Addressing male sexual and reproductive health in the wake of COVID-19 outbreak

A Sansone, D Mollaioli, G Ciocca, E Limoncin, E Colonnello, W Vena, E A Jannini, A Sansone, D Mollaioli, G Ciocca, E Limoncin, E Colonnello, W Vena, E A Jannini

Abstract

Purpose: The COVID-19 pandemic, caused by the SARS-CoV-2, represents an unprecedented challenge for healthcare. COVID-19 features a state of hyperinflammation resulting in a "cytokine storm", which leads to severe complications, such as the development of micro-thrombosis and disseminated intravascular coagulation (DIC). Despite isolation measures, the number of affected patients is growing daily: as of June 12th, over 7.5 million cases have been confirmed worldwide, with more than 420,000 global deaths. Over 3.5 million patients have recovered from COVID-19; although this number is increasing by the day, great attention should be directed towards the possible long-term outcomes of the disease. Despite being a trivial matter for patients in intensive care units (ICUs), erectile dysfunction (ED) is a likely consequence of COVID-19 for survivors, and considering the high transmissibility of the infection and the higher contagion rates among elderly men, a worrying phenomenon for a large part of affected patients.

Methods: A literature research on the possible mechanisms involved in the development of ED in COVID-19 survivors was performed.

Results: Endothelial dysfunction, subclinical hypogonadism, psychological distress and impaired pulmonary hemodynamics all contribute to the potential onset of ED. Additionally, COVID-19 might exacerbate cardiovascular conditions; therefore, further increasing the risk of ED. Testicular function in COVID-19 patients requires careful investigation for the unclear association with testosterone deficiency and the possible consequences for reproductive health. Treatment with phosphodiesterase-5 (PDE5) inhibitors might be beneficial for both COVID-19 and ED.

Conclusion: COVID-19 survivors might develop sexual and reproductive health issues. Andrological assessment and tailored treatments should be considered in the follow-up.

Keywords: COVID-19; Cardiovascular health; Erectile dysfunction; Male hypogonadism; SARS-CoV-2; Sexual dysfunction.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
Graphical overview of the involvement of SARS-CoV-2 in the pathogenesis of erectile dysfunction

References

    1. Isidori AM, Pofi R, Hasenmajer V, Lenzi A, Pivonello R. Use of glucocorticoids in patients with adrenal insufficiency and COVID-19 infection. Lancet Diabet Endocrinol. 2020;8(6):472–473. doi: 10.1016/s2213-8587(20)30149-2.
    1. Tay MZ, Poh CM, Renia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363–374. doi: 10.1038/s41577-020-0311-8.
    1. Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020;8(6):e46–e47. doi: 10.1016/s2213-2600(20)30216-2.
    1. Sun X, Wang T, Cai D, Hu Z, Chen J, Liao H, et al. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev. 2020 doi: 10.1016/j.cytogfr.2020.04.002.
    1. Liu PP, Blet A, Smyth D, Li H. The science underlying COVID-19: implications for the cardiovascular system. Circulation. 2020 doi: 10.1161/CIRCULATIONAHA.120.047549.
    1. Menter T, Haslbauer JD, Nienhold R, Savic S, Hopfer H, Deigendesch N, et al. Post-mortem examination of COVID19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings of lungs and other organs suggesting vascular dysfunction. Histopathology. 2020 doi: 10.1111/his.14134.
    1. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418. doi: 10.1016/S0140-6736(20)30937-5.
    1. Lodigiani C, Iapichino G, Carenzo L, Cecconi M, Ferrazzi P, Sebastian T, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020;191:9–14. doi: 10.1016/j.thromres.2020.04.024.
    1. Sardu C, Gambardella J, Morelli MB, Wang X, Marfella R, Santulli G. Hypertension, thrombosis, kidney failure, and diabetes: is COVID-19 an endothelial disease? A comprehensive evaluation of clinical and basic evidence. J Clin Med. 2020;9:5. doi: 10.3390/jcm9051417.
    1. Lovren F, Pan Y, Quan A, Teoh H, Wang G, Shukla PC, et al. Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am J Physiol Heart Circ Physiol. 2008;295(4):H1377–1384. doi: 10.1152/ajpheart.00331.2008.
    1. Sluimer JC, Gasc JM, Hamming I, van Goor H, Michaud A, van den Akker LH, et al. Angiotensin-converting enzyme 2 (ACE2) expression and activity in human carotid atherosclerotic lesions. J Pathol. 2008;215(3):273–279. doi: 10.1002/path.2357.
    1. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586–590. doi: 10.1007/s00134-020-05985-9.
    1. Jung F, Kruger-Genge A, Franke RP, Hufert F, Kupper JH. COVID-19 and the endothelium. Clin Hemorheol Microcirc. 2020;1:5. doi: 10.3233/CH-209007.
    1. Pons S, Fodil S, Azoulay E, Zafrani L. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit Care. 2020;24(1):353. doi: 10.1186/s13054-020-03062-7.
    1. COVID-19 Map. Johns Hopkins Coronavirus Research Center. . Accessed 30 May 2020
    1. Vittori A, Lerman J, Cascella M, Gomez-Morad AD, Marchetti G, Marinangeli F, Picardo SG. COVID-19 pandemic ARDS survivors: pain after the Storm? Anesth Analg. 2020 doi: 10.1213/ANE.0000000000004914.
    1. Caruso P, Longo M, Esposito K, Maiorino MI. Type 1 diabetes triggered by COVID-19 pandemic: a potential outbreak? Diabetes Res Clin Pract. 2020;164:108219. doi: 10.1016/j.diabres.2020.108219.
    1. Douglas GC, O'Bryan MK, Hedger MP, Lee DK, Yarski MA, Smith AI, Lew RA. The novel angiotensin-converting enzyme (ACE) homolog, ACE2, is selectively expressed by adult Leydig cells of the testis. Endocrinology. 2004;145(10):4703–4711. doi: 10.1210/en.2004-0443.
    1. Ma L, Xie W, Li D, Shi L, Mao Y, Xiong Y, Zhang Y, Zhang M. Effect of SARS-CoV-2 infection upon male gonadal function: a single center-based study. MedRxiv. 2020;200:37–67. doi: 10.1101/2020.03.21.20037267.
    1. Pal R, Banerjee M. COVID-19 and the endocrine system: exploring the unexplored. J Endocrinol Invest. 2020 doi: 10.1007/s40618-020-01276-8.
    1. Yang M, Chen S, Huang B, Zhong JM, Su H, Chen YJ, et al. Pathological findings in the testes of COVID-19 patients: clinical implications. Eur Urol Focus. 2020 doi: 10.1016/j.euf.2020.05.009.
    1. Rastrelli G, Di Stasi V, Inglese F, Beccaria M, Garuti M, Di Costanzo D, et al. Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia patients. Andrology. 2020 doi: 10.1111/andr.12821.
    1. Isidori AM, Buvat J, Corona G, Goldstein I, Jannini EA, Lenzi A, et al. A critical analysis of the role of testosterone in erectile function: from pathophysiology to treatment-a systematic review. Eur Urol. 2014;65(1):99–112. doi: 10.1016/j.eururo.2013.08.048.
    1. Mohamad NV, Wong SK, Wan Hasan WN, Jolly JJ, Nur-Farhana MF, Ima-Nirwana S, Chin KY. The relationship between circulating testosterone and inflammatory cytokines in men. Aging Male. 2019;22(2):129–140. doi: 10.1080/13685538.2018.1482487.
    1. Wambier CG, Goren A, Vano-Galvan S, Ramos PM, Ossimetha A, Nau G, Herrera S, McCoy J. Androgen sensitivity gateway to COVID-19 disease severity. Drug Dev Res. 2020 doi: 10.1002/ddr.21688.
    1. Jannini EA. SM = SM: The interface of systems medicine and sexual medicine for facing non-communicable diseases in a gender-dependent manner. Sex Med Rev. 2017;5(3):349–364. doi: 10.1016/j.sxmr.2017.04.002.
    1. Guay AT. ED2: erectile dysfunction = endothelial dysfunction. Endocrinol Metab Clin North Am. 2007;36(2):453–463. doi: 10.1016/j.ecl.2007.03.007.
    1. Yafi FA, Jenkins L, Albersen M, Corona G, Isidori AM, Goldfarb S, et al. Erectile dysfunction. Nat Rev Dis Primers. 2016;2:16003. doi: 10.1038/nrdp.2016.3.
    1. Pedersen SF, Ho YC. SARS-CoV-2: a storm is raging. J Clin Invest. 2020;130(5):2202–2205. doi: 10.1172/JCI137647.
    1. Maiorino MI, Bellastella G, Giugliano D, Esposito K. From inflammation to sexual dysfunctions: a journey through diabetes, obesity, and metabolic syndrome. J Endocrinol Invest. 2018;41(11):1249–1258. doi: 10.1007/s40618-018-0872-6.
    1. Sansone A, Sansone M, Lenzi A, Romanelli F. Testosterone replacement therapy: the emperor’s new clothes. Rejuvenation Res. 2017;20(1):9–14. doi: 10.1089/rej.2016.1818.
    1. Sansone A, Rastrelli G, Cignarelli A, de Rocco PM, Condorelli RA, Giannetta E, et al. Effect of treatment with testosterone on endothelial function in hypogonadal men: a systematic review and meta-analysis. Int J Impot Res. 2019 doi: 10.1038/s41443-019-0163-6.
    1. Kloner RA. Erectile dysfunction as a predictor of cardiovascular disease. Int J Impot Res. 2008;20(5):460–465. doi: 10.1038/ijir.2008.20.
    1. Corona G, Forti G, Maggi M. Why can patients with erectile dysfunction be considered lucky? The association with testosterone deficiency and metabolic syndrome. Aging Male. 2008;11(4):193–199. doi: 10.1080/13685530802468497.
    1. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–422. doi: 10.1016/S2213-2600(20)30076-X.
    1. Inciardi RM, Lupi L, Zaccone G, Italia L, Raffo M, Tomasoni D, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19) JAMA Cardiol. 2020 doi: 10.1001/jamacardio.2020.1096.
    1. Hu H, Ma F, Wei X, Fang Y. Coronavirus fulminant myocarditis saved with glucocorticoid and human immunoglobulin. Eur Heart J. 2020 doi: 10.1093/eurheartj/ehaa190.
    1. Madjid M, Miller CC, Zarubaev VV, Marinich IG, Kiselev OI, Lobzin YV, Filippov AE, Casscells SW., 3rd Influenza epidemics and acute respiratory disease activity are associated with a surge in autopsy-confirmed coronary heart disease death: results from 8 years of autopsies in 34,892 subjects. Eur Heart J. 2007;28(10):1205–1210. doi: 10.1093/eurheartj/ehm035.
    1. Kwong JC, Schwartz KL, Campitelli MA, Chung H, Crowcroft NS, Karnauchow T, et al. Acute myocardial infarction after laboratory-confirmed influenza infection. N Engl J Med. 2018;378(4):345–353. doi: 10.1056/NEJMoa1702090.
    1. Madjid M, Connolly AT, Nabutovsky Y, Safavi-Naeini P, Razavi M, Miller CC. Effect of high influenza activity on risk of ventricular arrhythmias requiring therapy in patients with implantable cardiac defibrillators and cardiac resynchronization therapy defibrillators. Am J Cardiol. 2019;124(1):44–50. doi: 10.1016/j.amjcard.2019.04.011.
    1. Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. 2020 doi: 10.1001/jamacardio.2020.1286.
    1. Jannini EA, Lenzi A, Isidori A, Fabbri A. Subclinical erectile dysfunction: proposal for a novel taxonomic category in sexual medicine. J Sex Med. 2006;3(5):787–794. doi: 10.1111/j.1743-6109.2006.00287.x.
    1. Mulhall JP, Giraldi A, Hackett G, Hellstrom WJG, Jannini EA, Rubio-Aurioles E, Trost L, Hassan TA. The 2018 revision to the process of care model for management of erectile dysfunction. J Sex Med. 2018;15(10):1434–1445. doi: 10.1016/j.jsxm.2018.05.021.
    1. Corona G, Sansone A, Pallotti F, Ferlin A, Pivonello R, Isidori AM, Maggi M, Jannini EA. People smoke for nicotine, but lose sexual and reproductive health for tar: a narrative review on the effect of cigarette smoking on male sexuality and reproduction. J Endocrinol Invest. 2020 doi: 10.1007/s40618-020-01257-x.
    1. Filardi T, Morano S. COVID-19: is there a link between the course of infection and pharmacological agents in diabetes? J Endocrinol Invest. 2020 doi: 10.1007/s40618-020-01318-1.
    1. Ponti G, Ruini C, Tomasi A. Homocysteine as a potential predictor of cardiovascular risk in patients with COVID-19. Med Hypotheses. 2020;143:14. doi: 10.1016/j.mehy.2020.109859.
    1. Sansone A, Cignarelli A, Sansone M, Romanelli F, Corona G, Gianfrilli D, Isidori A, Giorgino F, Lenzi A. Serum homocysteine levels in men with and without erectile dysfunction: a systematic review and meta-analysis. Int J Endocrinol. 2018;2018:7424792. doi: 10.1155/2018/7424792.
    1. Lombardo F, Sgro P, Gandini L, Dondero F, Jannini EA, Lenzi A. Might erectile dysfunction be due to the thermolabile variant of methylenetetrahydrofolate reductase? J Endocrinol Invest. 2004;27(9):883–885. doi: 10.1007/BF03346286.
    1. Sansone M, Sansone A, Romano M, Seraceno S, Di Luigi L, Romanelli F. Folate: a possible role in erectile dysfunction? Aging Male. 2018;21(2):116–120. doi: 10.1080/13685538.2017.1404022.
    1. Nehra A, Jackson G, Miner M, Billups KL, Burnett AL, Buvat J, et al. The Princeton III consensus recommendations for the management of erectile dysfunction and cardiovascular disease. Mayo Clin Proc. 2012;87(8):766–778. doi: 10.1016/j.mayocp.2012.06.015.
    1. Lang JP, Wang X, Moura FA, Siddiqi HK, Morrow DA, Bohula EA. A current review of COVID-19 for the cardiovascular specialist. Am Heart J. 2020;226:29–44. doi: 10.1016/j.ahj.2020.04.025.
    1. Younis JS, Abassi Z, Skorecki K. Is there an impact of the COVID-19 pandemic on male fertility? The ACE2 connection. Am J Physiol Endocrinol Metab. 2020;318(6):E878–E880. doi: 10.1152/ajpendo.00183.2020.
    1. Wang S, Zhou X, Zhang T, Wang Z. The need for urogenital tract monitoring in COVID-19. Nat Rev Urol. 2020;17(6):314–315. doi: 10.1038/s41585-020-0319-7.
    1. Wang Z, Xu X. scRNA-seq profiling of human testes reveals the presence of the ACE2 receptor, a target for SARS-CoV-2 infection in spermatogonia Leydig and Sertoli. Cells. 2020;9:4. doi: 10.3390/cells9040920.
    1. Verma S, Saksena S, Sadri-Ardekani H. ACE2 receptor expression in testes: implications in COVID-19 pathogenesis. Biol Reprod. 2020 doi: 10.1093/biolre/ioaa080.
    1. Paoli D, Pallotti F, Colangelo S, Basilico F, Mazzuti L, Turriziani O, Antonelli G, Lenzi A, Lombardo F. Study of SARS-CoV-2 in semen and urine samples of a volunteer with positive naso-pharyngeal swab. J Endocrinol Invest. 2020 doi: 10.1007/s40618-020-01261-1.
    1. Paoli D, Pallotti F, Turriziani O, Mazzuti L, Antonelli G, Lenzi A, Lombardo F. SARS-CoV-2 Presence in seminal fluid: myth or reality. Andrology. 2020 doi: 10.1111/andr.12825.
    1. Song C, Wang Y, Li W, Hu B, Chen G, Xia P, et al. Absence of 2019 novel coronavirus in semen and testes of COVID-19 patients. Biol Reprod. 2020 doi: 10.1093/biolre/ioaa050.
    1. Pan F, Xiao X, Guo J, Song Y, Li H, Patel DP, et al. No evidence of severe acute respiratory syndrome-coronavirus 2 in semen of males recovering from coronavirus disease 2019. Fertil Steril. 2020;113(6):1135–1139. doi: 10.1016/j.fertnstert.2020.04.024.
    1. Li D, Jin M, Bao P, Zhao W, Zhang S. Clinical characteristics and results of semen tests among men with coronavirus disease 2019. JAMA Netw Open. 2020;3(5):e208292. doi: 10.1001/jamanetworkopen.2020.8292.
    1. Corona G, Baldi E, Isidori AM, Paoli D, Pallotti F, De Santis L, et al. SARS-CoV-2 infection, male fertility and sperm cryopreservation: a position statement of the Italian society of andrology and sexual medicine (SIAMS) (Societa Italiana di Andrologia e Medicina della Sessualita) J Endocrinol Invest. 2020 doi: 10.1007/s40618-020-01290-w.
    1. Esteves SC, Lombardo F, Garrido N, Alvarez J, Zini A, Colpi GM, et al. SARS-CoV-2 pandemic and repercussions for male infertility patients: a proposal for the individualized provision of andrological services. Andrology. 2020 doi: 10.1111/andr.12809.
    1. De Santis L, Anastasi A, Cimadomo D, Klinger FG, Licata E, Pisaturo V, Sosa Fernandez L, Scarica C. COVID-19: the perspective of Italian embryologists managing the IVF laboratory in pandemic emergency. Hum Reprod. 2020;35(4):1004–1005. doi: 10.1093/humrep/deaa074.
    1. COVID-19 and Human Reproduction Joint Statement: ASRM/ESHRE/IFFS. . Accessed 28 June 2020
    1. Dutheil F, Mondillon L, Navel V. PTSD as the second tsunami of the SARS-Cov-2 pandemic. Psychol Med. 2020;1:2. doi: 10.1017/S0033291720001336.
    1. Shuja KH, Aqeel M, Jaffar A, Ahmed A. COVID-19 pandemic and impending global mental health implications. Psychiatr Danub. 2020;32(1):32–35. doi: 10.24869/psyd.2020.32.
    1. Liu X, Luo WT, Li Y, Li CN, Hong ZS, Chen HL, Xiao F, Xia JY. Psychological status and behavior changes of the public during the COVID-19 epidemic in China. Infect Dis Poverty. 2020;9(1):58. doi: 10.1186/s40249-020-00678-3.
    1. Gonzalez-Sanguino C, Ausin B, Castellanos MA, Saiz J, Lopez-Gomez A, Ugidos C, Munoz M. Mental health consequences during the initial stage of the 2020 COronavirus pandemic (COVID-19) in Spain. Brain Behav Immun. 2020 doi: 10.1016/j.bbi.2020.05.040.
    1. DePierro J, Lowe S, Katz C. Lessons learned from 9/11: mental health perspectives on the COVID-19 pandemic. Psychiatry Res. 2020;288:113024. doi: 10.1016/j.psychres.2020.113024.
    1. Ciocca G, Carosa E, Stornelli M, Limoncin E, Gravina GL, Iannarelli R, et al. Post-traumatic stress disorder, coping strategies and type 2 diabetes: psychometric assessment after L’Aquila earthquake. Acta Diabetol. 2014;52(3):513–521. doi: 10.1007/s00592-014-0686-8.
    1. Li W, Li G, Xin C, Wang Y, Yang S. Changes in sexual behaviors of young women and men during the coronavirus disease 2019 outbreak: a convenience sample from the epidemic area. J Sex Med. 2020 doi: 10.1016/j.jsxm.2020.04.380.
    1. Yuksel B, Ozgor F. Effect of the COVID-19 pandemic on female sexual behavior. Int J Gynaecol Obstet. 2020 doi: 10.1002/ijgo.13193.
    1. Miranda EP, Nascimento B, Torres LO, Glina S. Challenges in the practice of sexual medicine in the time of COVID-19. J Sex Med. 2020 doi: 10.1016/j.jsxm.2020.05.013.
    1. Aversa A, Jannini EA. COVID-19, or the triumph of monogamy? Minerva Endocrinol. 2020 doi: 10.23736/S0391-1977.20.03207-1.
    1. Corona G, Rastrelli G, Ricca V, Jannini EA, Vignozzi L, Monami M, et al. Risk factors associated with primary and secondary reduced libido in male patients with sexual dysfunction. J Sex Med. 2013;10(4):1074–1089. doi: 10.1111/jsm.12043.
    1. Saad F, Aversa A, Isidori AM, Zafalon L, Zitzmann M, Gooren L. Onset of effects of testosterone treatment and time span until maximum effects are achieved. Eur J Endocrinol. 2011;165(5):675–685. doi: 10.1530/eje-11-0221.
    1. Spagnolo P, Balestro E, Aliberti S, Cocconcelli E, Biondini D, Casa GD, Sverzellati N, Maher TM. Pulmonary fibrosis secondary to COVID-19: a call to arms? Lancet Respir Med. 2020 doi: 10.1016/S2213-2600(20)30222-8.
    1. George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir Med. 2020 doi: 10.1016/S2213-2600(20)30225-3.
    1. Gralinski L, Bankhead A, Jeng S, Menachery V, Proll S, Belisle SE, et al. Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury. mBio. 2013;4:4–37. doi: 10.1128/mBio.00271-13.
    1. Chan KS, Zheng JP, Mok YW, Li YM, Liu YN, Chu CM, Ip MS. SARS: prognosis, outcome and sequelae. Respirology. 2003;8:S36–40. doi: 10.1046/j.1440-1843.2003.00522.x.
    1. Graney BA, Wamboldt FS, Baird S, Churney T, Fier K, Korn M, McCormick M, Vierzba T, Swigris JJ. Looking ahead and behind at supplemental oxygen: a qualitative study of patients with pulmonary fibrosis. Heart Lung. 2017;46(5):387–393. doi: 10.1016/j.hrtlng.2017.07.001.
    1. Cavezzi A, Troiani E, Corrao S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A Narrat Rev Clin Pract. 2020;10(2):1271. doi: 10.4081/cp.2020.1271.
    1. Herridge MS, Tansey CM, Matte A, Tomlinson G, Diaz-Granados N, Cooper A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364(14):1293–1304. doi: 10.1056/NEJMoa1011802.
    1. Rabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Malik YS, et al. SARS-CoV-2, SARS-CoV, and MERS-COV: a comparative overview. Infez Med. 2020;28(2):174–184.
    1. Yu DP, Liu XH, Wei AY. Effect of chronic hypoxia on penile erectile function in rats. Genet Mol Res. 2015;14(3):10482–10489. doi: 10.4238/2015.September.8.9.
    1. Vignozzi L, Morelli A, Filippi S, Vannelli GB, Mungai S, Marini M, Boddi V, Forti G, Maggi M. Effect of sildenafil administration on penile hypoxia induced by cavernous neurotomy in the rat. Int J Impot Res. 2008;20(1):60–67. doi: 10.1038/sj.ijir.3901596.
    1. Verratti V, Di Giulio C, Berardinelli F, Pellicciotta M, Di Francesco S, Iantorno R, Nicolai M, Gidaro S, Tenaglia R. The role of hypoxia in erectile dysfunction mechanisms. Int J Impot Res. 2007;19(5):496–500. doi: 10.1038/sj.ijir.3901560.
    1. Padmanabhan P, McCullough AR. Penile oxygen saturation in the flaccid and erect penis in men with and without erectile dysfunction. J Androl. 2007;28(2):223–228. doi: 10.2164/jandrol.106.001313.
    1. Dolci S, Belmonte A, Santone R, Giorgi M, Pellegrini M, Carosa E, Piccione E, Lenzi A, Jannini EA. Subcellular localization and regulation of type-1C and type-5 phosphodiesterases. Biochem Biophys Res Commun. 2006;341(3):837–846. doi: 10.1016/j.bbrc.2006.01.035.
    1. Cesarini V, Pisano C, Rossi G, Balistreri CR, Botti F, Antonelli G, Ruvolo G, Jannini EA, Dolci S. Regulation of PDE5 expression in human aorta and thoracic aortic aneurysms. Sci Rep. 2019;9:1. doi: 10.1038/s41598-019-48432-6.
    1. Morelli A, Filippi S, Mancina R, Luconi M, Vignozzi L, Marini M, et al. Androgens regulate phosphodiesterase type 5 expression and functional activity in corpora cavernosa. Endocrinology. 2004;145(5):2253–2263. doi: 10.1210/en.2003-1699.
    1. Seftel AD. Phosphodiesterase type 5 inhibitor differentiation based on selectivity, pharmacokinetic, and efficacy profiles. Clin Cardiol. 2004;27:14–19. doi: 10.1002/clc.4960271305.
    1. Santi D, Giannetta E, Isidori AM, Vitale C, Aversa A, Simoni M. Therapy of endocrine disease. Effects of chronic use of phosphodiesterase inhibitors on endothelial markers in type 2 diabetes mellitus: a meta-analysis. Eur J Endocrinol. 2015;172(3):103–114. doi: 10.1530/EJE-14-0700.
    1. Brown KE, Dhaun N, Goddard J, Webb DJ. Potential therapeutic role of phosphodiesterase type 5 inhibition in hypertension and chronic kidney disease. Hypertension. 2014;63(1):5–11. doi: 10.1161/HYPERTENSIONAHA.113.01774.
    1. Goldstein I, Burnett AL, Rosen RC, Park PW, Stecher VJ. The Serendipitous story of sildenafil: an unexpected oral therapy for erectile dysfunction. Sex Med Rev. 2019;7(1):115–128. doi: 10.1016/j.sxmr.2018.06.005.
    1. Rochwerg B, Neupane B, Zhang Y, Garcia CC, Raghu G, Richeldi L, Brozek J, Beyene J, Schunemann H. Treatment of idiopathic pulmonary fibrosis: a network meta-analysis. BMC Med. 2016;14(1):18. doi: 10.1186/s12916-016-0558-x.
    1. Prasad S, Wilkinson J, Gatzoulis MA. Sildenafil in primary pulmonary hypertension. N Engl J Med. 2000;343(18):1342–1342. doi: 10.1056/nejm200011023431814.
    1. Yang HM, Jin S, Jang H, Kim JY, Lee JE, Kim J, Kim HS. Sildenafil reduces neointimal hyperplasia after angioplasty and inhibits platelet aggregation via activation of cGMP-dependent protein kinase. Sci Rep. 2019;9(1):7769. doi: 10.1038/s41598-019-44190-7.
    1. Isidori AM, Giannetta E, Pofi R, Venneri MA, Gianfrilli D, Campolo F, Mastroianni CM, Lenzi A, d’Ettorre G. Targeting the NO-cGMP-PDE5 pathway in COVID-19 infection. Andrology. 2020 doi: 10.1111/andr.12837.
    1. Sansone A, Romanelli F, Gianfrilli D, Lenzi A. Endocrine evaluation of erectile dysfunction. Endocrine. 2014;46(3):423–430. doi: 10.1007/s12020-014-0254-6.

Source: PubMed

3
Subscribe