, Xu L, Craven RJ, Dent GA, Weiner TM, Kornberg L, et al. Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res. 1995;55(13):2752–2755.
    1. Tremblay L, Hauck W, Aprikian AG, Begin LR, Chapdelaine A, Chevalier S. Focal adhesion kinase (pp125FAK) expression, activation and association with paxillin and p50CSK in human metastatic prostate carcinoma. Int J Cancer. 1996;68(2):164–171. doi: 10.1002/(SICI)1097-0215(19961009)68:2<169::AID-IJC4>;2-W.
    1. Weiner TM, Liu ET, Craven RJ, Cance WG. Expression of focal adhesion kinase gene and invasive cancer. Lancet. 1993;342(8878):1024–1025. doi: 10.1016/0140-6736(93)92881-S.
    1. Sood AK, Coffin JE, Schneider GB, Fletcher MS, DeYoung BR, Gruman LM, et al. Biological significance of focal adhesion kinase in ovarian cancer: role in migration and invasion. Am J Pathol. 2004;165(4):1087–1095. doi: 10.1016/S0002-9440(10)63370-6.
    1. Sood AK, Armaiz-Pena GN, Halder J, Nick AM, Stone RL, Hu W, et al. Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis. J Clin Invest. 2010;120(5):1515–1523. doi: 10.1172/JCI40802.
    1. Lim ST, Mikolon D, Stupack DG, Schlaepfer DD. FERM control of FAK function: implications for cancer therapy. Cell Cycle. 2008;7(15):2306–2314. doi: 10.4161/cc.6367.
    1. Bagi CM, Roberts GW, Andresen CJ. Dual focal adhesion kinase/Pyk2 inhibitor has positive effects on bone tumors: implications for bone metastases. Cancer. 2008;112(10):2313–2321. doi: 10.1002/cncr.23429.
    1. Halder J, Kamat AA, Landen CN, Jr, Han LY, Lutgendorf SK, Lin YG, et al. Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy. Clin Cancer Res. 2006;12(16):4916–4924. doi: 10.1158/1078-0432.CCR-06-0021.
    1. Parsons JT, Slack-Davis J, Tilghman R, Roberts WG. Focal adhesion kinase: targeting adhesion signaling pathways for therapeutic intervention. Clin Cancer Res. 2008;14(3):627–632. doi: 10.1158/1078-0432.CCR-07-2220.
    1. Roberts WG, Ung E, Whalen P, Cooper B, Hulford C, Autry C, et al. Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res. 2008;68(6):1935–1944. doi: 10.1158/0008-5472.CAN-07-5155.
    1. Shi Q, Hjelmeland AB, Keir ST, Song L, Wickman S, Jackson D, et al. A novel low-molecular weight inhibitor of focal adhesion kinase, TAE226, inhibits glioma growth. Mol Carcinog. 2007;46(6):488–496. doi: 10.1002/mc.20297.
    1. Infante JR, Camidge DR, Mileshkin LR, Chen EX, Hicks RJ, Rischin D, et al. Safety, pharmacokinetic, and pharmacodynamic phase I dose-escalation trial of PF-00562271, an inhibitor of focal adhesion kinase, in advanced solid tumors. J Clin Oncol. 2012;30(13):1527–1533. doi: 10.1200/JCO.2011.38.9346.
    1. Jones SF, Siu LL, Bendell JC, Cleary JM, Razak AR, Infante JR, et al. A phase I study of VS-6063, a second-generation focal adhesion kinase inhibitor, in patients with advanced solid tumors. Invest New Drugs. 2015;33(5):1100–1107. doi: 10.1007/s10637-015-0282-y.
    1. Soria JC, Gan HK, Blagden SP, Plummer R, Arkenau HT, Ranson M, et al. A phase I, pharmacokinetic and pharmacodynamic study of GSK2256098, a focal adhesion kinase inhibitor, in patients with advanced solid tumors. Ann Oncol. 2016;27(12):2268–2274. doi: 10.1093/annonc/mdw427.
    1. Hirt UA, Waizenegger IC, Schweifer N, Haslinger C, Gerlach D, Braunger J, et al. Efficacy of the highly selective focal adhesion kinase inhibitor BI 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype. Oncogenesis. 2018;7(2):21. doi: 10.1038/s41389-018-0032-z.
    1. de Jonge MJA, Steeghs N, Lolkema MP, Hotte SJ, Hirte HW, van der Biessen DAJ, et al. Phase I study of BI 853520, an inhibitor of focal adhesion kinase, in patients with advanced or metastatic nonhematologic malignancies. Target Oncol. 2019
    1. Yasuda SU, Zhang L, Huang SM. The role of ethnicity in variability in response to drugs: focus on clinical pharmacology studies. Clin Pharmacol Ther. 2008;84(3):417–423. doi: 10.1038/clpt.2008.141.
    1. National Institute of Health. National Cancer Institute Common Terminology Criteria for Adverse Events (version 4.03). 2009. . Accessed 2 Aug 2017.
    1. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur J Cancer. 2009;45(2):228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. Xu B, Song G, Ju Y. Effect of focal adhesion kinase on the regulation of realignment and tenogenic differentiation of human mesenchymal stem cells by mechanical stretch. Connect Tissue Res. 2011;52(5):373–379. doi: 10.3109/03008207.2010.541961.
    1. Ma H, Togawa A, Soda K, Zhang J, Lee S, Ma M, et al. Inhibition of podocyte FAK protects against proteinuria and foot process effacement. J Am Soc Nephrol. 2010;21(7):1145–1156. doi: 10.1681/ASN.2009090991.
    1. Yuan X, Wang W, Wang J, Yin X, Zhai X, Wang L, et al. Down-regulation of integrin beta1 and focal adhesion kinase in renal glomeruli under various hemodynamic conditions. PLoS One. 2014;9(4):e94212. doi: 10.1371/journal.pone.0094212.
    1. Boehringer Ingelheim. Data on file. c01566501-04.
    1. Verheijen RB, van der Biessen DAJ, Hotte SJ, Siu LL, Spreafico A, de Jonge MJA, et al. Randomized, open-label, crossover studies evaluating the effect of food and liquid formulation on the pharmacokinetics of the novel focal adhesion kinase (FAK) inhibitor BI 853520. Target Oncol. 2019
    1. Tiede S, Meyer-Schaller N, Kalathur RKR, Ivanek R, Fagiani E, Schmassmann P, et al. The FAK inhibitor BI 853520 exerts anti-tumor effects in breast cancer. Oncogenesis. 2018;7(9):73. doi: 10.1038/s41389-018-0083-1.
    1. Shimizu T, Fukuoka K, Takeda M, Iwasa T, Yoshida T, Horobin J, et al. A first-in-Asian phase 1 study to evaluate safety, pharmacokinetics and clinical activity of VS-6063, a focal adhesion kinase (FAK) inhibitor in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol. 2016;77(5):997–1003. doi: 10.1007/s00280-016-3010-1.
    1. Jiang H, Hegde S, Knolhoff BL, Zhu Y, Herndon JM, Meyer MA, et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med. 2016;22(8):851–860. doi: 10.1038/nm.4123.
    1. Roy-Luzarraga M, Hodivala-Dilke K. Molecular pathways: endothelial cell FAK—a target for cancer treatment. Clin Cancer Res. 2016;22(15):3718–3724. doi: 10.1158/1078-0432.CCR-14-2021.

Source: PubMed

3
Subscribe