Mitochondrial dysfunction in inflammatory bowel disease

Elizabeth A Novak, Kevin P Mollen, Elizabeth A Novak, Kevin P Mollen

Abstract

Inflammatory Bowel Disease (IBD) represents a group of idiopathic disorders characterized by chronic or recurring inflammation of the gastrointestinal tract. While the exact etiology of disease is unknown, IBD is recognized to be a complex, multifactorial disease that results from an intricate interplay of genetic predisposition, an altered immune response, changes in the intestinal microbiota, and environmental factors. Together, these contribute to a destruction of the intestinal epithelial barrier, increased gut permeability, and an influx of immune cells. Given that most cellular functions as well as maintenance of the epithelial barrier is energy-dependent, it is logical to assume that mitochondrial dysfunction may play a key role in both the onset and recurrence of disease. Indeed several studies have demonstrated evidence of mitochondrial stress and alterations in mitochondrial function within the intestinal epithelium of patients with IBD and mice undergoing experimental colitis. Although the hallmarks of mitochondrial dysfunction, including oxidative stress and impaired ATP production are known to be evident in the intestines of patients with IBD, it is as yet unclear whether these processes occur as a cause of consequence of disease. We provide a current review of mitochondrial function in the setting of intestinal inflammation during IBD.

Keywords: autophagy; gut-barrier function; inflammasome; inflammatory bowel disease; intestinal inflammation; metabolic stress; mitochondrial dysfunction; reactive oxygen species.

Figures

Figure 1
Figure 1
IEC function and intestinal homeostasis can be influenced by mitochondrial dysfunction. (A) During intestinal homeostasis, goblet cells produce a healthy mucus layer that protects the IECs from the contents of the lumen, and Paneth cells produce and release antimicrobial peptides to protect IECs. Mitochondria are dense and contain well-formed cristae. The tight junctions inhibit translocation of luminal antigens across the epithelial barrier. Any basal ROS produced is negated by cellular antioxidants. Leukocytes survey the laminia propria for threats. (B) Studies have shown that during the inflammatory conditions of IBD, the mucus layer is reduced and production of antimicrobial peptides is decreased, exposing the intestinal epithelium to the intestinal microbiota and luminal antigens. Mitochondria are swollen and abnormal, and cristae are irregular, resulting in a reduction in ATP production and an increase in ROS. Cellular antioxidants are also decreased, causing a buildup of cellular ROS. There is an increase in epithelial permeability (both transcellular and paracellular) and translocation of bacteria and luminal antigens. This results in an infiltration of immune cells, which also causes an increase of ROS. Both IL-8 and IL-1B are released by immune cells, and immune cell-bacterial interactions further instigates the release of pro-inflammatory mediators, which can feedback onto the IECs and influence other cellular components of the intestinal epithelium.

References

    1. Abdolghaffari A. H., Baghaei A., Moayer F., Esmaily H., Baeeri M., Monsef-Esfahani H. R., et al. . (2010). On the benefit of Teucrium in murine colitis through improvement of toxic inflammatory mediators. Hum. Exp. Toxicol. 29, 287–295. 10.1177/0960327110361754
    1. Adolph T. E., Tomczak M. F., Niederreiter L., Ko H. J., Bock J., Martinez-Naves E., et al. . (2013). Paneth cells as a site of origin for intestinal inflammation. Nature 503, 272–276. 10.1038/nature12599
    1. Ahmad M. S., Krishnan S., Ramakrishna B. S., Mathan M., Pulimood A. B., Murthy S. N. (2000). Butyrate and glucose metabolism by colonocytes in experimental colitis in mice. Gut 46, 493–499. 10.1136/gut.46.4.493
    1. Ahn S. H., Shah Y. M., Inoue J., Morimura K., Kim I., Yim S., et al. . (2008). Hepatocyte nuclear factor 4alpha in the intestinal epithelial cells protects against inflammatory bowel disease. Inflamm. Bowel Dis. 14, 908–920. 10.1002/ibd.20413
    1. Alexander C., Votruba M., Pesch U. E., Thiselton D. L., Mayer S., Moore A., et al. . (2000). OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet. 26, 211–215. 10.1038/79944
    1. Alonso A., Martin P., Albarran C., Aquilera B., Garcia O., Guzman A., et al. . (1997). Detection of somatic mutations in the mitochondrial DNA control region of colorectal and gastric tumors by heteroduplex and single-strand conformation analysis. Electrophoresis 18, 682–685. 10.1002/elps.1150180504
    1. Al-Sadi R., Guo S., Dokladny K., Smith M. A., Ye D., Kaza A., et al. . (2012). Mechanism of interleukin-1beta induced-increase in mouse intestinal permeability in vivo. J. Interferon Cytokine Res. 32, 474–484. 10.1089/jir.2012.0031
    1. Andersen J. K. (2004). Oxidative stress in neurodegeneration: cause or consequence? Nat. Med. 10(Suppl.), S18–S25. 10.1038/nrn1434
    1. Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., et al. . (1981). Sequence and organization of the human mitochondrial genome. Nature 290, 457–465. 10.1038/290457a0
    1. Arab H. H., Al-Shorbagy M. Y., Abdallah D. M., Nassar N. N. (2014). Telmisartan attenuates colon inflammation, oxidative perturbations and apoptosis in a rat model of experimental inflammatory bowel disease. PLoS ONE 9:e97193. 10.1371/journal.pone.0097193
    1. Archer S. L. (2013). Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. N. Engl. J. Med. 369, 2236–2251. 10.1056/NEJMra1215233
    1. Arco A. D., Satrústegui J. (2005). New mitochondrial carriers: an overview. Cell. Mol. Life Sci. 62, 2204–2227. 10.1007/s00018-005-5197-x
    1. Artal-Sanz M., Tavernarakis N. (2009). Prohibitin and mitochondrial biology. Trends Endocrinol. Metab. 20, 394–401. 10.1016/j.tem.2009.04.004
    1. Ashktorab H., Frank S., Khaled A. R., Durum S. K., Kifle B., Smoot D. T. (2004). Bax translocation and mitochondrial fragmentation induced by Helicobacter pylori. Gut 53, 805–813. 10.1136/gut.2003.024372
    1. Babbs C. F. (1992). Oxygen radicals in ulcerative colitis. Free Radic. Biol. Med. 13, 169–181. 10.1016/0891-5849(92)90079-V
    1. Baker M. J., Tatsuta T., Langer T. (2011). Quality control of mitochondrial proteostasis. Cold Spring Harb. Perspect. Biol. 3:a007559. 10.1101/cshperspect.a007559
    1. Bär F., Bochmann W., Widok A., von Medem K., Pagel R., Hirose M., et al. . (2013). Mitochondrial gene polymorphisms that protect mice from colitis. Gastroenterology 145, 1055–1063.e1053. 10.1053/j.gastro.2013.07.015
    1. Barrett J. C., Hansoul S., Nicolae D. L., Cho J. H., Duerr R. H., Rioux J. D., et al. . (2008). Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat. Genet. 40, 955–962. 10.1038/ng.175
    1. Basivireddy J., Vasudevan A., Jacob M., Balasubramanian K. A. (2002). Indomethacin-induced mitochondrial dysfunction and oxidative stress in villus enterocytes. Biochem. Pharmacol. 64, 339–349. 10.1016/S0006-2952(02)01067-5
    1. Bauer C., Duewell P., Mayer C., Lehr H. A., Fitzgerald K. A., Dauer M., et al. . (2010). Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 59, 1192–1199. 10.1136/gut.2009.197822
    1. Beltrán B., Nos P., Dasi F., Iborra M., Bastida G., Martínez M., et al. . (2010). Mitochondrial dysfunction, persistent oxidative damage, and catalase inhibition in immune cells of naive and treated Crohn's disease. Inflamm. Bowel Dis. 16, 76–86. 10.1002/ibd.21027
    1. Bennett R. A., Rubin P. H., Present D. H. (1991). Frequency of inflammatory bowel disease in offspring of couples both presenting with inflammatory bowel disease. Gastroenterology 100, 1638–1643.
    1. Bernstein C. N. (2008). Assessing environmental risk factors affecting the inflammatory bowel diseases: a joint workshop of the Crohn's & Colitis Foundations of Canada and the USA. Inflamm. Bowel Dis. 14, 1139–1146. 10.1002/ibd.20494
    1. Bernstein C. N., Shanahan F. (2008). Disorders of a modern lifestyle: reconciling the epidemiology of inflammatory bowel diseases. Gut 57, 1185–1191. 10.1136/gut.2007.122143
    1. Bernstein C. N., Walker J. R., Graff L. A. (2006). On studying the connection between stress and IBD. Am. J. Gastroenterol. 101, 782–785. 10.1111/j.1572-0241.2006.00474.x
    1. Biswas K., Bandyopadhyay U., Chattopadhyay I., Varadaraj A., Ali E., Banerjee R. K. (2003). A novel antioxidant and antiapoptotic role of omeprazole to block gastric ulcer through scavenging of hydroxyl radical. J. Biol. Chem. 278, 10993–11001. 10.1074/jbc.M210328200
    1. Blau S., Rubinstein A., Bass P., Singaram C., Kohen R. (1999). Differences in the reducing power along the rat GI tract: lower antioxidant capacity of the colon. Mol. Cell. Biochem. 194, 185–191. 10.1023/A:1006994800272
    1. Borrelli F., Fasolino I., Romano B., Capasso R., Maiello F., Coppola D., et al. . (2013). Beneficial effect of the non-psychotropic plant cannabinoid cannabigerol on experimental inflammatory bowel disease. Biochem. Pharmacol. 85, 1306–1316. 10.1016/j.bcp.2013.01.017
    1. Breslin N. P., Nash C., Hilsden R. J., Hershfield N. B., Price L. M., Meddings J. B., et al. . (2001). Intestinal permeability is increased in a proportion of spouses of patients with Crohn's disease. Am. J. Gastroenterol. 96, 2934–2938. 10.1111/j.1572-0241.2001.04684.x
    1. Brown D. I., Griendling K. K. (2009). Nox proteins in signal transduction. Free Radic. Biol. Med. 47, 1239–1253. 10.1016/j.freeradbiomed.2009.07.023
    1. Buffinton G. D., Doe W. F. (1995). Depleted mucosal antioxidant defences in inflammatory bowel disease. Free Radic. Biol. Med. 19, 911–918. 10.1016/0891-5849(95)94362-H
    1. Cadwell K., Liu J. Y., Brown S. L., Miyoshi H., Loh J., Lennerz J. K., et al. . (2008). A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263. 10.1038/nature07416
    1. Cadwell K., Patel K. K., Komatsu M., Virgin H. W.T., Stappenbeck T. S. (2009). A common role for Atg16L1, Atg5 and Atg7 in small intestinal Paneth cells and Crohn disease. Autophagy 5, 250–252. 10.4161/auto.5.2.7560
    1. Canavan C., Abrams K. R., Mayberry J. (2006). Meta-analysis: colorectal and small bowel cancer risk in patients with Crohn's disease. Aliment. Pharmacol. Ther. 23, 1097–1104. 10.1111/j.1365-2036.2006.02854.x
    1. Cao S. S., Wang M., Harrington J. C., Chuang B. M., Eckmann L., Kaufman R. J. (2014). Phosphorylation of eIF2alpha is dispensable for differentiation but required at a posttranscriptional level for paneth cell function and intestinal homeostasis in mice. Inflamm. Bowel Dis. 20, 712–722. 10.1097/MIB.0000000000000010
    1. Casari G., De Fusco M., Ciarmatori S., Zeviani M., Mora M., Fernandez P., et al. . (1998). Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93, 973–983. 10.1016/S0092-8674(00)81203-9
    1. Chan D. C. (2006). Mitochondria: dynamic organelles in disease, aging, and development. Cell 125, 1241–1252. 10.1016/j.cell.2006.06.010
    1. Chapman M. A., Grahn M. F., Boyle M. A., Hutton M., Rogers J., Williams N. S. (1994). Butyrate oxidation is impaired in the colonic mucosa of sufferers of quiescent ulcerative colitis. Gut 35, 73–76. 10.1136/gut.35.1.73
    1. Chen H., Detmer S. A., Ewald A. J., Griffin E. E., Fraser S. E., Chan D. C. (2003). Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189–200. 10.1083/jcb.200211046
    1. Chen Y., Gibson S. B. (2008). Is mitochondrial generation of reactive oxygen species a trigger for autophagy? Autophagy 4, 246–248. 10.4161/auto.5432
    1. Chistiakov D. A., Sobenin I. A., Revin V. V., Orekhov A. N., Bobryshev Y. V. (2014). Mitochondrial aging and age-related dysfunction of mitochondria. Biomed Res. Int. 2014:238463. 10.1155/2014/238463
    1. Cho J. H., Brant S. R. (2011). Recent insights into the genetics of inflammatory bowel disease. Gastroenterology 140, 1704–1712. 10.1053/j.gastro.2011.02.046
    1. Chowdhury S. K., Smith D. R., Fernyhough P. (2013). The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol. Dis. 51, 56–65. 10.1016/j.nbd.2012.03.016
    1. Conner E. M., Brand S. J., Davis J. M., Kang D. Y., Grisham M. B. (1996). Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease: toxins, mediators, and modulators of gene expression. Inflamm. Bowel Dis. 2, 133–147.
    1. Coskun M., Olsen A. K., Holm T. L., Kvist P. H., Nielsen O. H., Riis L. B., et al. . (2012). TNF-alpha-induced down-regulation of CDX2 suppresses MEP1A expression in colitis. Biochim. Biophys. Acta 1822, 843–851. 10.1016/j.bbadis.2012.01.012
    1. Cribbs J. T., Strack S. (2009). Functional characterization of phosphorylation sites in dynamin-related protein 1. Methods Enzymol. 457, 231–253. 10.1016/S0076-6879(09)05013-7
    1. Crohn's Colitis Foundation of America (2014). The Facts about Inflammatory Bowel Disease. Available online at: (Accessed July 21, 2015).
    1. Crosnier C., Stamataki D., Lewis J. (2006). Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat. Rev. Genet. 7, 349–359. 10.1038/nrg1840
    1. Danese S., Fiocchi C. (2011). Ulcerative colitis. N. Engl. J. Med. 365, 1713–1725. 10.1056/NEJMra1102942
    1. Dashdorj A., Jyothi K. R., Lim S., Jo A., Nguyen M. N., Ha J., et al. . (2013). Mitochondria-targeted antioxidant MitoQ ameliorates experimental mouse colitis by suppressing NLRP3 inflammasome-mediated inflammatory cytokines. BMC Med. 11:178. 10.1186/1741-7015-11-178
    1. Davis B. K., Philipson C., Hontecillas R., Eden K., Bassaganya-Riera J., Allen I. C. (2014). Emerging significance of NLRs in inflammatory bowel disease. Inflamm. Bowel Dis. 20, 2412–2432. 10.1097/MIB.0000000000000151
    1. de Brito O. M., Scorrano L. (2008). Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610. 10.1038/nature07534
    1. Deitch E. A., Xu D., Kaise V. L. (2006). Role of the gut in the development of injury- and shock induced SIRS and MODS: the gut-lymph hypothesis, a review. Front. Biosci. 11:1816. 10.2741/1816
    1. Delpre G., Avidor I., Steinherz R., Kadish U., Ben-Bassat M. (1989). Ultrastructural abnormalities in endoscopically and histologically normal and involved colon in ulcerative colitis. Am. J. Gastroenterol. 84, 1038–1046.
    1. Denton R. M. (2009). Regulation of mitochondrial dehydrogenases by calcium ions. Biochim. Biophys. Acta 1787, 1309–1316. 10.1016/j.bbabio.2009.01.005
    1. Desai H. G., Gupte P. A. (2005). Increasing incidence of Crohn's disease in India: is it related to improved sanitation? Indian J. Gastroenterol. 24, 23–24.
    1. De-Souza D. A., Greene L. J. (2005). Intestinal permeability and systemic infections in critically ill patients: effect of glutamine. Crit. Care Med. 33, 1125–1135. 10.1097/01.CCM.0000162680.52397.97
    1. Dickman K. G., Hempson S. J., Anderson J., Lippe S., Zhao L., Burakoff R., et al. . (2000). Rotavirus alters paracellular permeability and energy metabolism in Caco-2 cells. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G757–G766.
    1. D'Incà R., Cardin R., Benazzato L., Angriman I., Martines D., Sturniolo G. C. (2004). Oxidative DNA damage in the mucosa of ulcerative colitis increases with disease duration and dysplasia. Inflamm. Bowel Dis. 10, 23–27. 10.1097/00054725-200401000-00003
    1. Dincer Y., Erzin Y., Himmetoglu S., Gunes K. N., Bal K., Akcay T. (2007). Oxidative DNA damage and antioxidant activity in patients with inflammatory bowel disease. Dig. Dis. Sci. 52, 1636–1641. 10.1007/s10620-006-9386-8
    1. dos Reis S. B., de Oliveira C. C., Acedo S. C., Miranda D. D., Ribeiro M. L., Pedrazzoli J., et al. . (2009). Attenuation of colitis injury in rats using Garcinia cambogia extract. Phytother. Res. 23, 324–329. 10.1002/ptr.2626
    1. Du G., Mouithys-Mickalad A., Sluse F. E. (1998). Generation of superoxide anion by mitochondria and impairment of their functions during anoxia and reoxygenation in vitro. Free Radic. Biol. Med. 25, 1066–1074. 10.1016/S0891-5849(98)00148-8
    1. Duchmann R., Schmitt E., Knolle P., Meyer zum Büschenfelde K. H., Neurath M. (1996). Tolerance towards resident intestinal flora in mice is abrogated in experimental colitis and restored by treatment with interleukin-10 or antibodies to interleukin-12. Eur. J. Immunol. 26, 934–938. 10.1002/eji.1830260432
    1. Dupaul-Chicoine J., Dagenais M., Saleh M. (2013). Crosstalk between the intestinal microbiota and the innate immune system in intestinal homeostasis and inflammatory bowel disease. Inflamm. Bowel Dis. 19, 2227–2237. 10.1097/MIB.0b013e31828dcac7
    1. Elson C. O., Sartor R. B., Tennyson G. S., Riddell R. H. (1995). Experimental models of inflammatory bowel disease. Gastroenterology 109, 1344–1367. 10.1016/0016-5085(95)90599-5
    1. Esworthy R. S., Aranda R., Martín M. G., Doroshow J. H., Binder S. W., Chu F. F. (2001). Mice with combined disruption of Gpx1 and Gpx2 genes have colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G848–G855.
    1. Franke A., Balschun T., Sina C., Ellinghaus D., Häsler R., Mayr G., et al. . (2010). Genome-wide association study for ulcerative colitis identifies risk loci at 7q22 and 22q13 (IL17REL). Nat. Genet. 42, 292–294. 10.1038/ng.553
    1. Fratila O. C., Craciun C. (2010). Ultrastructural evidence of mucosal healing after infliximab in patients with ulcerative colitis. J. Gastrointestin. Liver Dis. 19, 147–153.
    1. Friedman J. R., Lackner L. L., West M., Dibenedetto J. R., Nunnari J., Voeltz G. K. (2011). ER tubules mark sites of mitochondrial division. Science 334, 358–362. 10.1126/science.1207385
    1. Fukushima K., Fiocchi C. (2004). Paradoxical decrease of mitochondrial DNA deletions in epithelial cells of active ulcerative colitis patients. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G804–G813. 10.1152/ajpgi.00398.2003
    1. Fung K. Y., Brierley G. V., Henderson S., Hoffmann P., McColl S. R., Lockett T., et al. . (2011). Butyrate-induced apoptosis in HCT116 colorectal cancer cells includes induction of a cell stress response. J. Proteome Res. 10, 1860–1869. 10.1021/pr1011125
    1. Galluzzi L., Kepp O., Kroemer G. (2012). Mitochondria: master regulators of danger signalling. Nat. Rev. Mol. Cell Biol. 13, 780–788. 10.1038/nrm3479
    1. Geerling B. J., Badart-Smook A., van Deursen C., van Houwelingen A. C., Russel M. G., Stockbrugger R. W., et al. . (2000). Nutritional supplementation with N-3 fatty acids and antioxidants in patients with Crohn's disease in remission: effects on antioxidant status and fatty acid profile. Inflamm. Bowel Dis. 6, 77–84. 10.1097/00054725-200005000-00002
    1. Geisler S., Holmström K. M., Skujat D., Fiesel F. C., Rothfuss O. C., Kahle P. J., et al. . (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12, 119–131. 10.1038/ncb2012
    1. Gersemann M., Stange E. F., Wehkamp J. (2011). From intestinal stem cells to inflammatory bowel diseases. World J. Gastroenterol. 17, 3198–3203. 10.3748/wjg.v17.i27.3198
    1. Gibson P. R., Anderson R. P., Mariadason J. M., Wilson A. J. (1996). Protective role of the epithelium of the small intestine and colon. Inflamm. Bowel Dis. 2, 279–302.
    1. Gibson T. B., Ng E., Ozminkowski R. J., Wang S., Burton W. N., Goetzel R. Z., et al. . (2008). The direct and indirect cost burden of Crohn's disease and ulcerative colitis. J. Occup. Environ. Med. 50, 1261–1272. 10.1097/JOM.0b013e318181b8ca
    1. Gillespie M. N., Pastukh V., Ruchko M. V. (2009). Oxidative DNA modifications in hypoxic signaling. Ann. N.Y. Acad. Sci. 1177, 140–150. 10.1111/j.1749-6632.2009.05036.x
    1. Girgin Karaoglu, Tüzün, Erkus, Ozütemiz, Dinçer. (1999). Effects of trimetazidine in ethanol- and acetic acid-induced colitis: oxidant/anti-oxidant status. Colorectal Dis. 1, 338–346. 10.1046/j.1463-1318.1999.00078.x
    1. Greco C. A., Maurer-Spurej E., Scott M. D., Kalab M., Nakane N., Ramírez-Arcos S. M. (2011). PEGylation prevents bacteria-induced platelet activation and biofilm formation in platelet concentrates. Vox Sang. 100, 336–339. 10.1111/j.1423-0410.2010.01419.x
    1. Grisham M. B. (1994). Oxidants and free radicals in inflammatory bowel disease. Lancet 344, 859–861. 10.1016/S0140-6736(94)92831-2
    1. Grisham M. B., Macdermott R. P., Deitch E. A. (1990). Oxidant defense mechanisms in the human colon. Inflammation 14, 669–680. 10.1007/BF00916370
    1. Grivennikov S. I. (2013). Inflammation and colorectal cancer: colitis-associated neoplasia. Semin. Immunopathol. 35, 229–244. 10.1007/s00281-012-0352-6
    1. Günther C., Martini E., Wittkopf N., Amann K., Weigmann B., Neumann H., et al. . (2011). Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature 477, 335–339. 10.1038/nature10400
    1. Haddad J. J. (2002). Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell. Signal. 14, 879–897. 10.1016/S0898-6568(02)00053-0
    1. Haga N., Saito S., Tsukumo Y., Sakurai J., Furuno A., Tsuruo T., et al. . (2010). Mitochondria regulate the unfolded protein response leading to cancer cell survival under glucose deprivation conditions. Cancer Sci. 101, 1125–1132. 10.1111/j.1349-7006.2010.01525.x
    1. Halestrap A. P., Dunlop J. L. (1986). Intramitochondrial regulation of fatty acid beta-oxidation occurs between flavoprotein and ubiquinone. A role for changes in the matrix volume. Biochem. J. 239, 559–565. 10.1042/bj2390559
    1. Halfvarson J., Bodin L., Tysk C., Lindberg E., Järnerot G. (2003). Inflammatory bowel disease in a Swedish twin cohort: a long-term follow-up of concordance and clinical characteristics. Gastroenterology 124, 1767–1773. 10.1016/S0016-5085(03)00385-8
    1. Hamer H. M., Jonkers D., Venema K., Vanhoutvin S., Troost F. J., Brummer R. J. (2008). Review article: the role of butyrate on colonic function. Aliment. Pharmacol. Ther. 27, 104–119. 10.1111/j.1365-2036.2007.03562.x
    1. Han J., Yu C., Souza R. F., Theiss A. L. (2014). Prohibitin 1 modulates mitochondrial function of Stat3. Cell. Signal. 26, 2086–2095. 10.1016/j.cellsig.2014.06.006
    1. Hanauer S. B. (2006). Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm. Bowel Dis. 12(Suppl. 1), S3–S9. 10.1097/01.MIB.0000195385.19268.68
    1. Hansen J. J., Dürr A., Cournu-Rebeix I., Georgopoulos C., Ang D., Nielsen M. N., et al. . (2002). Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am. J. Hum. Genet. 70, 1328–1332. 10.1086/339935
    1. Harig J. M., Soergel K. H., Komorowski R. A., Wood C. M. (1989). Treatment of diversion colitis with short-chain-fatty acid irrigation. N. Engl. J. Med. 320, 23–28. 10.1056/NEJM198901053200105
    1. Haynes C. M., Ron D. (2010). The mitochondrial UPR—protecting organelle protein homeostasis. J. Cell Sci. 123, 3849–3855. 10.1242/jcs.075119
    1. Haynes C. M., Fiorese C. J., Lin Y. F. (2013). Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond. Trends Cell Biol. 23, 311–318. 10.1016/j.tcb.2013.02.002
    1. Haynes C. M., Petrova K., Benedetti C., Yang Y., Ron D. (2007). ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev. Cell 13, 467–480. 10.1016/j.devcel.2007.07.016
    1. He D., Hagen S. J., Pothoulakis C., Chen M., Medina N. D., Warny M., et al. . (2000). Clostridium difficile toxin A causes early damage to mitochondria in cultured cells. Gastroenterology 119, 139–150. 10.1053/gast.2000.8526
    1. Heazlewood C. K., Cook M. C., Eri R., Price G. R., Tauro S. B., Taupin D., et al. . (2008). Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med. 5:e54. 10.1371/journal.pmed.0050054
    1. Heerdt B. G., Halsey H. K., Lipkin M., Augenlicht L. H. (1990). Expression of mitochondrial cytochrome c oxidase in human colonic cell differentiation, transformation, and risk for colonic cancer. Cancer Res. 50, 1596–1600.
    1. Heller F., Florian P., Bojarski C., Richter J., Christ M., Hillenbrand B., et al. . (2005). Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 129, 550–564. 10.1016/j.gastro.2005.05.002
    1. Henderson P., van Limbergen J. E., Schwarze J., Wilson D. C. (2011). Function of the intestinal epithelium and its dysregulation in inflammatory bowel disease. Inflamm. Bowel Dis. 17, 382–395. 10.1002/ibd.21379
    1. Hernandez L. D., Pypaert M., Flavell R. A., Galán J. E. (2003). A Salmonella protein causes macrophage cell death by inducing autophagy. J. Cell Biol. 163, 1123–1131. 10.1083/jcb.200309161
    1. Herulf M., Ljung T., Hellström P. M., Weitzberg E., Lundberg J. O. (1998). Increased luminal nitric oxide in inflammatory bowel disease as shown with a novel minimally invasive method. Scand. J. Gastroenterol. 33, 164–169. 10.1080/00365529850166897
    1. Holloszy J. O. (1967). Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J. Biol. Chem. 242, 2278–2282.
    1. Hong Z., Kutty S., Toth P. T., Marsboom G., Hammel J. M., Chamberlain C., et al. . (2013). Role of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission in oxygen sensing and constriction of the ductus arteriosus. Circ. Res. 112, 802–815. 10.1161/CIRCRESAHA.111.300285
    1. Hoppins S., Lackner L., Nunnari J. (2007). The machines that divide and fuse mitochondria. Annu. Rev. Biochem. 76, 751–780. 10.1146/annurev.biochem.76.071905.090048
    1. Horibe T., Hoogenraad N. J. (2007). The chop gene contains an element for the positive regulation of the mitochondrial unfolded protein response. PLoS ONE 2:e835. 10.1371/journal.pone.0000835
    1. Hsieh S. Y., Shih T. C., Yeh C. Y., Lin C. J., Chou Y. Y., Lee Y. S. (2006). Comparative proteomic studies on the pathogenesis of human ulcerative colitis. Proteomics 6, 5322–5331. 10.1002/pmic.200500541
    1. Hu S., Ciancio M. J., Lahav M., Fujiya M., Lichtenstein L., Anant S., et al. . (2007). Translational inhibition of colonic epithelial heat shock proteins by IFN-gamma and TNF-alpha in intestinal inflammation. Gastroenterology 133, 1893–1904. 10.1053/j.gastro.2007.09.026
    1. Indriolo A., Greco S., Ravelli P., Fagiuoli S. (2011). What can we learn about biofilm/host interactions from the study of inflammatory bowel disease. J. Clin. Periodontol. 38(Suppl. 11), 36–43. 10.1111/j.1600-051X.2010.01680.x
    1. Ingerman E., Perkins E. M., Marino M., Mears J. A., McCaffery J. M., Hinshaw J. E., et al. . (2005). Dnm1 forms spirals that are structurally tailored to fit mitochondria. J. Cell Biol. 170, 1021–1027. 10.1083/jcb.200506078
    1. Ishiguro Y. (1999). Mucosal proinflammatory cytokine production correlates with endoscopic activity of ulcerative colitis. J. Gastroenterol. 34, 66–74. 10.1007/s005350050218
    1. Ishihara N., Otera H., Oka T., Mihara K. (2013). Regulation and physiologic functions of GTPases in mitochondrial fusion and fission in mammals. Antioxid. Redox Signal. 19, 389–399. 10.1089/ars.2012.4830
    1. Jass J. R., Walsh M. D. (2001). Altered mucin expression in the gastrointestinal tract: a review. J. Cell. Mol. Med. 5, 327–351. 10.1111/j.1582-4934.2001.tb00169.x
    1. Jornayvaz F. R., Shulman G. I. (2010). Regulation of mitochondrial biogenesis. Essays Biochem. 47, 69–84. 10.1042/bse0470069
    1. Kajiya M., Silva M. J., Sato K., Ouhara K., Kawai T. (2009). Hydrogen mediates suppression of colon inflammation induced by dextran sodium sulfate. Biochem. Biophys. Res. Commun. 386, 11–15. 10.1016/j.bbrc.2009.05.117
    1. Kameyama J., Narui H., Inui M., Sato T. (1984). Energy level in large intestinal mucosa in patients with ulcerative colitis. Tohoku J. Exp. Med. 143, 253–254. 10.1620/tjem.143.253
    1. Kaser A., Blumberg R. S. (2009). Endoplasmic reticulum stress in the intestinal epithelium and inflammatory bowel disease. Semin. Immunol. 21, 156–163. 10.1016/j.smim.2009.01.001
    1. Kaser A., Lee A. H., Franke A., Glickman J. N., Zeissig S., Tilg H., et al. . (2008). XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743–756. 10.1016/j.cell.2008.07.021
    1. Kathiria A. S., Butcher L. D., Feagins L. A., Souza R. F., Boland C. R., Theiss A. L. (2012). Prohibitin 1 modulates mitochondrial stress-related autophagy in human colonic epithelial cells. PLoS ONE 7:e31231. 10.1371/journal.pone.0031231
    1. Kim G. Y., Lee J. W., Ryu H. C., Wei J. D., Seong C. M., Kim J. H. (2010). Proinflammatory cytokine IL-1beta stimulates IL-8 synthesis in mast cells via a leukotriene B4 receptor 2-linked pathway, contributing to angiogenesis. J. Immunol. 184, 3946–3954. 10.4049/jimmunol.0901735
    1. Kobayashi K. S., Chamaillard M., Ogura Y., Henegariu O., Inohara N., Nunez G., et al. . (2005). Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731–734. 10.1126/science.1104911
    1. Koehler C. M., Beverly K. N., Leverich E. P. (2006). Redox pathways of the mitochondrion. Antioxid. Redox Signal. 8, 813–822. 10.1089/ars.2006.8.813
    1. Kolar S., Barhoumi R., Jones C. K., Wesley J., Lupton J. R., Fan Y. Y., et al. . (2011). Interactive effects of fatty acid and butyrate-induced mitochondrial Ca(2)(+) loading and apoptosis in colonocytes. Cancer 117, 5294–5303. 10.1002/cncr.26205
    1. Koshiba T. (2013). Mitochondrial-mediated antiviral immunity. Biochim. Biophys. Acta 1833, 225–232. 10.1016/j.bbamcr.2012.03.005
    1. Kozjak-Pavlovic V., Ross K., Rudel T. (2008). Import of bacterial pathogenicity factors into mitochondria. Curr. Opin. Microbiol. 11, 9–14. 10.1016/j.mib.2007.12.004
    1. Kruidenier L., Verspaget H. W. (2002). Review article: oxidative stress as a pathogenic factor in inflammatory bowel disease–radicals or ridiculous? Aliment. Pharmacol. Ther. 16, 1997–2015. 10.1046/j.1365-2036.2002.01378.x
    1. Kunz W. S. (2003). Different metabolic properties of mitochondrial oxidative phosphorylation in different cell types—important implications for mitochondrial cytopathies. Exp. Physiol. 88, 149–154. 10.1113/eph8802512
    1. Kwon K. H., Murakami A., Hayashi R., Ohigashi H. (2005). Interleukin-1beta targets interleukin-6 in progressing dextran sulfate sodium-induced experimental colitis. Biochem. Biophys. Res. Commun. 337, 647–654. 10.1016/j.bbrc.2005.09.107
    1. Layton A. N., Brown P. J., Galyov E. E. (2005). The Salmonella translocated effector SopA is targeted to the mitochondria of infected cells. J. Bacteriol. 187, 3565–3571. 10.1128/JB.187.10.3565-3571.2005
    1. Leary S. C., Battersby B. J., Moyes C. D. (1998). Inter-tissue differences in mitochondrial enzyme activity, RNA and DNA in rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 201(Pt 24), 3377–3384.
    1. Lee I., Hüttemann M. (2014). Energy crisis: the role of oxidative phosphorylation in acute inflammation and sepsis. Biochim. Biophys. Acta 1842, 1579–1586. 10.1016/j.bbadis.2014.05.031
    1. Lee Y. J., Jeong S. Y., Karbowski M., Smith C. L., Youle R. J. (2004). Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 15, 5001–5011. 10.1091/mbc.E04-04-0294
    1. Lees C. W., Barrett J. C., Parkes M., Satsangi J. (2011). New IBD genetics: common pathways with other diseases. Gut 60, 1739–1753. 10.1136/gut.2009.199679
    1. Legesse-Miller A., Massol R. H., Kirchhausen T. (2003). Constriction and Dnm1p recruitment are distinct processes in mitochondrial fission. Mol. Biol. Cell 14, 1953–1963. 10.1091/mbc.E02-10-0657
    1. Lenoir L., Rossary A., Joubert-Zakeyh J., Vergnaud-Gauduchon J., Farges M. C., Fraisse D., et al. . (2011). Lemon verbena infusion consumption attenuates oxidative stress in dextran sulfate sodium-induced colitis in the rat. Dig. Dis. Sci. 56, 3534–3545. 10.1007/s10620-011-1784-x
    1. Leverve X. M., Fontaine E. (2001). Role of substrates in the regulation of mitochondrial function in situ. IUBMB Life 52, 221–229. 10.1080/15216540152846037
    1. Lewis K., McKay D. M. (2009). Metabolic stress evokes decreases in epithelial barrier function. Ann. N.Y. Acad. Sci. 1165, 327–337. 10.1111/j.1749-6632.2009.04036.x
    1. Lewis K., Lutgendorff F., Phan V., Söderholm J. D., Sherman P. M., McKay D. M. (2010). Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflamm. Bowel Dis. 16, 1138–1148. 10.1002/ibd.21177
    1. Lih-Brody L., Powell S. R., Collier K. P., Reddy G. M., Cerchia R., Kahn E., et al. . (1996). Increased oxidative stress and decreased antioxidant defenses in mucosa of inflammatory bowel disease. Dig. Dis. Sci. 41, 2078–2086. 10.1007/BF02093613
    1. Lim J. H., Lee H. J., Ho Jung M., Song J. (2009). Coupling mitochondrial dysfunction to endoplasmic reticulum stress response: a molecular mechanism leading to hepatic insulin resistance. Cell. Signal. 21, 169–177. 10.1016/j.cellsig.2008.10.004
    1. Liu B., Gulati A. S., Cantillana V., Henry S. C., Schmidt E. A., Daniell X., et al. . (2013). Irgm1-deficient mice exhibit Paneth cell abnormalities and increased susceptibility to acute intestinal inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G573–G584. 10.1152/ajpgi.00071.2013
    1. Liu J. Z., van Sommeren S., Huang H., Ng S. C., Alberts R., Takahashi A., et al. . (2015). Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986. 10.1038/ng.3359
    1. Liu J., Killilea D. W., Ames B. N. (2002). Age-associated mitochondrial oxidative decay: improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-L- carnitine and/or R-alpha -lipoic acid. Proc. Natl. Acad. Sci. U.S.A. 99, 1876–1881. 10.1073/pnas.261709098
    1. Loftus E. V., Jr. (2004). Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126, 1504–1517. 10.1053/j.gastro.2004.01.063
    1. López-Armada M. J., Riveiro-Naveira R. R., Vaamonde-Garcia C., Valcárcel-Ares M. N. (2013). Mitochondrial dysfunction and the inflammatory response. Mitochondrion 13, 106–118. 10.1016/j.mito.2013.01.003
    1. Ma C., Wickham M. E., Guttman J. A., Deng W., Walker J., Madsen K. L., et al. . (2006). Citrobacter rodentium infection causes both mitochondrial dysfunction and intestinal epithelial barrier disruption in vivo: role of mitochondrial associated protein (Map). Cell. Microbiol. 8, 1669–1686. 10.1111/j.1462-5822.2006.00741.x
    1. Madsen K. L., Malfair D., Gray D., Doyle J. S., Jewell L. D., Fedorak R. N. (1999). Interleukin-10 gene-deficient mice develop a primary intestinal permeability defect in response to enteric microflora. Inflamm. Bowel Dis. 5, 262–270. 10.1097/00054725-199911000-00004
    1. Maeda S., Hsu L. C., Liu H., Bankston L. A., Iimura M., Kagnoff M. F., et al. . (2005). Nod2 mutation in Crohn's disease potentiates NF-kappaB activity and IL-1beta processing. Science 307, 734–738. 10.1126/science.1103685
    1. Maeda Y., Chida J. (2013). Control of cell differentiation by mitochondria, typically evidenced in dictyostelium development. Biomolecules 3, 943–966. 10.3390/biom3040943
    1. Maloy K. J., Powrie F. (2011). Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474, 298–306. 10.1038/nature10208
    1. Marsboom G., Toth P. T., Ryan J. J., Hong Z., Wu X., Fang Y. H., et al. . (2012). Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circ. Res. 110, 1484–1497. 10.1161/CIRCRESAHA.111.263848
    1. Martinon F., Burns K., Tschopp J. (2002). The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10, 417–426. 10.1016/S1097-2765(02)00599-3
    1. May G. R., Sutherland L. R., Meddings J. B. (1993). Is small intestinal permeability really increased in relatives of patients with Crohn's disease? Gastroenterology 104, 1627–1632.
    1. Mazalli M. R., Bragagnolo N. (2009). Increase of cholesterol oxidation and decrease of PUFA as a result of thermal processing and storage in eggs enriched with n-3 fatty acids. J. Agric. Food Chem. 57, 5028–5034. 10.1021/jf901187j
    1. McKenzie S. J., Baker M. S., Buffinton G. D., Doe W. F. (1996). Evidence of oxidant-induced injury to epithelial cells during inflammatory bowel disease. J. Clin. Invest. 98, 136–141. 10.1172/JCI118757
    1. Meissner F., Seger R. A., Moshous D., Fischer A., Reichenbach J., Zychlinsky A. (2010). Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. Blood 116, 1570–1573. 10.1182/blood-2010-01-264218
    1. Mikhailov T. A., Furner S. E. (2009). Breastfeeding and genetic factors in the etiology of inflammatory bowel disease in children. World J. Gastroenterol. 15, 270–279. 10.3748/wjg.15.270
    1. Mitchell P., Moyle J. (1967). Chemiosmotic hypothesis of oxidative phosphorylation. Nature 213, 137–139. 10.1038/213137a0
    1. Mizushima N., Klionsky D. J. (2007). Protein turnover via autophagy: implications for metabolism. Annu. Rev. Nutr. 27, 19–40. 10.1146/annurev.nutr.27.061406.093749
    1. Molodecky N. A., Kaplan G. G. (2010). Environmental risk factors for inflammatory bowel disease. Gastroenterol. Hepatol. (N.Y.) 6, 339–346.
    1. Monteleone G., Trapasso F., Parrello T., Biancone L., Stella A., Iuliano R., et al. . (1999). Bioactive IL-18 expression is up-regulated in Crohn's disease. J. Immunol. 163, 143–147.
    1. Mulder T. P., Verspaget H. W., Janssens A. R., de Bruin P. A., Peña A. S., Lamers C. B. (1991). Decrease in two intestinal copper/zinc containing proteins with antioxidant function in inflammatory bowel disease. Gut 32, 1146–1150.
    1. Nagai T., Abe A., Sasakawa C. (2005). Targeting of enteropathogenic Escherichia coli EspF to host mitochondria is essential for bacterial pathogenesis: critical role of the 16th leucine residue in EspF. J. Biol. Chem. 280, 2998–3011. 10.1074/jbc.M411550200
    1. Nakada K., Inoue K., Ono T., Isobe K., Ogura A., Goto Y. I., et al. . (2001). Inter-mitochondrial complementation: mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nat. Med. 7, 934–940. 10.1038/90976
    1. Namslauer I., Brzezinski P. (2009). A mitochondrial DNA mutation linked to colon cancer results in proton leaks in cytochrome c oxidase. Proc. Natl. Acad. Sci. U.S.A. 106, 3402–3407. 10.1073/pnas.0811450106
    1. Narendra D. P., Jin S. M., Tanaka A., Suen D. F., Gautier C. A., Shen J., et al. . (2010). PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8:e1000298. 10.1371/journal.pbio.1000298
    1. Narendra D., Tanaka A., Suen D. F., Youle R. J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803. 10.1083/jcb.200809125
    1. Narushima S., Spitz D. R., Oberley L. W., Toyokuni S., Miyata T., Gunnett C. A., et al. . (2003). Evidence for oxidative stress in NSAID-induced colitis in IL10-/- mice. Free Radic. Biol. Med. 34, 1153–1166. 10.1016/S0891-5849(03)00065-0
    1. Nazli A., Yang P. C., Jury J., Howe K., Watson J. L., Söderholm J. D., et al. . (2004). Epithelia under metabolic stress perceive commensal bacteria as a threat. Am. J. Pathol. 164, 947–957. 10.1016/S0002-9440(10)63182-3
    1. Ni H. M., Williams J. A., Ding W. X. (2015). Mitochondrial dynamics and mitochondrial quality control. Redox Biol. 4, 6–13. 10.1016/j.redox.2014.11.006
    1. Noah T. K., Donahue B., Shroyer N. F. (2011). Intestinal development and differentiation. Exp. Cell Res. 317, 2702–2710. 10.1016/j.yexcr.2011.09.006
    1. Noble C. L., Arnott I. D. (2008). What is the risk that a child will develop inflammatory bowel disease if 1 or both parents have IBD? Inflamm. Bowel Dis. 14(Suppl. 2), S22–S23. 10.1002/ibd.20575
    1. Nunnari J., Suomalainen A. (2012). Mitochondria: in sickness and in health. Cell 148, 1145–1159. 10.1016/j.cell.2012.02.035
    1. Nunnari J., Marshall W. F., Straight A., Murray A., Sedat J. W., Walter P. (1997). Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol. Biol. Cell 8, 1233–1242. 10.1091/mbc.8.7.1233
    1. Ock C. Y., Kim E. H., Hong H., Hong K. S., Han Y. M., Choi K. S., et al. . (2011). Prevention of colitis-associated colorectal cancer with 8-hydroxydeoxyguanosine. Cancer Prev. Res. (Phila.) 4, 1507–1521. 10.1158/1940-6207.CAPR-11-0161
    1. Ono T., Isobe K., Nakada K., Hayashi J. I. (2001). Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat. Genet. 28, 272–275. 10.1038/90116
    1. Orholm M., Binder V., Sørensen T. I., Rasmussen L. P., Kyvik K. O. (2000). Concordance of inflammatory bowel disease among Danish twins. Results of a nationwide study. Scand. J. Gastroenterol. 35, 1075–1081. 10.1080/003655200451207
    1. Orvedahl A., Sumpter R., Jr., Xiao G., Ng A., Zou Z., Tang Y., et al. . (2011). Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 480, 113–117. 10.1038/nature10546
    1. Oz H. S., Chen T. S., McClain C. J., de Villiers W. J. (2005). Antioxidants as novel therapy in a murine model of colitis. J. Nutr. Biochem. 16, 297–304. 10.1016/j.jnutbio.2004.09.007
    1. Ozcan U., Cao Q., Yilmaz E., Lee A. H., Iwakoshi N. N., Ozdelen E., et al. . (2004). Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461. 10.1126/science.1103160
    1. Papa L., Germain D. (2014). SirT3 regulates the mitochondrial unfolded protein response. Mol. Cell. Biol. 34, 699–710. 10.1128/MCB.01337-13
    1. Parks D. A. (1989). Oxygen radicals: mediators of gastrointestinal pathophysiology. Gut 30, 293–298. 10.1136/gut.30.3.293
    1. Parks D. A., Williams T. K., Beckman J. S. (1988). Conversion of xanthine dehydrogenase to oxidase in ischemic rat intestine: a reevaluation. Am. J. Physiol. 254, G768–G774.
    1. Patergnani S., Suski J. M., Agnoletto C., Bononi A., Bonora M., De Marchi E., et al. . (2011). Calcium signaling around Mitochondria Associated Membranes (MAMs). Cell Commun. Signal. 9:19. 10.1186/1478-811X-9-19
    1. Pavlick K. P., Laroux F. S., Fuseler J., Wolf R. E., Gray L., Hoffman J., et al. . (2002). Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease. Free Radic. Biol. Med. 33, 311–322. 10.1016/S0891-5849(02)00853-5
    1. Payne C. M., Holubec H., Bernstein C., Bernstein H., Dvorak K., Green S. B., et al. . (2005). Crypt-restricted loss and decreased protein expression of cytochrome C oxidase subunit I as potential hypothesis-driven biomarkers of colon cancer risk. Cancer Epidemiol. Biomarkers Prev. 14, 2066–2075. 10.1158/1055-9965.EPI-05-0180
    1. Pellegrino M. W., Haynes C. M. (2015). Mitophagy and the mitochondrial unfolded protein response in neurodegeneration and bacterial infection. BMC Biol. 13:22. 10.1186/s12915-015-0129-1
    1. Pereira C., Grácio D., Teixeira J. P., Magro F. (2015). Oxidative stress and DNA damage: implications in inflammatory bowel disease. Inflamm. Bowel Dis. 21, 2403–2417. 10.1097/MIB.0000000000000506
    1. Perkins G. A., Frey T. G. (2000). Recent structural insight into mitochondria gained by microscopy. Micron 31, 97–111. 10.1016/S0968-4328(99)00065-7
    1. Persson P. G., Karlén P., Bernell O., Leijonmarck C. E., Broström O., Ahlbom A., et al. . (1994). Crohn's disease and cancer: a population-based cohort study. Gastroenterology 107, 1675–1679.
    1. Peterson L. W., Artis D. (2014). Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14, 141–153. 10.1038/nri3608
    1. Pfeffer G., Majamaa K., Turnbull D. M., Thorburn D., Chinnery P. F. (2012). Treatment for mitochondrial disorders. Cochrane Database Syst. Rev. 4:CD004426. 10.1002/14651858.CD004426.pub3
    1. Pfeiffer T., Schuster S., Bonhoeffer S. (2001). Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504–507. 10.1126/science.1058079
    1. Pirzer U., Schönhaar A., Fleischer B., Hermann E., Meyer zum Büschenfelde K. H. (1991). Reactivity of infiltrating T lymphocytes with microbial antigens in Crohn's disease. Lancet 338, 1238–1239. 10.1016/0140-6736(91)92104-A
    1. Pizzo P., Pozzan T. (2007). Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. Trends Cell Biol. 17, 511–517. 10.1016/j.tcb.2007.07.011
    1. Podolsky D. K. (2002). Inflammatory bowel disease. N. Engl. J. Med. 347, 417–429. 10.1056/NEJMra020831
    1. Polyak K., Li Y., Zhu H., Lengauer C., Willson J. K., Markowitz S. D., et al. . (1998). Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat. Genet. 20, 291–293. 10.1038/3108
    1. Pravda J. (2005). Radical induction theory of ulcerative colitis. World J. Gastroenterol. 11, 2371–2384. 10.3748/wjg.v11.i16.2371
    1. Puigserver P., Wu Z., Park C. W., Graves R., Wright M., Spiegelman B. M. (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839. 10.1016/S0092-8674(00)81410-5
    1. Rachmilewitz D., Eliakim R., Ackerman Z., Karmeli F. (1998). Direct determination of colonic nitric oxide level–a sensitive marker of disease activity in ulcerative colitis. Am. J. Gastroenterol. 93, 409–412.
    1. Rachmilewitz D., Stamler J. S., Bachwich D., Karmeli F., Ackerman Z., Podolsky D. K. (1995). Enhanced colonic nitric oxide generation and nitric oxide synthase activity in ulcerative colitis and Crohn's disease. Gut 36, 718–723. 10.1136/gut.36.5.718
    1. Ramakrishna B. S., Roberts-Thomson I. C., Pannall P. R., Roediger W. E. (1991). Impaired sulphation of phenol by the colonic mucosa in quiescent and active ulcerative colitis. Gut 32, 46–49. 10.1136/gut.32.1.46
    1. Rath E., Haller D. (2011). Inflammation and cellular stress: a mechanistic link between immune-mediated and metabolically driven pathologies. Eur. J. Nutr. 50, 219–233. 10.1007/s00394-011-0197-0
    1. Rath E., Berger E., Messlik A., Nunes T., Liu B., Kim S. C., et al. . (2012). Induction of dsRNA-activated protein kinase links mitochondrial unfolded protein response to the pathogenesis of intestinal inflammation. Gut 61, 1269–1278. 10.1136/gutjnl-2011-300767
    1. Resta-Lenert S., Smitham J., Barrett K. E. (2005). Epithelial dysfunction associated with the development of colitis in conventionally housed mdr1a-/- mice. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G153–G162. 10.1152/ajpgi.00395.2004
    1. Restivo N. L., Srivastava M. D., Schafer I. A., Hoppel C. L. (2004). Mitochondrial dysfunction in a patient with crohn disease: possible role in pathogenesis. J. Pediatr. Gastroenterol. Nutr. 38, 534–538. 10.1097/00005176-200405000-00014
    1. Rezaie A., Ghorbani F., Eshghtork A., Zamani M. J., Dehghan G., Taghavi B., et al. . (2006). Alterations in salivary antioxidants, nitric oxide, and transforming growth factor-beta 1 in relation to disease activity in Crohn's disease patients. Ann. N.Y. Acad. Sci. 1091, 110–122. 10.1196/annals.1378.060
    1. Rezaie A., Parker R. D., Abdollahi M. (2007). Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause? Dig. Dis. Sci. 52, 2015–2021. 10.1007/s10620-006-9622-2
    1. Rigoli L., Caruso R. A. (2014). Inflammatory bowel disease in pediatric and adolescent patients: a biomolecular and histopathological review. World J. Gastroenterol. 20, 10262–10278. 10.3748/wjg.v20.i30.10262
    1. Rinaldo P., Matern D., Bennett M. J. (2002). Fatty acid oxidation disorders. Annu. Rev. Physiol. 64, 477–502. 10.1146/annurev.physiol.64.082201.154705
    1. Rioux J. D., Xavier R. J., Taylor K. D., Silverberg M. S., Goyette P., Huett A., et al. . (2007). Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39, 596–604. 10.1038/ng2032
    1. Roda G., Sartini A., Zambon E., Calafiore A., Marocchi M., Caponi A., et al. . (2010). Intestinal epithelial cells in inflammatory bowel diseases. World J. Gastroenterol. 16, 4264–4271. 10.3748/wjg.v16.i34.4264
    1. Rodenburg W., Keijer J., Kramer E., Vink C., van der Meer R., Bovee-Oudenhoven I. M. (2008). Impaired barrier function by dietary fructo-oligosaccharides (FOS) in rats is accompanied by increased colonic mitochondrial gene expression. BMC Genomics 9:144. 10.1186/1471-2164-9-144
    1. Roediger W. E. (1980a). The colonic epithelium in ulcerative colitis: an energy-deficiency disease? Lancet 2, 712–715. 10.1016/S0140-6736(80)91934-0
    1. Roediger W. E. (1980b). Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21, 793–798. 10.1136/gut.21.9.793
    1. Roediger W. E., Nance S. (1986). Metabolic induction of experimental ulcerative colitis by inhibition of fatty acid oxidation. Br. J. Exp. Pathol. 67, 773–782.
    1. Rojo M., Legros F., Chateau D., Lombès A. (2002). Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J. Cell Sci. 115, 1663–1674.
    1. Ron D., Walter P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529. 10.1038/nrm2199
    1. Russell R. K., Satsangi J. (2008). Does IBD run in families? Inflamm. Bowel Dis. 14(Suppl. 2), S20–S21. 10.1002/ibd.20573
    1. Ryan M. T., Hoogenraad N. J. (2007). Mitochondrial-nuclear communications. Annu. Rev. Biochem. 76, 701–722. 10.1146/annurev.biochem.76.052305.091720
    1. Saitoh T., Fujita N., Jang M. H., Uematsu S., Yang B. G., Satoh T., et al. . (2008). Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456, 264–268. 10.1038/nature07383
    1. Salim S. Y., Söderholm J. D. (2011). Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm. Bowel Dis. 17, 362–381. 10.1002/ibd.21403
    1. Sánchez S., Martín M. J., Ortiz P., Motilva V., Alarcón de la Lastra C. (2002). Effects of dipyrone on inflammatory infiltration and oxidative metabolism in gastric mucosa: comparison with acetaminophen and diclofenac. Dig. Dis. Sci. 47, 1389–1398. 10.1023/A:1015395103160
    1. Santel A., Fuller M. T. (2001). Control of mitochondrial morphology by a human mitofusin. J. Cell Sci. 114, 867–874.
    1. Santhanam S., Venkatraman A., Ramakrishna B. S. (2007). Impairment of mitochondrial acetoacetyl CoA thiolase activity in the colonic mucosa of patients with ulcerative colitis. Gut 56, 1543–1549. 10.1136/gut.2006.108449
    1. Sartor R. B. (1994). Cytokines in intestinal inflammation: pathophysiological and clinical considerations. Gastroenterology 106, 533–539.
    1. Scherz-Shouval R., Elazar Z. (2007). ROS, mitochondria and the regulation of autophagy. Trends Cell Biol. 17, 422–427. 10.1016/j.tcb.2007.07.009
    1. Schmitz H., Barmeyer C., Fromm M., Runkel N., Foss H. D., Bentzel C. J., et al. . (1999). Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis. Gastroenterology 116, 301–309. 10.1016/S0016-5085(99)70126-5
    1. Schorah C. J. (1998). Antioxidants in children with inflammatory bowel disease. Am. J. Clin. Nutr. 67, 151–152.
    1. Schoultz I., Söderholm J. D., McKay D. M. (2011). Is metabolic stress a common denominator in inflammatory bowel disease? Inflamm. Bowel Dis. 17, 2008–2018. 10.1002/ibd.21556
    1. Schoultz I., Verma D., Halfvarsson J., Törkvist L., Fredrikson M., Sjöqvist U., et al. . (2009). Combined polymorphisms in genes encoding the inflammasome components NALP3 and CARD8 confer susceptibility to Crohn's disease in Swedish men. Am. J. Gastroenterol. 104, 1180–1188. 10.1038/ajg.2009.29
    1. Schürmann G., Brüwer M., Klotz A., Schmid K. W., Senninger N., Zimmer K. P. (1999). Transepithelial transport processes at the intestinal mucosa in inflammatory bowel disease. Int. J. Colorectal Dis. 14, 41–46. 10.1007/s003840050181
    1. Sengül N., Işik S., Aslim B., Uçar G., Demirbağ A. E. (2011). The effect of exopolysaccharide-producing probiotic strains on gut oxidative damage in experimental colitis. Dig. Dis. Sci. 56, 707–714. 10.1007/s10620-010-1362-7
    1. Seth R. B., Sun L., Ea C. K., Chen Z. J. (2005). Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122, 669–682. 10.1016/j.cell.2005.08.012
    1. Shekhawat P. S., Srinivas S. R., Matern D., Bennett M. J., Boriack R., George V., et al. . (2007). Spontaneous development of intestinal and colonic atrophy and inflammation in the carnitine-deficient jvs (OCTN2(-/-)) mice. Mol. Genet. Metab. 92, 315–324. 10.1016/j.ymgme.2007.08.002
    1. Shimada K., Crother T. R., Karlin J., Dagvadorj J., Chiba N., Chen S., et al. . (2012). Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36, 401–414. 10.1016/j.immuni.2012.01.009
    1. Shkoda A., Ruiz P. A., Daniel H., Kim S. C., Rogler G., Sartor R. B., et al. . (2007). Interleukin-10 blocked endoplasmic reticulum stress in intestinal epithelial cells: impact on chronic inflammation. Gastroenterology 132, 190–207. 10.1053/j.gastro.2006.10.030
    1. Siddiqui A., Ancha H., Tedesco D., Lightfoot S., Stewart C. A., Harty R. F. (2006). Antioxidant therapy with N-acetylcysteine plus mesalamine accelerates mucosal healing in a rodent model of colitis. Dig. Dis. Sci. 51, 698–705. 10.1007/s10620-006-3194-z
    1. Sido B., Hack V., Hochlehnert A., Lipps H., Herfarth C., Dröge W. (1998). Impairment of intestinal glutathione synthesis in patients with inflammatory bowel disease. Gut 42, 485–492. 10.1136/gut.42.4.485
    1. Siegmund B., Lehr H. A., Fantuzzi G., Dinarello C. A. (2001). IL-1 beta -converting enzyme (caspase-1) in intestinal inflammation. Proc. Natl. Acad. Sci. U.S.A. 98, 13249–13254. 10.1073/pnas.231473998
    1. Singh R., Kaushik S., Wang Y., Xiang Y., Novak I., Komatsu M., et al. . (2009a). Autophagy regulates lipid metabolism. Nature 458, 1131–1135. 10.1038/nature07976
    1. Singh S., Graff L. A., Bernstein C. N. (2009b). Do NSAIDs, antibiotics, infections, or stress trigger flares in IBD? Am. J. Gastroenterol. 104, 1298–1313; quiz 1314. 10.1038/ajg.2009.15
    1. Singh S. B., Ornatowski W., Vergne I., Naylor J., Delgado M., Roberts E., et al. . (2010). Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria. Nat. Cell Biol. 12, 1154–1165. 10.1038/ncb2119
    1. Söderholm J. D., Olaison G., Lindberg E., Hannestad U., Vindels A., Tysk C., et al. . (1999). Different intestinal permeability patterns in relatives and spouses of patients with Crohn's disease: an inherited defect in mucosal defence? Gut 44, 96–100. 10.1136/gut.44.1.96
    1. Söderholm J. D., Olaison G., Peterson K. H., Franzén L. E., Lindmark T., Wirén M., et al. . (2002a). Augmented increase in tight junction permeability by luminal stimuli in the non-inflamed ileum of Crohn's disease. Gut 50, 307–313. 10.1136/gut.50.3.307
    1. Söderholm J. D., Yang P. C., Ceponis P., Vohra A., Riddell R., Sherman P. M., et al. . (2002b). Chronic stress induces mast cell-dependent bacterial adherence and initiates mucosal inflammation in rat intestine. Gastroenterology 123, 1099–1108. 10.1053/gast.2002.36019
    1. Somasundaram S., Rafi S., Hayllar J., Sigthorsson G., Jacob M., Price A. B., et al. . (1997). Mitochondrial damage: a possible mechanism of the “topical” phase of NSAID induced injury to the rat intestine. Gut 41, 344–353. 10.1136/gut.41.3.344
    1. Somasundaram S., Sigthorsson G., Simpson R. J., Watts J., Jacob M., Tavares I. A., et al. . (2000). Uncoupling of intestinal mitochondrial oxidative phosphorylation and inhibition of cyclooxygenase are required for the development of NSAID-enteropathy in the rat. Aliment. Pharmacol. Ther. 14, 639–650. 10.1046/j.1365-2036.2000.00723.x
    1. Stowe D. F., Camara A. K. (2009). Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid. Redox Signal. 11, 1373–1414. 10.1089/ars.2008.2331
    1. Strauss M., Hofhaus G., Schröder R. R., Kühlbrandt W. (2008). Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J. 27, 1154–1160. 10.1038/emboj.2008.35
    1. Sundaram U., Hassanain H., Suntres Z., Yu J. G., Cooke H. J., Guzman J., et al. . (2003). Rabbit chronic ileitis leads to up-regulation of adenosine A1/A3 gene products, oxidative stress, and immune modulation. Biochem. Pharmacol. 65, 1529–1538. 10.1016/S0006-2952(03)00067-4
    1. Szabadkai G., Simoni A. M., Chami M., Wieckowski M. R., Youle R. J., Rizzuto R. (2004). Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol. Cell 16, 59–68. 10.1016/j.molcel.2004.09.026
    1. Taanman J. W. (1999). The mitochondrial genome: structure, transcription, translation and replication. Biochim. Biophys. Acta 1410, 103–123. 10.1016/S0005-2728(98)00161-3
    1. Tait S. W., Green D. R. (2012). Mitochondria and cell signalling. J. Cell Sci. 125, 807–815. 10.1242/jcs.099234
    1. Tarnopolsky M. A., Raha S. (2005). Mitochondrial myopathies: diagnosis, exercise intolerance, and treatment options. Med. Sci. Sports Exerc. 37, 2086–2093. 10.1249/01.mss.0000177341.89478.06
    1. Tatsuta T., Langer T. (2008). Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J. 27, 306–314. 10.1038/sj.emboj.7601972
    1. Tham D. M., Whitin J. C., Cohen H. J. (2002). Increased expression of extracellular glutathione peroxidase in mice with dextran sodium sulfate-induced experimental colitis. Pediatr. Res. 51, 641–646. 10.1203/00006450-200205000-00016
    1. Theiss A. L., Idell R. D., Srinivasan S., Klapproth J. M., Jones D. P., Merlin D., et al. . (2007). Prohibitin protects against oxidative stress in intestinal epithelial cells. FASEB J. 21, 197–206. 10.1096/fj.06-6801com
    1. Theiss A. L., Jenkins A. K., Okoro N. I., Klapproth J. M., Merlin D., Sitaraman S. V. (2009). Prohibitin inhibits tumor necrosis factor alpha-induced nuclear factor-kappa B nuclear translocation via the novel mechanism of decreasing importin alpha3 expression. Mol. Biol. Cell 20, 4412–4423. 10.1091/mbc.E09-05-0361
    1. Theiss A. L., Laroui H., Obertone T. S., Chowdhury I., Thompson W. E., Merlin D., et al. . (2011). Nanoparticle-based therapeutic delivery of prohibitin to the colonic epithelial cells ameliorates acute murine colitis. Inflamm. Bowel Dis. 17, 1163–1176. 10.1002/ibd.21469
    1. Thjodleifsson B., Sigthorsson G., Cariglia N., Reynisdottir I., Gudbjartsson D. F., Kristjansson K., et al. . (2003). Subclinical intestinal inflammation: an inherited abnormality in Crohn's disease relatives? Gastroenterology 124, 1728–1737. 10.1016/S0016-5085(03)00383-4
    1. Thomas R. E., Andrews L. A., Burman J. L., Lin W. Y., Pallanck L. J. (2014). PINK1-Parkin pathway activity is regulated by degradation of PINK1 in the mitochondrial matrix. PLoS Genet. 10:e1004279. 10.1371/journal.pgen.1004279
    1. Thompson N. P., Driscoll R., Pounder R. E., Wakefield A. J. (1996). Genetics versus environment in inflammatory bowel disease: results of a British twin study. BMJ 312, 95–96. 10.1136/bmj.312.7023.95
    1. Travassos L. H., Carneiro L. A., Ramjeet M., Hussey S., Kim Y. G., Magalhães J. G., et al. . (2010). Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11, 55–62. 10.1038/ni.1823
    1. Tschopp J. (2011). Mitochondria: Sovereign of inflammation? Eur. J. Immunol. 41, 1196–1202. 10.1002/eji.201141436
    1. Turner J. R. (2009). Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799–809. 10.1038/nri2653
    1. Tüzün A., Erdil A., Inal V., Aydin A., Bağci S., Yeşilova Z., et al. . (2002). Oxidative stress and antioxidant capacity in patients with inflammatory bowel disease. Clin. Biochem. 35, 569–572. 10.1016/S0009-9120(02)00361-2
    1. Twig G., Liu X., Liesa M., Wikstrom J. D., Molina A. J., Las G., et al. . (2010). Biophysical properties of mitochondrial fusion events in pancreatic beta-cells and cardiac cells unravel potential control mechanisms of its selectivity. Am. J. Physiol. Cell Physiol. 299, C477–C487. 10.1152/ajpcell.00427.2009
    1. Tysk C., Lindberg E., Järnerot G., Flodérus-Myrhed B. (1988). Ulcerative colitis and Crohn's disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut 29, 990–996. 10.1136/gut.29.7.990
    1. Umeno J., Asano K., Matsushita T., Matsumoto T., Kiyohara Y., Iida M., et al. . (2011). Meta-analysis of published studies identified eight additional common susceptibility loci for Crohn's disease and ulcerative colitis. Inflamm. Bowel Dis. 17, 2407–2415. 10.1002/ibd.21651
    1. Vafai S. B., Mootha V. K. (2012). Mitochondrial disorders as windows into an ancient organelle. Nature 491, 374–383. 10.1038/nature11707
    1. van der Flier L. G., Clevers H. (2009). Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 71, 241–260. 10.1146/annurev.physiol.010908.163145
    1. Van der Sluis M., De Koning B. A., De Bruijn A. C., Velcich A., Meijerink J. P., Van Goudoever J. B., et al. . (2006). Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131, 117–129. 10.1053/j.gastro.2006.04.020
    1. Varadi A., Johnson-Cadwell L. I., Cirulli V., Yoon Y., Allan V. J., Rutter G. A. (2004). Cytoplasmic dynein regulates the subcellular distribution of mitochondria by controlling the recruitment of the fission factor dynamin-related protein-1. J. Cell Sci. 117, 4389–4400. 10.1242/jcs.01299
    1. Villani A. C., Lemire M., Fortin G., Louis E., Silverberg M. S., Collette C., et al. . (2009). Common variants in the NLRP3 region contribute to Crohn's disease susceptibility. Nat. Genet. 41, 71–76. 10.1038/ng.285
    1. Virbasius J. V., Scarpulla R. C. (1994). Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc. Natl. Acad. Sci. U.S.A. 91, 1309–1313. 10.1073/pnas.91.4.1309
    1. Wang A., Keita Å. V., Phan V., McKay C. M., Schoultz I., Lee J., et al. . (2014). Targeting mitochondria-derived reactive oxygen species to reduce epithelial barrier dysfunction and colitis. Am. J. Pathol. 184, 2516–2527. 10.1016/j.ajpath.2014.05.019
    1. Wang X., Winter D., Ashrafi G., Schlehe J., Wong Y. L., Selkoe D., et al. . (2011). PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147, 893–906. 10.1016/j.cell.2011.10.018
    1. Webb C. T., Gorman M. A., Lazarou M., Ryan M. T., Gulbis J. M. (2006). Crystal structure of the mitochondrial chaperone TIM9.10 reveals a six-bladed alpha-propeller. Mol. Cell 21, 123–133. 10.1016/j.molcel.2005.11.010
    1. Wehkamp J., Harder J., Weichenthal M., Schwab M., Schaffeler E., Schlee M., et al. . (2004). NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal alpha-defensin expression. Gut 53, 1658–1664. 10.1136/gut.2003.032805
    1. Wehkamp J., Salzman N. H., Porter E., Nuding S., Weichenthal M., Petras R. E., et al. . (2005). Reduced Paneth cell alpha-defensins in ileal Crohn's disease. Proc. Natl. Acad. Sci. U.S.A. 102, 18129–18134. 10.1073/pnas.0505256102
    1. Weinberg S. E., Sena L. A., Chandel N. S. (2015). Mitochondria in the regulation of innate and adaptive immunity. Immunity 42, 406–417. 10.1016/j.immuni.2015.02.002
    1. Wenz T. (2013). Regulation of mitochondrial biogenesis and PGC-1alpha under cellular stress. Mitochondrion 13, 134–142. 10.1016/j.mito.2013.01.006
    1. West A. P., Shadel G. S., Ghosh S. (2011). Mitochondria in innate immune responses. Nat. Rev. Immunol. 11, 389–402. 10.1038/nri2975
    1. Xu X., Duan S., Yi F., Ocampo A., Liu G. H., Izpisua Belmonte J. C. (2013). Mitochondrial regulation in pluripotent stem cells. Cell Metab. 18, 325–332. 10.1016/j.cmet.2013.06.005
    1. Yamano K., Youle R. J. (2013). PINK1 is degraded through the N-end rule pathway. Autophagy 9, 1758–1769. 10.4161/auto.24633
    1. Yan L. J., Sohal R. S. (1998). Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proc. Natl. Acad. Sci. U.S.A. 95, 12896–12901. 10.1073/pnas.95.22.12896
    1. Yao J., Wang J. Y., Liu L., Li Y. X., Xun A. Y., Zeng W. S., et al. . (2010). Anti-oxidant effects of resveratrol on mice with DSS-induced ulcerative colitis. Arch. Med. Res. 41, 288–294. 10.1016/j.arcmed.2010.05.002
    1. Yoneda M., Miyatake T., Attardi G. (1994). Complementation of mutant and wild-type human mitochondrial DNAs coexisting since the mutation event and lack of complementation of DNAs introduced separately into a cell within distinct organelles. Mol. Cell. Biol. 14, 2699–2712. 10.1128/MCB.14.4.2699
    1. Youle R. J., van der Bliek A. M. (2012). Mitochondrial fission, fusion, and stress. Science 337, 1062–1065. 10.1126/science.1219855
    1. Young I. S., Woodside J. V. (2001). Antioxidants in health and disease. J. Clin. Pathol. 54, 176–186. 10.1136/jcp.54.3.176
    1. Zamora S. A., Hilsden R. J., Meddings J. B., Butzner J. D., Scott R. B., Sutherland L. R. (1999). Intestinal permeability before and after ibuprofen in families of children with Crohn's disease. Can. J. Gastroenterol. 13, 31–36.
    1. Zeissig S., Bürgel N., Günzel D., Richter J., Mankertz J., Wahnschaffe U., et al. . (2007). Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut 56, 61–72. 10.1136/gut.2006.094375
    1. Zhang K., Kaufman R. J. (2008). From endoplasmic-reticulum stress to the inflammatory response. Nature 454, 455–462. 10.1038/nature07203
    1. Zheng J. J., Zhu X. S., Huangfu Z., Gao Z. X., Guo Z. R., Wang Z. (2005). Crohn's disease in mainland China: a systematic analysis of 50 years of research. Chin. J. Dig. Dis. 6, 175–181. 10.1111/j.1443-9573.2005.00227.x
    1. Zheng X., Tsuchiya K., Okamoto R., Iwasaki M., Kano Y., Sakamoto N., et al. . (2011). Suppression of hath1 gene expression directly regulated by hes1 via notch signaling is associated with goblet cell depletion in ulcerative colitis. Inflamm. Bowel Dis. 17, 2251–2260. 10.1002/ibd.21611
    1. Zhou C., Huang Y., Shao Y., May J., Prou D., Perier C., et al. . (2008). The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proc. Natl. Acad. Sci. U.S.A. 105, 12022–12027. 10.1073/pnas.0802814105
    1. Zhu P. P., Patterson A., Stadler J., Seeburg D. P., Sheng M., Blackstone C. (2004). Intra- and intermolecular domain interactions of the C-terminal GTPase effector domain of the multimeric dynamin-like GTPase Drp1. J. Biol. Chem. 279, 35967–35974. 10.1074/jbc.M404105200
    1. Zitvogel L., Kepp O., Galluzzi L., Kroemer G. (2012). Inflammasomes in carcinogenesis and anticancer immune responses. Nat. Immunol. 13, 343–351. 10.1038/ni.2224

Source: PubMed

3
Subscribe