Autoantibodies to Vasoregulative G-Protein-Coupled Receptors Correlate with Symptom Severity, Autonomic Dysfunction and Disability in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Helma Freitag, Marvin Szklarski, Sebastian Lorenz, Franziska Sotzny, Sandra Bauer, Aurélie Philippe, Claudia Kedor, Patricia Grabowski, Tanja Lange, Gabriela Riemekasten, Harald Heidecke, Carmen Scheibenbogen, Helma Freitag, Marvin Szklarski, Sebastian Lorenz, Franziska Sotzny, Sandra Bauer, Aurélie Philippe, Claudia Kedor, Patricia Grabowski, Tanja Lange, Gabriela Riemekasten, Harald Heidecke, Carmen Scheibenbogen

Abstract

Background: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is an acquired complex disease with patients suffering from the cardinal symptoms of fatigue, post-exertional malaise (PEM), cognitive impairment, pain and autonomous dysfunction. ME/CFS is triggered by an infection in the majority of patients. Initial evidence for a potential role of natural regulatory autoantibodies (AAB) to beta-adrenergic (AdR) and muscarinic acetylcholine receptors (M-AChR) in ME/CFS patients comes from a few studies.

Methods: Here, we analyzed the correlations of symptom severity with levels of AAB to vasoregulative AdR, AChR and Endothelin-1 type A and B (ETA/B) and Angiotensin II type 1 (AT1) receptor in a Berlin cohort of ME/CFS patients (n = 116) by ELISA. The severity of disease, symptoms and autonomic dysfunction were assessed by questionnaires.

Results: We found levels of most AABs significantly correlated with key symptoms of fatigue and muscle pain in patients with infection-triggered onset. The severity of cognitive impairment correlated with AT1-R- and ETA-R-AAB and severity of gastrointestinal symptoms with alpha1/2-AdR-AAB. In contrast, the patients with non-infection-triggered ME/CFS showed fewer and other correlations.

Conclusion: Correlations of specific AAB against G-protein-coupled receptors (GPCR) with symptoms provide evidence for a role of these AAB or respective receptor pathways in disease pathomechanism.

Keywords: G-protein-coupled receptor; adrenergic receptors; autoantibodies; autoimmunity; chronic fatigue syndrome; myalgic encephalomyelitis; vasoregulation.

Conflict of interest statement

H.H., managing director of CellTrend GmbH, holds a patent for the use of beta-adrenergic receptor antibodies in diagnosis of CFS. All other authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Correlations between symptom severity and AAB/IgG ratios. Correlation analysis of AAB/IgG ratios with the severity of (A) fatigue, muscle pain, cognitive and immune symptom scores, physical functioning (SF-36) and Bell disability score and (B) with COMPASS 31 subdomains. Spearman correlation coefficients (r) are shown for patients with infection-triggered onset (black bars) and patients without infection-triggered onset (grey bars). Significant correlations prior to BH-correction are marked with asterisks (* p < 0.05, ** p < 0.01), correlations that remained significant after BH-correction are indicated by black-and-white striped bars.

References

    1. Carruthers B.M., Jain A.K., De Meirleir K.L., Peterson D.L., Klimas N.G., Lerner A.M., Bested A.C., Flor-Henry P., Joshi P., Powles A.C.P., et al. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J. Chronic Fatigue Syndr. 2003;11:7–115. doi: 10.1300/J092v11n01_02.
    1. Bakken I.J., Tveito K., Gunnes N., Ghaderi S., Stoltenberg C., Trogstad L., Haberg S.E., Magnus P. Two age peaks in the incidence of chronic fatigue syndrome/myalgic encephalomyelitis: A population-based registry study from Norway 2008–2012. BMC Med. 2014;12:167. doi: 10.1186/s12916-014-0167-5.
    1. Valdez A.R., Hancock E.E., Adebayo S., Kiernicki D.J., Proskauer D., Attewell J.R., Bateman L., DeMaria A., Jr., Lapp C.W., Rowe P.C., et al. Estimating Prevalence, Demographics, and Costs of ME/CFS Using Large Scale Medical Claims Data and Machine Learning. Front. Pediatrics. 2018;6:412. doi: 10.3389/fped.2018.00412.
    1. Chu L., Valencia I.J., Garvert D.W., Montoya J.G. Onset Patterns and Course of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front. Pediatrics. 2019;7:12. doi: 10.3389/fped.2019.00012.
    1. Sotzny F., Blanco J., Capelli E., Castro-Marrero J., Steiner S., Murovska M., Scheibenbogen C., European Network on M.C. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome—Evidence for an autoimmune disease. Autoimmun. Rev. 2018;17:601–609. doi: 10.1016/j.autrev.2018.01.009.
    1. Vermeulen R.C., Kurk R.M., Visser F.C., Sluiter W., Scholte H.R. Patients with chronic fatigue syndrome performed worse than controls in a controlled repeated exercise study despite a normal oxidative phosphorylation capacity. J. Transl. Med. 2010;8:93. doi: 10.1186/1479-5876-8-93.
    1. Keller B.A., Pryor J.L., Giloteaux L. Inability of myalgic encephalomyelitis/chronic fatigue syndrome patients to reproduce VO(2)peak indicates functional impairment. J. Transl. Med. 2014;12:104. doi: 10.1186/1479-5876-12-104.
    1. Germain A., Barupal D.K., Levine S.M., Hanson M.R. Comprehensive Circulatory Metabolomics in ME/CFS Reveals Disrupted Metabolism of Acyl Lipids and Steroids. Metabolites. 2020;10:34. doi: 10.3390/metabo10010034.
    1. van Campen C., Rowe P.C., Verheugt F.W.A., Visser F.C. Cognitive Function Declines Following Orthostatic Stress in Adults With Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Front. Neurosci. 2020;14:688. doi: 10.3389/fnins.2020.00688.
    1. van Campen C., Verheugt F.W.A., Rowe P.C., Visser F.C. Cerebral blood flow is reduced in ME/CFS during head-up tilt testing even in the absence of hypotension or tachycardia: A quantitative, controlled study using Doppler echography. Clin. Neurophysiol. Pr. 2020;5:50–58. doi: 10.1016/j.cnp.2020.01.003.
    1. Wirth K., Scheibenbogen C. A Unifying Hypothesis of the Pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): Recognitions from the finding of autoantibodies against ss2-adrenergic receptors. Autoimmun. Rev. 2020;19:102527. doi: 10.1016/j.autrev.2020.102527.
    1. Holwerda S.W., Restaino R.M., Fadel P.J. Adrenergic and non-adrenergic control of active skeletal muscle blood flow: Implications for blood pressure regulation during exercise. Auton. Neurosci. 2015;188:24–31. doi: 10.1016/j.autneu.2014.10.010.
    1. Dragun D., Philippe A., Catar R., Hegner B. Autoimmune mediated G-protein receptor activation in cardiovascular and renal pathologies. Thromb. Haemost. 2009;101:643–648.
    1. Dragun D., Muller D.N., Brasen J.H., Fritsche L., Nieminen-Kelha M., Dechend R., Kintscher U., Rudolph B., Hoebeke J., Eckert D., et al. Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection. N. Engl. J. Med. 2005;352:558–569. doi: 10.1056/NEJMoa035717.
    1. Wallukat G., Muller J., Podlowski S., Nissen E., Morwinski R., Hetzer R. Agonist-like beta-adrenoceptor antibodies in heart failure. Am. J. Cardiol. 1999;83:75H–79H. doi: 10.1016/S0002-9149(99)00265-9.
    1. Cabral-Marques O., Riemekasten G. Functional autoantibodies targeting G protein-coupled receptors in rheumatic diseases. Nat. Rev. Rheumatol. 2017;13:648–656. doi: 10.1038/nrrheum.2017.134.
    1. Cabral-Marques O., Marques A., Giil L.M., De Vito R., Rademacher J., Gunther J., Lange T., Humrich J.Y., Klapa S., Schinke S., et al. GPCR-specific autoantibody signatures are associated with physiological and pathological immune homeostasis. Nat. Commun. 2018;9:5224. doi: 10.1038/s41467-018-07598-9.
    1. Tanaka S., Kuratsune H., Hidaka Y., Hakariya Y., Tatsumi K.I., Takano T., Kanakura Y., Amino N. Autoantibodies against muscarinic cholinergic receptor in chronic fatigue syndrome. Int. J. Mol. Med. 2003;12:225–230. doi: 10.3892/ijmm.12.2.225.
    1. Loebel M., Grabowski P., Heidecke H., Bauer S., Hanitsch L.G., Wittke K., Meisel C., Reinke P., Volk H.D., Fluge O., et al. Antibodies to beta adrenergic and muscarinic cholinergic receptors in patients with Chronic Fatigue Syndrome. Brain Behav. Immun. 2016;52:32–39. doi: 10.1016/j.bbi.2015.09.013.
    1. Bynke A.J.P., Gottfries C.F., Heidecke H., Scheibenbogen C., Bergquist J. Autoantibodies to beta-adrenergic and muscarinic cholinergic receptors in Myalgic Encephalomyelitis (ME) patients—A validation study in plasma and cerebrospinal fluid from two Swedish cohorts. Brain Behav. Immun.-Health. 2020;7:100107. doi: 10.1016/j.bbih.2020.100107.
    1. Fujii H., Sato W., Kimura Y., Matsuda H., Ota M., Maikusa N., Suzuki F., Amano K., Shin I., Yamamura T., et al. Altered Structural Brain Networks Related to Adrenergic/Muscarinic Receptor Autoantibodies in Chronic Fatigue Syndrome. J. Neuroimaging Off. J. Am. Soc. Neuroimaging. 2020;30:822–827. doi: 10.1111/jon.12751.
    1. Hartwig J., Sotzny F., Bauer S., Heidecke H., Riemekasten G., Dragun D., Meisel C., Dames C., Grabowski P., Scheibenbogen C. Research article IgG stimulated β2 adrenergic receptor activation is attenuated in patients with ME/CFS. Brain Behav. Immun.-Health. 2020;3:100047. doi: 10.1016/j.bbih.2020.100047.
    1. Scheibenbogen C., Loebel M., Freitag H., Krueger A., Bauer S., Antelmann M., Doehner W., Scherbakov N., Heidecke H., Reinke P., et al. Immunoadsorption to remove ss2 adrenergic receptor antibodies in Chronic Fatigue Syndrome CFS/ME. PLoS ONE. 2018;13:e0193672. doi: 10.1371/journal.pone.0193672.
    1. Tolle M., Freitag H., Antelmann M., Hartwig J., Schuchardt M., van der Giet M., Eckardt K.U., Grabowski P., Scheibenbogen C. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Efficacy of Repeat Immunoadsorption. J. Clin. Med. 2020;9:2443. doi: 10.3390/jcm9082443.
    1. Steiner S., Becker S.C., Hartwig J., Sotzny F., Lorenz S., Bauer S., Lobel M., Stittrich A.B., Grabowski P., Scheibenbogen C. Autoimmunity-Related Risk Variants in PTPN22 and CTLA4 Are Associated With ME/CFS With Infectious Onset. Front. Immunol. 2020;11:578. doi: 10.3389/fimmu.2020.00578.
    1. Tognetto M., D’Andrea M.R., Trevisani M., Guerrini R., Salvadori S., Spisani L., Daniele C., Andrade-Gordon P., Geppetti P., Harrison S. Proteinase-activated receptor-1 (PAR-1) activation contracts the isolated human renal artery in vitro. Br. J. Pharm. 2003;139:21–27. doi: 10.1038/sj.bjp.0705215.
    1. Kuwabara Y., Tanaka-Ishikawa M., Abe K., Hirano M., Hirooka Y., Tsutsui H., Sunagawa K., Hirano K. Proteinase-activated receptor 1 antagonism ameliorates experimental pulmonary hypertension. Cardiovasc. Res. 2019;115:1357–1368. doi: 10.1093/cvr/cvy284.
    1. Tennant G.M., Wadsworth R.M., Kennedy S. PAR-2 mediates increased inflammatory cell adhesion and neointima formation following vascular injury in the mouse. Atherosclerosis. 2008;198:57–64. doi: 10.1016/j.atherosclerosis.2007.09.043.
    1. Rhoden A., Speiser J., Geertz B., Uebeler J., Schmidt K., de Wit C., Eschenhagen T. Preserved cardiovascular homeostasis despite blunted acetylcholine-induced dilation in mice with endothelial muscarinic M3 receptor deletion. Acta Physiol. 2019;226:e13262. doi: 10.1111/apha.13262.
    1. Radu B.M., Osculati A.M.M., Suku E., Banciu A., Tsenov G., Merigo F., Di Chio M., Banciu D.D., Tognoli C., Kacer P., et al. All muscarinic acetylcholine receptors (M1-M5) are expressed in murine brain microvascular endothelium. Sci. Rep. 2017;7:5083. doi: 10.1038/s41598-017-05384-z.
    1. Fluge O., Risa K., Lunde S., Alme K., Rekeland I.G., Sapkota D., Kristoffersen E.K., Sorland K., Bruland O., Dahl O., et al. B-Lymphocyte Depletion in Myalgic Encephalopathy/Chronic Fatigue Syndrome. An Open-Label Phase II Study with Rituximab Maintenance Treatment. PLoS ONE. 2015;10:e0129898. doi: 10.1371/journal.pone.0129898.
    1. Sletten D.M., Suarez G.A., Low P.A., Mandrekar J., Singer W. COMPASS 31: A refined and abbreviated Composite Autonomic Symptom Score. Mayo Clin. Proc. 2012;87:1196–1201. doi: 10.1016/j.mayocp.2012.10.013.
    1. Bell D.S. The Doctor’s Guide to Chronic Fatigue Syndrome: Understanding, Treating and Living with CFIDS. Da Capo Lifelong Books; Boston, MA, USA: 1995.
    1. Cella M., Chalder T. Measuring fatigue in clinical and community settings. J. Psychosom. Res. 2010;69:17–22. doi: 10.1016/j.jpsychores.2009.10.007.
    1. Ware J.E., Jr., Sherbourne C.D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care. 1992;30:473–483. doi: 10.1097/00005650-199206000-00002.
    1. Lock R.J., Unsworth D.J. Immunoglobulins and immunoglobulin subclasses in the elderly. Ann. Clin. Biochem. 2003;40:143–148. doi: 10.1258/000456303763046067.
    1. Gunning W.T., 3rd, Kvale H., Kramer P.M., Karabin B.L., Grubb B.P. Postural Orthostatic Tachycardia Syndrome Is Associated With Elevated G-Protein Coupled Receptor Autoantibodies. J. Am. Heart Assoc. 2019;8:e013602. doi: 10.1161/JAHA.119.013602.
    1. Li H., Yu X., Liles C., Khan M., Vanderlinde-Wood M., Galloway A., Zillner C., Benbrook A., Reim S., Collier D., et al. Autoimmune basis for postural tachycardia syndrome. J. Am. Heart Assoc. 2014;3:e000755. doi: 10.1161/JAHA.113.000755.
    1. Liao Y.H., Wei Y.M., Wang M., Wang Z.H., Yuan H.T., Cheng L.X. Autoantibodies against AT1-receptor and alpha1-adrenergic receptor in patients with hypertension. Hypertens. Res. 2002;25:641–646. doi: 10.1291/hypres.25.641.
    1. Wang M., Yin X., Zhang S., Mao C., Cao N., Yang X., Bian J., Hao W., Fan Q., Liu H. Autoantibodies against AT1 Receptor Contribute to Vascular Aging and Endothelial Cell Senescence. Aging Dis. 2019;10:1012–1025. doi: 10.14336/AD.2018.0919.
    1. Li G., Cao Z., Wu X.W., Wu H.K., Ma Y., Wu B., Wang W.Q., Cheng J., Zhou Z.H., Tu Y.C. Autoantibodies against AT1 and alpha1-adrenergic receptors predict arterial stiffness progression in normotensive subjects over a 5-year period. Clin. Sci. 2017;131:2947–2957. doi: 10.1042/CS20171305.
    1. Guo L., Li M., Chen Y., Wang Q., Tian Z., Pan S., Zeng X., Ye S. Anti-Endothelin Receptor Type A Autoantibodies in Systemic Lupus Erythematosus-Associated Pulmonary Arterial Hypertension. Arthritis Rheumatol. 2015;67:2394–2402. doi: 10.1002/art.39212.
    1. Becker M.O., Kill A., Kutsche M., Guenther J., Rose A., Tabeling C., Witzenrath M., Kuhl A.A., Heidecke H., Ghofrani H.A., et al. Vascular receptor autoantibodies in pulmonary arterial hypertension associated with systemic sclerosis. Am. J. Respir. Crit. Care Med. 2014;190:808–817. doi: 10.1164/rccm.201403-0442OC.
    1. Naitou K., Shiina T., Kato K., Nakamori H., Sano Y., Shimizu Y. Colokinetic effect of noradrenaline in the spinal defecation center: Implication for motility disorders. Sci. Rep. 2015;5:12623. doi: 10.1038/srep12623.
    1. Grub M., Mielke J., Rohrbach J.M. [m4 muscarinic receptors of the cornea: Muscarinic cholinoceptor-stimulated inhibition of the cAMP-PKA pathway in corneal epithelial and endothelial cells] Ophthalmologe. 2011;108:651–657. doi: 10.1007/s00347-011-2356-3.
    1. Nishiyama T., Nakamura T., Obara K., Inoue H., Mishima K., Matsumoto N., Matsui M., Manabe T., Mikoshiba K., Saito I. Up-regulated PAR-2-mediated salivary secretion in mice deficient in muscarinic acetylcholine receptor subtypes. J. Pharm. Exp. 2007;320:516–524. doi: 10.1124/jpet.106.113092.
    1. Ludwig R.J., Vanhoorelbeke K., Leypoldt F., Kaya Z., Bieber K., McLachlan S.M., Komorowski L., Luo J., Cabral-Marques O., Hammers C.M., et al. Mechanisms of Autoantibody-Induced Pathology. Front. Immunol. 2017;8:603. doi: 10.3389/fimmu.2017.00603.
    1. Riemekasten G., Petersen F., Heidecke H. What Makes Antibodies Against G Protein-Coupled Receptors so Special? A Novel Concept to Understand Chronic Diseases. Front. Immunol. 2020;11:564526. doi: 10.3389/fimmu.2020.564526.
    1. Lukitsch I., Kehr J., Chaykovska L., Wallukat G., Nieminen-Kelha M., Batuman V., Dragun D., Gollasch M. Renal ischemia and transplantation predispose to vascular constriction mediated by angiotensin II type 1 receptor-activating antibodies. Transplantation. 2012;94:8–13. doi: 10.1097/TP.0b013e3182529bb7.
    1. Abdelkrim M.A., Leonetti D., Montaudon E., Chatagnon G., Gogny M., Desfontis J.C., Noireaud J., Mallem M.Y. Antibodies against the second extracellular loop of beta(1)-adrenergic receptors induce endothelial dysfunction in conductance and resistance arteries of the Wistar rat. Int. Immunopharmacol. 2014;19:308–316. doi: 10.1016/j.intimp.2014.01.029.
    1. Gazit Y., Nahir A.M., Grahame R., Jacob G. Dysautonomia in the joint hypermobility syndrome. Am. J. Med. 2003;115:33–40. doi: 10.1016/S0002-9343(03)00235-3.
    1. Althouse A.D. Adjust for Multiple Comparisons? It’s Not That Simple. Ann. Thorac. Surg. 2016;101:1644–1645. doi: 10.1016/j.athoracsur.2015.11.024.

Source: PubMed

3
Subscribe