Immunoadsorption to remove ß2 adrenergic receptor antibodies in Chronic Fatigue Syndrome CFS/ME

Carmen Scheibenbogen, Madlen Loebel, Helma Freitag, Anne Krueger, Sandra Bauer, Michaela Antelmann, Wolfram Doehner, Nadja Scherbakov, Harald Heidecke, Petra Reinke, Hans-Dieter Volk, Patricia Grabowski, Carmen Scheibenbogen, Madlen Loebel, Helma Freitag, Anne Krueger, Sandra Bauer, Michaela Antelmann, Wolfram Doehner, Nadja Scherbakov, Harald Heidecke, Petra Reinke, Hans-Dieter Volk, Patricia Grabowski

Abstract

Introduction: Infection-triggered disease onset, chronic immune activation and autonomic dysregulation in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) point to an autoimmune disease directed against neurotransmitter receptors. We had observed elevated autoantibodies against ß2 adrenergic receptors, and muscarinic 3 and 4 acetylcholine receptors in a subset of patients. Immunoadsorption (IA) was shown to be effective in removing autoantibodies and improve outcome in various autoimmune diseases.

Methods: 10 patients with post-infectious CFS/ME and elevated ß2 autoantibodies were treated with IA with an IgG-binding column for 5 days. We assessed severity of symptoms as outcome parameter by disease specific scores. Antibodies were determined by ELISA and B cell phenotype by flow cytometry.

Results: IgG levels dropped to median 0.73 g/l (normal 7-16 g/l) after the 4th cycle of IA, while IgA and IgM levels remained unchanged. Similarly, elevated ß2 IgG antibodies rapidly decreased during IA in 9 of 10 patients. Also 6 months later ß2 autoantibodies were significantly lower compared to pretreatment. Frequency of memory B cells significantly decreased and frequency of plasma cells increased after the 4th IA cycle. A rapid improvement of symptoms was reported by 7 patients during the IA. 3 of these patients had long lasting moderate to marked improvement for 6-12+ months, 2 patients had short improvement only and 2 patients improved for several months following initial worsening.

Conclusions: IA can remove autoantibodies against ß2 adrenergic receptor and lead to clinical improvement. B cell phenotyping provides evidence for an effect of IA on memory B cell development. Data from our pilot trial warrants further studies in CFS/ME.

Conflict of interest statement

Competing Interests: This trial was supported with a grant by Fresenius Medical Care. Harald Heidecke is employed by CellTrend GmbH who also provided support in the measurement of autoantibodies. A patent application for the diagnostic use of antibodies against ß1 and ß2 adrenergic receptors in CFS/ME was filed (patent publication No WO 2016/188979 A1, applicants CellTrend (H.H.) and Charité (C.S). This does not alter our adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. IgG and specific antibody levels…
Fig 1. IgG and specific antibody levels during treatment.
Total and specific ß1, ß2, M3 and M4 IgG in the serum before and during IA. The levels are depicted as x-fold change to day -1 level for each single patient days +1 (day after 1st IA cycle) up to day +4 (day after the 4th IA cycle).
Fig 2. IgG and specific antibody levels…
Fig 2. IgG and specific antibody levels follow-up.
ß1, ß2, M3 and M4 IgG, total IgG, tetanus IgG, and pneumococcal IgG in the serum before and after 3 and 6 months of IA. The values are shown for each single patient. The course of ß1 and ß2 values of patients 4 and 5 with long term response are indicated by a line. In patient 9 ß2 antibodies were elevated at screening 3 months prior to study inclusion, but below the upper normal value (8.5 U) at the day before IA.
Fig 3. Patients condition before treatment.
Fig 3. Patients condition before treatment.
Symptom scores before IA. Symptoms are indicated as 0 (absent) to 10 (most severe).
Fig 4. Development of symptoms.
Fig 4. Development of symptoms.
Symptom scores for fatigue, cognitive score, muscle pain and immune score during IA (A), and after 1 to 12 months of IA (B) are shown for each patient (3 unchanged, 4 slight, 5 marked improvement, 6 complete disappearance, 2 slight increase, 1 marked increase). The line indicates level 3 for unchanged symptoms.
Fig 5. Fact score follow-up.
Fig 5. Fact score follow-up.
FACT-F score assessing fatigue before and after 1 to 12 months of IA for each patient. The line indicates the individual pretreatment FACT-F score.
Fig 6. Patients mobility.
Fig 6. Patients mobility.
Mean daily number of steps counted during one week before and thereafter monthly after IA for 7 patients (patients 1, 2, 4, 5, 6, 7 and 10).
Fig 7. B cell subset analysis.
Fig 7. B cell subset analysis.
Frequencies of CD19 total B cells, CD19+CD27+ memory B cells, CD19+CD27+IgM negative class switched (CS) B cells, plasmablasts (PB) and CD86+ plasmablasts before IA (day -1) and after the 4th IA (day -4).

References

    1. Carruthers BM, van de Sande MI, De Meirleir KL, Klimas NG, Broderick G, Mitchell T, et al. Myalgic encephalomyelitis: International Consensus Criteria. Journal of internal medicine. 2011;270(4):327–38. Epub 2011/07/23. doi: ; PubMed Central PMCID: PMCPmc3427890.
    1. Fluge O, Bruland O, Risa K, Storstein A, Kristoffersen EK, Sapkota D, et al. Benefit from B-lymphocyte depletion using the anti-CD20 antibody rituximab in chronic fatigue syndrome. A double-blind and placebo-controlled study. PloS one. 2011;6(10):e26358 Epub 2011/11/01. doi: ; PubMed Central PMCID: PMCPmc3198463.
    1. Fluge O, Risa K, Lunde S, Alme K, Rekeland IG, Sapkota D, et al. B-Lymphocyte Depletion in Myalgic Encephalopathy/ Chronic Fatigue Syndrome. An Open-Label Phase II Study with Rituximab Maintenance Treatment. PloS one. 2015;10(7):e0129898 Epub 2015/07/02. doi: ; PubMed Central PMCID: PMCPmc4488509.
    1. Loebel M, Grabowski P, Heidecke H, Bauer S, Hanitsch LG, Wittke K, et al. Antibodies to beta adrenergic and muscarinic cholinergic receptors in patients with Chronic Fatigue Syndrome. Brain, behavior, and immunity. 2016;52:32–9. Epub 2015/09/25. doi: .
    1. Tanaka S, Kuratsune H, Hidaka Y, Hakariya Y, Tatsumi KI, Takano T, et al. Autoantibodies against muscarinic cholinergic receptor in chronic fatigue syndrome. International journal of molecular medicine. 2003;12(2):225–30. Epub 2003/07/10. .
    1. Yamamoto S, Ouchi Y, Nakatsuka D, Tahara T, Mizuno K, Tajima S, et al. Reduction of [11C](+)3-MPB binding in brain of chronic fatigue syndrome with serum autoantibody against muscarinic cholinergic receptor. PloS one. 2012;7(12):e51515 Epub 2012/12/15. doi: ; PubMed Central PMCID: PMCPmc3519853.
    1. Wallukat G, Schimke I. Agonistic autoantibodies directed against G-protein-coupled receptors and their relationship to cardiovascular diseases. Seminars in immunopathology. 2014;36(3):351–63. Epub 2014/04/30. doi: .
    1. Braun N, Bosch T. Immunoadsorption, current status and future developments. Expert opinion on investigational drugs. 2000;9(9):2017–38. Epub 2000/11/04. doi: .
    1. Dandel M, Wallukat G, Englert A, Hetzer R. Immunoadsorption therapy for dilated cardiomyopathy and pulmonary arterial hypertension. Atherosclerosis Supplements. 2013;14(1):203–11. Epub 2013/01/30. doi: .
    1. Dandel M, Wallukat G, Englert A, Lehmkuhl HB, Knosalla C, Hetzer R. Long-term benefits of immunoadsorption in beta(1)-adrenoceptor autoantibody-positive transplant candidates with dilated cardiomyopathy. European journal of heart failure. 2012;14(12):1374–88. Epub 2012/08/16. doi: .
    1. Dogan Onugoren M, Golombeck KS, Bien C, Abu-Tair M, Brand M, Bulla-Hellwig M, et al. Immunoadsorption therapy in autoimmune encephalitides. Neurology(R) neuroimmunology & neuroinflammation. 2016;3(2):e207 Epub 2016/03/16. doi: ; PubMed Central PMCID: PMCPmc4772911.
    1. Haupt WF, Rosenow F, van der Ven C, Birkmann C. Immunoadsorption in Guillain-Barre syndrome and myasthenia gravis. Therapeutic apheresis: official journal of the International Society for Apheresis and the Japanese Society for Apheresis. 2000;4(3):195–7. Epub 2000/07/26. .
    1. Heine J, Ly LT, Lieker I, Slowinski T, Finke C, Pruss H, et al. Immunoadsorption or plasma exchange in the treatment of autoimmune encephalitis: a pilot study. Journal of neurology. 2016;263(12):2395–402. Epub 2016/09/09. doi: .
    1. Kronbichler A, Brezina B, Quintana LF, Jayne DR. Efficacy of plasma exchange and immunoadsorption in systemic lupus erythematosus and antiphospholipid syndrome: A systematic review. Autoimmunity reviews. 2016;15(1):38–49. Epub 2015/09/01. doi: .
    1. Wallukat G, Muller J, Hetzer R. Specific removal of beta1-adrenergic autoantibodies from patients with idiopathic dilated cardiomyopathy. The New England journal of medicine. 2002;347(22):1806 Epub 2002/11/29. doi: .
    1. Bell DS. The Doctor's Guide To Chronic Fatigue Syndrome: Understanding, Treating, And Living With Cfids: Da Capo Press; 1995. 122 f. p.
    1. Cella D. The Functional Assessment of Cancer Therapy-Anemia (FACT-An) Scale: a new tool for the assessment of outcomes in cancer anemia and fatigue. Seminars in hematology. 1997;34(3 Suppl 2):13–9. Epub 1997/07/01. .
    1. Mathiowetz V, Weber K, Volland G, Kashman N. Reliability and validity of grip and pinch strength evaluations. The Journal of hand surgery. 1984;9(2):222–6. Epub 1984/03/01. .
    1. Scherbakov N, Sandek A, Martens-Lobenhoffer J, Kung T, Turhan G, Liman T, et al. Endothelial dysfunction of the peripheral vascular bed in the acute phase after ischemic stroke. Cerebrovascular diseases (Basel, Switzerland). 2012;33(1):37–46. Epub 2011/12/03. doi: .
    1. Newton DJ, Kennedy G, Chan KK, Lang CC, Belch JJ, Khan F. Large and small artery endothelial dysfunction in chronic fatigue syndrome. International journal of cardiology. 2012;154(3):335–6. Epub 2011/11/15. doi: .
    1. Schneidewind-Muller JM, Winkler RE, Tiess M, Muller W, Ramlow W. Changes in lymphocytic cluster distribution during extracorporeal immunoadsorption. Artificial organs. 2002;26(2):140–4. Epub 2002/03/07. .
    1. Podojil JR, Sanders VM. CD86 and beta2-adrenergic receptor stimulation regulate B-cell activity cooperatively. Trends in immunology. 2005;26(4):180–5. Epub 2005/03/31. doi: .
    1. Slota C, Shi A, Chen G, Bevans M, Weng NP. Norepinephrine preferentially modulates memory CD8 T cell function inducing inflammatory cytokine production and reducing proliferation in response to activation. Brain, behavior, and immunity. 2015;46:168–79. Epub 2015/02/06. doi: ; PubMed Central PMCID: PMCPMC4414741.
    1. Kavelaars A, Kuis W, Knook L, Sinnema G, Heijnen CJ. Disturbed neuroendocrine-immune interactions in chronic fatigue syndrome. The Journal of clinical endocrinology and metabolism. 2000;85(2):692–6. Epub 2000/02/26. doi: .

Source: PubMed

3
Subscribe