Potential Modulation of Sirtuins by Oxidative Stress

Leonardo Santos, Carlos Escande, Ana Denicola, Leonardo Santos, Carlos Escande, Ana Denicola

Abstract

Sirtuins are a conserved family of NAD-dependent protein deacylases. Initially proposed as histone deacetylases, it is now known that they act on a variety of proteins including transcription factors and metabolic enzymes, having a key role in the regulation of cellular homeostasis. Seven isoforms are identified in mammals (SIRT1-7), all of them sharing a conserved catalytic core and showing differential subcellular localization and activities. Oxidative stress can affect the activity of sirtuins at different levels: expression, posttranslational modifications, protein-protein interactions, and NAD levels. Mild oxidative stress induces the expression of sirtuins as a compensatory mechanism, while harsh or prolonged oxidant conditions result in dysfunctional modified sirtuins more prone to degradation by the proteasome. Oxidative posttranslational modifications have been identified in vitro and in vivo, in particular cysteine oxidation and tyrosine nitration. In addition, oxidative stress can alter the interaction with other proteins, like SIRT1 with its protein inhibitor DBC1 resulting in a net increase of deacetylase activity. In the same way, manipulation of cellular NAD levels by pharmacological inhibition of other NAD-consuming enzymes results in activation of SIRT1 and protection against obesity-related pathologies. Nevertheless, further research is needed to establish the molecular mechanisms of redox regulation of sirtuins to further design adequate pharmacological interventions.

Figures

Figure 1
Figure 1
Structure of sirtuins. (a) Crystal structure of a partial sequence of hSIRT1 (PDB 4KXQ) with bound substrates, acetylated peptide, and NAD. The catalytic core is depicted in yellow with the Zn2+ binding domain. (b) Zoom of catalytic site with the catalytic histidine colored in yellow.
Figure 2
Figure 2
Scheme of reactions catalyzed by sirtuins. Deacetylation is the most common reaction catalyzed by sirtuins, but some sirtuins catalyze deacylation of other posttranslational lysine modifications and mono ADP ribosylation. NAM = nicotinamide, OAADPR = O-acetyl-ADP-ribose.

References

    1. Imai S.-I., Armstrong C. M., Kaeberlein M., Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403(6771):795–800. doi: 10.1038/35001622.
    1. Feldman J. L., Baeza J., Denu J. M. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by Mammalian Sirtuins. The Journal of Biological Chemistry. 2013;288(43):31350–31356. doi: 10.1074/jbc.c113.511261.
    1. Shore D., Squire M., Nasmyth K. A. Characterization of two genes required for the position-effect control of yeast mating-type genes. The EMBO Journal. 1984;3(12):2817–2823.
    1. Gotta M., Strahl-Bolsinger S., Renauld H., et al. Localization of Sir2p: the nucleolus as a compartment for silent information regulators. The EMBO Journal. 1997;16(11):3243–3255. doi: 10.1093/emboj/16.11.3243.
    1. Hubbard B. P., Sinclair D. A. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends in Pharmacological Sciences. 2014;35(3):146–154. doi: 10.1016/j.tips.2013.12.004.
    1. Frye R. A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochemical and Biophysical Research Communications. 2000;273(2):793–798. doi: 10.1006/bbrc.2000.3000.
    1. Finkel T., Deng C.-X., Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature. 2009;460(7255):587–591. doi: 10.1038/nature08197.
    1. Sherman J. M., Stone E. M., Freeman-Cook L. L., Brachmann C. B., Boeke J. D., Pillus L. The conserved core of a human SIR2 homologue functions in yeast silencing. Molecular Biology of the Cell. 1999;10(9):3045–3059. doi: 10.1091/mbc.10.9.3045.
    1. Min J., Landry J., Sternglanz R., Xu R.-M. Crystal structure of a SIR2 homolog-NAD complex. Cell. 2001;105(2):269–279. doi: 10.1016/s0092-8674(01)00317-8.
    1. Chakrabarty S. P., Balaram H. Reversible binding of zinc in Plasmodium falciparum Sir2: structure and activity of the apoenzyme. Biochimica et Biophysica Acta. 2010;1804(9):1743–1750. doi: 10.1016/j.bbapap.2010.06.010.
    1. Finnin M. S., Donigian J. R., Pavletich N. P. Structure of the histone deacetylase SIRT2. Nature Structural Biology. 2001;8(7):621–625. doi: 10.1038/89668.
    1. Chang J.-H., Kim H.-C., Hwang K.-Y., et al. Structural basis for the NAD-dependent deacetylase mechanism of Sir2. The Journal of Biological Chemistry. 2002;277(37):34489–34498. doi: 10.1074/jbc.m205460200.
    1. Avalos J. L., Celic I., Muhammad S., Cosgrove M. S., Boeke J. D., Wolberger C. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Molecular Cell. 2002;10(3):523–535. doi: 10.1016/s1097-2765(02)00628-7.
    1. Zhao K., Harshaw R., Chai X., Marmorstein R. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD+-dependent Sir2 histone/protein deacetylases. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(23):8563–8568. doi: 10.1073/pnas.0401057101.
    1. Frye R. A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (Sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochemical and Biophysical Research Communications. 1999;260(1):273–279. doi: 10.1006/bbrc.1999.0897.
    1. Liszt G., Ford E., Kurtev M., Guarente L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. The Journal of Biological Chemistry. 2005;280(22):21313–21320. doi: 10.1074/jbc.m413296200.
    1. Haigis M. C., Mostoslavsky R., Haigis K. M., et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells. Cell. 2006;126(5):941–954. doi: 10.1016/j.cell.2006.06.057.
    1. Du J., Zhou Y., Su X., et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science. 2011;334(6057):806–809. doi: 10.1126/science.1207861.
    1. Jiang H., Khan S., Wang Y., et al. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature. 2013;496(7443):110–113. doi: 10.1038/nature12038.
    1. Choudhary C., Kumar C., Gnad F., et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009;325(5942):834–840. doi: 10.1126/science.1175371.
    1. Smith K. T., Workman J. L. Introducing the acetylome. Nature Biotechnology. 2009;27(10):917–919. doi: 10.1038/nbt1009-917.
    1. Weinert B. T., Wagner S. A., Horn H., et al. Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Science Signaling. 2011;4(183, article ra48) doi: 10.1126/scisignal.2001902.
    1. Zhao S., Xu W., Jiang W., et al. Regulation of cellular metabolism by protein lysine acetylation. Science. 2010;327(5968):1000–1004. doi: 10.1126/science.1179689.
    1. Rauh D., Fischer F., Gertz M., et al. An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms. Nature Communications. 2013;4, article 2327 doi: 10.1038/ncomms3327.
    1. Haigis M. C., Sinclair D. A. Mammalian sirtuins: biological insights and disease relevance. Annual Review of Pathology: Mechanisms of Disease. 2010;5:253–295. doi: 10.1146/annurev.pathol.4.110807.092250.
    1. Sebastiań C., Satterstrom F. K., Haigis M. C., Mostoslavsky R. From sirtuin biology to human diseases: an update. Journal of Biological Chemistry. 2012;287(51):42444–42452. doi: 10.1074/jbc.r112.402768.
    1. Houtkooper R. H., Pirinen E., Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nature Reviews Molecular Cell Biology. 2012;13(4):225–238. doi: 10.1038/nrm3293.
    1. Verdin E. The Many Faces of Sirtuins: coupling of NAD metabolism, sirtuins and lifespan. Nature Medicine. 2014;20(1):25–27. doi: 10.1038/nm.3447.
    1. Jones D. P. Redefining oxidative stress. Antioxidants and Redox Signaling. 2006;8(9-10):1865–1879. doi: 10.1089/ars.2006.8.1865.
    1. Sies H. Oxidative stress: oxidants and antioxidants. Experimental Physiology. 1997;82(2):291–295. doi: 10.1113/expphysiol.1997.sp004024.
    1. Nemoto S., Fergusson M. M., Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science. 2004;306(5704):2105–2108. doi: 10.1126/science.1101731.
    1. Prozorovski T., Schulze-Topphoff U., Glumm R., et al. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nature Cell Biology. 2008;10(4):385–394. doi: 10.1038/ncb1700.
    1. Peng C.-H., Chang Y.-L., Kao C.-L., et al. SirT1—a sensor for monitoring self-renewal and aging process in retinal stem cells. Sensors. 2010;10(6):6172–6194. doi: 10.3390/s100606172.
    1. Sablina A. A., Budanov A. V., Ilyinskaya G. V., Agapova L. S., Kravchenko J. E., Chumakov P. M. The antioxidant function of the p53 tumor suppressor. Nature Medicine. 2005;11(12):1306–1313. doi: 10.1038/nm1320.
    1. Brunet A., Sweeney L. B., Sturgill J. F., et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004;303(5666):2011–2015. doi: 10.1126/science.1094637.
    1. Hasegawa K., Wakino S., Yoshioka K., et al. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression. Biochemical and Biophysical Research Communications. 2008;372(1):51–56. doi: 10.1016/j.bbrc.2008.04.176.
    1. Wang F., Nguyen M., Qin F. X.-F., Tong Q. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell. 2007;6(4):505–514. doi: 10.1111/j.1474-9726.2007.00304.x.
    1. Motta M. C., Divecha N., Lemieux M., et al. Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004;116(4):551–563. doi: 10.1016/s0092-8674(04)00126-6.
    1. Pardo P. S., Mohamed J. S., Lopez M. A., Boriek A. M. Induction of Sirt1 by mechanical stretch of skeletal muscle through the early response factor EGR1 triggers an antioxidative response. The Journal of Biological Chemistry. 2011;286(4):2559–2566. doi: 10.1074/jbc.m110.149153.
    1. Tseng A. H. H., Shieh S.-S., Wang D. L. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radical Biology and Medicine. 2013;63:222–234. doi: 10.1016/j.freeradbiomed.2013.05.002.
    1. Lu Z., Xu X., Hu X., et al. PGC-1alpha regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload. Antioxidants and Redox Signaling. 2010;13(7):1011–1022. doi: 10.1089/ars.2009.2940.
    1. Rodgers J. T., Lerin C., Haas W., Gygi S. P., Spiegelman B. M., Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature. 2005;434(7029):113–118. doi: 10.1038/nature03354.
    1. St-Pierre J., Drori S., Uldry M., et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 2006;127(2):397–408. doi: 10.1016/j.cell.2006.09.024.
    1. Rajendrasozhan S., Yang S.-R., Kinnula V. L., Rahman I. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine. 2008;177(8):861–870. doi: 10.1164/rccm.200708-1269oc.
    1. Vaziri H., Dessain S. K., Eaton E. N., et al. hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell. 2001;107(2):149–159. doi: 10.1016/s0092-8674(01)00527-x.
    1. Lee J.-H., Song M.-Y., Song E.-K., et al. Overexpression of SIRT1 protects pancreatic β-cells against cytokine toxicity by suppressing the nuclear factor-κB signaling pathway. Diabetes. 2009;58(2):344–351. doi: 10.2337/db07-1795.
    1. Chen Y., Zhang J., Lin Y., et al. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Reports. 2011;12(6):534–541. doi: 10.1038/embor.2011.65.
    1. Qiu X., Brown K., Hirschey M. D., Verdin E., Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metabolism. 2010;12(6):662–667. doi: 10.1016/j.cmet.2010.11.015.
    1. Alcendor R. R., Gao S., Zhai P., et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circulation Research. 2007;100(10):1512–1521. doi: 10.1161/01.RES.0000267723.65696.4a.
    1. Guan D., Lim J. H., Peng L., et al. Deacetylation of the tumor suppressor protein PML regulates hydrogen peroxide-induced cell death. Cell Death and Disease. 2014;5(7) doi: 10.1038/cddis.2014.185.e1340
    1. Yang Y., Fu W., Chen J., et al. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nature Cell Biology. 2007;9(11):1253–1262. doi: 10.1038/ncb1645.
    1. de Kreutzenberg S. V., Ceolotto G., Papparella I., et al. Downregulation of the longevity-associated protein sirtuin 1 in insulin resistance and metabolic syndrome: potential biochemical mechanisms. Diabetes. 2010;59(4):1006–1015. doi: 10.2337/db09-1187.
    1. Caito S., Rajendrasozhan S., Cook S., et al. SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress. The FASEB Journal. 2010;24(9):3145–3159. doi: 10.1096/fj.09-151308.
    1. Jung S.-B., Kim C.-S., Kim Y.-R., et al. Redox factor-1 activates endothelial SIRTUIN1 through reduction of conserved cysteine sulfhydryls in its deacetylase domain. PLoS ONE. 2013;8(6) doi: 10.1371/journal.pone.0065415.e65415
    1. Tong L., Lee S., Denu J. M. Hydrolase regulates NAD+ metabolites and modulates cellular redox. Journal of Biological Chemistry. 2009;284(17):11256–11266. doi: 10.1074/jbc.m809790200.
    1. Autiero I., Costantini S., Colonna G. Human sirt-1: molecular modeling and structure-function relationships of an unordered protein. PLoS ONE. 2009;4(10) doi: 10.1371/journal.pone.0007350.e7350
    1. Sasaki T., Maier B., Koclega K. D., et al. Phosphorylation regulates SIRT1 function. PLoS ONE. 2008;3(12) doi: 10.1371/journal.pone.0004020.e4020
    1. Alexandrou A. T., Li J. J. Cell cycle regulators guide mitochondrial activity in radiation-induced adaptive response. Antioxidants & Redox Signaling. 2014;20(9):1463–1480. doi: 10.1089/ars.2013.5684.
    1. Kang H., Jung J.-W., Kim M. K., Chung J. H. CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage. PLoS ONE. 2009;4(8) doi: 10.1371/journal.pone.0006611.e6611
    1. Kim K. M., Song J. D., Chung H. T., Park Y. C. Protein kinase CK2 mediates peroxynitrite-induced heme oxygenase-1 expression in articular chondrocytes. International Journal of Molecular Medicine. 2012;29(6):1039–1044. doi: 10.3892/ijmm.2012.949.
    1. Nin V., Escande C., Chini C. C., et al. Role of deleted in breast cancer 1 (DBC1) protein in SIRT1 deacetylase activation induced by protein kinase A and AMP-activated protein kinase. Journal of Biological Chemistry. 2012;287(28):23489–23501. doi: 10.1074/jbc.m112.365874.
    1. Lau A. W., Liu P., Inuzuka H., Gao D. SIRT1 phosphorylation by AMP-activated protein kinase regulates p53 acetylation. American Journal of Cancer Research. 2014;4(3):245–255.
    1. Wu S.-B., Wu Y.-T., Wu T.-P., Wei Y.-H. Role of AMPK-mediated adaptive responses in human cells with mitochondrial dysfunction to oxidative stress. Biochimica et Biophysica Acta (BBA)—General Subjects. 2014;1840(4):1331–1344. doi: 10.1016/j.bbagen.2013.10.034.
    1. Guo X., Williams J. G., Schug T. T., Li X. DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. The Journal of Biological Chemistry. 2010;285(17):13223–13232. doi: 10.1074/jbc.m110.102574.
    1. Kang H., Suh J.-Y., Jung Y.-S., Jung J.-W., Kim M. K., Chung J. H. Peptide switch is essential for Sirt1 deacetylase activity. Molecular Cell. 2011;44(2):203–213. doi: 10.1016/j.molcel.2011.07.038.
    1. Nasrin N., Kaushik V. K., Fortier E., et al. JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLoS ONE. 2009;4(12) doi: 10.1371/journal.pone.0008414.e8414
    1. Gerhart-Hines Z., Dominy J. E., Blättler S. M., et al. The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD+ . Molecular Cell. 2011;44(6):851–863. doi: 10.1016/j.molcel.2011.12.005.
    1. Nahhas F., Dryden S. C., Abrams J., Tainsky M. A. Mutations in SIRT2 deacetylase which regulate enzymatic activity but not its interaction with HDAC6 and tubulin. Molecular and Cellular Biochemistry. 2007;303(1-2):221–230. doi: 10.1007/s11010-007-9478-6.
    1. North B. J., Verdin E. Mitotic regulation of SIRT2 by cyclin-dependent kinase 1-dependent phosphorylation. The Journal of Biological Chemistry. 2007;282(27):19546–19555. doi: 10.1074/jbc.m702990200.
    1. Bian Y., Song C., Cheng K., et al. An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. Journal of Proteomics. 2014;96:253–262. doi: 10.1016/j.jprot.2013.11.014.
    1. Dephoure N., Zhou C., Villén J., et al. A quantitative atlas of mitotic phosphorylation. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(31):10762–10767. doi: 10.1073/pnas.0805139105.
    1. Thirumurthi U., Shen J., Xia W., et al. MDM2-mediated degradation of SIRT6 phosphorylated by AKT1 promotes tumorigenesis and trastuzumab resistance in breast cancer. Science Signaling. 2014;7(336):p. ra71. doi: 10.1126/scisignal.2005076.
    1. Zee R. S., Yoo C. B., Pimentel D. R., et al. Redox regulation of sirtuin-1 by S-glutathiolation. Antioxidants and Redox Signaling. 2010;13(7):1023–1032. doi: 10.1089/ars.2010.3251.
    1. Borra M. T., Smith B. C., Denu J. M. Mechanism of human SIRT1 activation by resveratrol. The Journal of Biological Chemistry. 2005;280(17):17187–17195. doi: 10.1074/jbc.m501250200.
    1. Kornberg M. D., Sen N., Hara M. R., et al. GAPDH mediates nitrosylation of nuclear proteins. Nature Cell Biology. 2010;12(11):1094–1100. doi: 10.1038/ncb2114.
    1. Shao D., Fry J. L., Han J., et al. A redox-resistant Sirtuin-1 mutant protects against hepatic metabolic and oxidant stress. The Journal of Biological Chemistry. 2014;289(11):7293–7306. doi: 10.1074/jbc.m113.520403.
    1. Fritz K. S., Galligan J. J., Smathers R. L., et al. 4-hydroxynonenal inhibits SIRT3 via thiol-specific modification. Chemical Research in Toxicology. 2011;24(5):651–662. doi: 10.1021/tx100355a.
    1. Yang J., Gupta V., Carroll K. S., Liebler D. C. Site-specific mapping and quantification of protein S-sulphenylation in cells. Nature Communications. 2014;5, article 4776 doi: 10.1038/ncomms5776.
    1. Hu S., Liu H., Ha Y., et al. Posttranslational modification of Sirt6 activity by peroxynitrite. Free Radical Biology and Medicine. 2015;79:176–185. doi: 10.1016/j.freeradbiomed.2014.11.011.
    1. Kim J.-E., Chen J., Lou Z. DBC1 is a negative regulator of SIRT1. Nature. 2008;451(7178):583–586. doi: 10.1038/nature06500.
    1. Kim E.-J., Kho J.-H., Kang M.-R., Um S.-J. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Molecular Cell. 2007;28(2):277–290. doi: 10.1016/j.molcel.2007.08.030.
    1. Yuan J., Luo K., Liu T., Lou Z. Regulation of SIRT1 activity by genotoxic stress. Genes & Development. 2012;26(8):791–796. doi: 10.1101/gad.188482.112.
    1. Escande C., Chini C. C. S., Nin V., et al. Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice. The Journal of Clinical Investigation. 2010;120(2):545–558. doi: 10.1172/jci39319.
    1. Escande C., Nin V., Pirtskhalava T., et al. Deleted in breast cancer 1 limits adipose tissue fat accumulation and plays a key role in the development of metabolic syndrome phenotype. Diabetes. 2015;64(1):12–22. doi: 10.2337/db14-0192.
    1. Volonte D., Zou H., Bartholomew J. N., Liu Z., Morel P. A., Galbiati F. Oxidative stress-induced inhibition of Sirt1 by caveolin-1 promotes p53-dependent premature senescence and stimulates the secretion of interleukin 6 (IL-6) The Journal of Biological Chemistry. 2015;290(7):4202–4214. doi: 10.1074/jbc.m114.598268.
    1. Chini E. N. CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions. Current Pharmaceutical Design. 2009;15(1):57–63. doi: 10.2174/138161209787185788.
    1. Yoshino J., Mills K. F., Yoon M. J., Imai S.-I. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metabolism. 2011;14(4):528–536. doi: 10.1016/j.cmet.2011.08.014.
    1. Cantó C., Houtkooper R. H., Pirinen E., et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metabolism. 2012;15(6):838–847. doi: 10.1016/j.cmet.2012.04.022.
    1. Escande C., Nin V., Price N. L., et al. Flavonoid apigenin is an inhibitor of the NAD+ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes. 2013;62(4):1084–1093. doi: 10.2337/db12-1139.
    1. Barbosa M. T. P., Soares S. M., Novak C. M., et al. The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. The FASEB Journal. 2007;21(13):3629–3639. doi: 10.1096/fj.07-8290com.
    1. Bai P., Cantó C., Oudart H., et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metabolism. 2011;13(4):461–468. doi: 10.1016/j.cmet.2011.03.004.
    1. Aksoy P., White T. A., Thompson M., Chini E. N. Regulation of intracellular levels of NAD: a novel role for CD38. Biochemical and Biophysical Research Communications. 2006;345(4):1386–1392. doi: 10.1016/j.bbrc.2006.05.042.
    1. Aksoy P., Escande C., White T. A., et al. Regulation of SIRT 1 mediated NAD dependent deacetylation: a novel role for the multifunctional enzyme CD38. Biochemical and Biophysical Research Communications. 2006;349(1):353–359. doi: 10.1016/j.bbrc.2006.08.066.
    1. Rajamohan S. B., Pillai V. B., Gupta M., et al. SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Molecular and Cellular Biology. 2009;29(15):4116–4129. doi: 10.1128/mcb.00121-09.
    1. Braidy N., Guillemin G. J., Mansour H., Chan-Ling T., Poljak A., Grant R. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS ONE. 2011;6(4) doi: 10.1371/journal.pone.0019194.e19194
    1. Du L., Zhang X., Han Y. Y., et al. Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress. The Journal of Biological Chemistry. 2003;278(20):18426–18433. doi: 10.1074/jbc.m301295200.
    1. Howitz K. T., Bitterman K. J., Cohen H. Y., et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425(6954):191–196. doi: 10.1038/nature01960.
    1. Kaeberlein M., McDonagh T., Heltweg B., et al. Substrate-specific activation of sirtuins by resveratrol. Journal of Biological Chemistry. 2005;280(17):17038–17045. doi: 10.1074/jbc.m500655200.
    1. Milne J. C., Lambert P. D., Schenk S., et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007;450(7170):712–716. doi: 10.1038/nature06261.
    1. Cantó C., Gerhart-Hines Z., Feige J. N., et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458(7241):1056–1060. doi: 10.1038/nature07813.
    1. Park S.-J., Ahmad F., Philp A., et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell. 2012;148(3):421–433. doi: 10.1016/j.cell.2012.01.017.
    1. Mitchell S. J., Martin-Montalvo A., Mercken E. M., et al. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Reports. 2014;6(5):836–843. doi: 10.1016/j.celrep.2014.01.031.
    1. Minor R. K., Baur J. A., Gomes A. P., et al. SRT1720 improves survival and healthspan of obese mice. Scientific Reports. 2011;1, article 70 doi: 10.1038/srep00070.
    1. Pacholec M., Bleasdale J. E., Chrunyk B., et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. The Journal of Biological Chemistry. 2010;285(11):8340–8351. doi: 10.1074/jbc.m109.088682.
    1. Hubbard B. P., Gomes A. P., Dai H., et al. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science. 2013;339(6124):1216–1219. doi: 10.1126/science.1231097.
    1. Dai H., Kustigian L., Carney D., et al. SIRT1 activation by small molecules: kinetic and biophysical evidence for direct interaction of enzyme and activator. The Journal of Biological Chemistry. 2010;285(43):32695–32703. doi: 10.1074/jbc.m110.133892.
    1. Smith J. J., Kenney R. D., Gagne D. J., et al. Small molecule activators of SIRT1 replicate signaling pathways triggered by calorie restriction in vivo. BMC Systems Biology. 2009;3(1, article 31) doi: 10.1186/1752-0509-3-31.
    1. Boily G., He X. H., Pearce B., Jardine K., McBurney M. W. SirT1-null mice develop tumors at normal rates but are poorly protected by resveratrol. Oncogene. 2009;28(32):2882–2893. doi: 10.1038/onc.2009.147.
    1. Pearson K. J., Baur J. A., Lewis K. N., et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metabolism. 2008;8(2):157–168. doi: 10.1016/j.cmet.2008.06.011.
    1. Ajmo J. M., Liang X., Rogers C. Q., Pennock B., You M. Resveratrol alleviates alcoholic fatty liver in mice. The American Journal of Physiology—Gastrointestinal and Liver Physiology. 2008;295(4):G833–G842. doi: 10.1152/ajpgi.90358.2008.
    1. Hwang J.-T., Kwak D. W., Lin S. K., Kim H. M., Kim Y. M., Park O. J. Resveratrol induces apoptosis in chemoresistant cancer cells via modulation of AMPK signaling pathway. Annals of the New York Academy of Sciences. 2007;1095:441–448. doi: 10.1196/annals.1397.047.
    1. Lagouge M., Argmann C., Gerhart-Hines Z., et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α . Cell. 2006;127(6):1109–1122. doi: 10.1016/j.cell.2006.11.013.
    1. Baur J. A., Pearson K. J., Price N. L., et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444(7117):337–342. doi: 10.1038/nature05354.
    1. Wood J. G., Rogina B., Lavu S., et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004;430(7000):686–689. doi: 10.1038/nature02789.
    1. Yamazaki Y., Usui I., Kanatani Y., et al. Treatment with SRT1720, a SIRT1 activator, ameliorates fatty liver with reduced expression of lipogenic enzymes in MSG mice. American Journal of Physiology—Endocrinology and Metabolism. 2009;297(5):E1179–E1186. doi: 10.1152/ajpendo.90997.2008.
    1. Feige J. M., Lagouge M., Canto C., et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metabolism. 2008;8(5):347–358. doi: 10.1016/j.cmet.2008.08.017.
    1. Tanno M., Kuno A., Yano T., et al. Induction of manganese superoxide dismutase by nuclear translocation and activation of SIRT1 promotes cell survival in chronic heart failure. Journal of Biological Chemistry. 2010;285(11):8375–8382. doi: 10.1074/jbc.m109.090266.
    1. Shin S. M., Cho I. J., Kim S. G. Resveratrol protects mitochondria against oxidative stress through AMP-activated protein kinase-mediated glycogen synthase kinase-3β inhibition downstream of poly(ADP-ribose)polymerase-LKB1 pathway. Molecular Pharmacology. 2009;76(4):884–895. doi: 10.1124/mol.109.058479.
    1. Brookins Danz E. D., Skramsted J., Henry N., Bennett J. A., Keller R. S. Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway. Free Radical Biology and Medicine. 2009;46(12):1589–1597. doi: 10.1016/j.freeradbiomed.2009.03.011.
    1. Hwang J.-T., Kwon D. Y., Park O. J., Kim M. S. Resveratrol protects ROS-induced cell death by activating AMPK in H9c2 cardiac muscle cells. Genes & Nutrition. 2008;2(4):323–326. doi: 10.1007/s12263-007-0069-7.
    1. Csiszar A., Labinskyy N., Podlutsky A., et al. Vasoprotective effects of resveratrol and SIRT1: attenuation of cigarette smoke-induced oxidative stress and proinflammatory phenotypic alterations. American Journal of Physiology—Heart and Circulatory Physiology. 2008;294(6):H2721–H2735. doi: 10.1152/ajpheart.00235.2008.
    1. Yao H., Sundar I. K., Ahmad T., et al. SIRT1 protects against cigarette smoke-induced lung oxidative stress via a FOXO3-dependent mechanism. American Journal of Physiology—Lung Cellular and Molecular Physiology. 2014;306(9):L816–L828. doi: 10.1152/ajplung.00323.2013.
    1. Vaquero A., Scher M., Lee D., Erdjument-Bromage H., Tempst P., Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Molecular Cell. 2004;16(1):93–105. doi: 10.1016/j.molcel.2004.08.031.
    1. Kong S., Kim S.-J., Sandal B., et al. The type III histone deacetylase Sirt1 protein suppresses p300-mediated histone H3 lysine 56 acetylation at Bclaf1 promoter to inhibit T cell activation. The Journal of Biological Chemistry. 2011;286(19):16967–16975. doi: 10.1074/jbc.m111.218206.
    1. Ponugoti B., Kim D.-H., Xiao Z., et al. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. The Journal of Biological Chemistry. 2010;285(44):33959–33970. doi: 10.1074/jbc.m110.122978.
    1. Picard F., Kurtev M., Chung N., et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ . Nature. 2004;429(6993):771–776. doi: 10.1038/nature02583.
    1. Yeung F., Hoberg J. E., Ramsey C. S., et al. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. The EMBO Journal. 2004;23(12):2369–2380. doi: 10.1038/sj.emboj.7600244.
    1. Mattagajasingh I., Kim C.-S., Naqvi A., et al. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(37):14855–14860. doi: 10.1073/pnas.0704329104.
    1. Nakae J., Cao Y., Daitoku H., et al. The LXXLL motif of murine forkhead transcription factor FoxO1 mediates Sirt1-dependent transcriptional activity. The Journal of Clinical Investigation. 2006;116(9):2473–2483. doi: 10.1172/jci25518.
    1. Lim J.-H., Lee Y.-M., Chun Y.-S., Chen J., Kim J.-E., Park J.-W. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Molecular Cell. 2010;38(6):864–878. doi: 10.1016/j.molcel.2010.05.023.
    1. Tanno M., Sakamoto J., Miura T., Shimamoto K., Horio Y. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. The Journal of Biological Chemistry. 2007;282(9):6823–6832. doi: 10.1074/jbc.m609554200.
    1. Hallows W. C., Lee S., Denu J. M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(27):10230–10235. doi: 10.1073/pnas.0604392103.
    1. Sundaresan N. R., Pillai V. B., Wolfgeher D., et al. The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Science Signaling. 2011;4(182, article ra46) doi: 10.1126/scisignal.2001465.
    1. Liu Y., Dentin R., Chen D., et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature. 2008;456(7219):269–273. doi: 10.1038/nature07349.
    1. Yamamori T., DeRicco J., Naqvi A., et al. SIRT1 deacetylates APE1 and regulates cellular base excision repair. Nucleic Acids Research. 2009;38(3):832–845. doi: 10.1093/nar/gkp1039.gkp1039
    1. Jiang W., Wang S., Xiao M., et al. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Molecular Cell. 2011;43(1):33–44. doi: 10.1016/j.molcel.2011.04.028.
    1. Teng Y.-B., Jing H., Aramsangtienchai P., et al. Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies. Scientific Reports. 2015;5, article 8529 doi: 10.1038/srep08529.
    1. Dryden S. C., Nahhas F. A., Nowak J. E., Goustin A.-S., Tainsky M. A. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Molecular and Cellular Biology. 2003;23(9):3173–3185. doi: 10.1128/mcb.23.9.3173-3185.2003.
    1. Vaquero A., Scher M. B., Dong H. L., et al. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes and Development. 2006;20(10):1256–1261. doi: 10.1101/gad.1412706.
    1. Chen T., Liu J., Li N., et al. Mouse SIRT3 attenuates hypertrophy-related lipid accumulation in the heart through the deacetylation of LCAD. PLoS ONE. 2015;10(3) doi: 10.1371/journal.pone.0118909.e0118909
    1. Hirschey M. D., Shimazu T., Capra J. A., Pollard K. S., Verdin E. SIRT1 and SIRT3 deacetylate homologous substrates: AceCS1,2 and HMGCS1,2. Aging. 2011;3(6):635–642.
    1. Yu W., Dittenhafer-Reed K. E., Denu J. M. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. The Journal of Biological Chemistry. 2012;287(17):14078–14086. doi: 10.1074/jbc.m112.355206.
    1. Ozden O., Park S.-H., Wagner B. A., et al. SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells. Free Radical Biology and Medicine. 2014;76:163–172. doi: 10.1016/j.freeradbiomed.2014.08.001.
    1. Mathias R. A., Greco T. M., Oberstein A., et al. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell. 2014;159(7):1615–1625. doi: 10.1016/j.cell.2014.11.046.
    1. Park J., Chen Y., Tishkoff D. X., et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Molecular Cell. 2013;50(6):919–930. doi: 10.1016/j.molcel.2013.06.001.
    1. Tan M., Peng C., Anderson K. A., et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metabolism. 2014;19(4):605–617. doi: 10.1016/j.cmet.2014.03.014.
    1. Sundaresan N. R., Vasudevan P., Zhong L., et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nature Medicine. 2012;18(11):1643–1650. doi: 10.1038/nm.2961.
    1. Michishita E., McCord R. A., Berber E., et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature. 2008;452(7186):492–496. doi: 10.1038/nature06736.
    1. Michishita E., McCord R. A., Boxer L. D., et al. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle. 2009;8(16):2664–2666. doi: 10.4161/cc.8.16.9367.
    1. Mao Z., Hine C., Tian X., et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science. 2011;332(6036):1443–1446. doi: 10.1126/science.1202723.
    1. Chen S., Seiler J., Santiago-Reichelt M., Felbel K., Grummt I., Voit R. Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7. Molecular Cell. 2013;52(3):303–313. doi: 10.1016/j.molcel.2013.10.010.
    1. Barber M. F., Michishita-Kioi E., Xi Y., et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature. 2012;486(7405):114–118. doi: 10.1038/nature11043.
    1. Tomé-Carneiro J., Larrosa M., González-Sarrías A., Tomás-Barberán F. A., García-Conesa M. T., Espín J. C. Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Current Pharmaceutical Design. 2013;19(34):6064–6093. doi: 10.2174/13816128113199990407.
    1. Baksi A., Kraydashenko O., Zalevkaya A., et al. A phase II, randomized, placebo-controlled, double-blind, multi-dose study of SRT2104, a SIRT1 activator, in subjects with type 2 diabetes. British Journal of Clinical Pharmacology. 2014;78(1):69–77. doi: 10.1111/bcp.12327.
    1. Libri V., Brown A. P., Gambarota G., et al. A pilot randomized, placebo controlled, double blind phase I trial of the novel SIRT1 activator SRT2104 in elderly volunteers. PLoS ONE. 2012;7(12) doi: 10.1371/journal.pone.0051395.e51395
    1. Lee H., Kim K. R., Noh S. J., et al. Expression of DBC1 and SIRT1 is associated with poor prognosis for breast carcinoma. Human Pathology. 2011;42(2):204–213. doi: 10.1016/j.humpath.2010.05.023.
    1. Yu X.-M., Liu Y., Jin T., et al. The expression of SIRT1 and DBC1 in laryngeal and hypopharyngeal carcinomas. PLoS ONE. 2013;8(6) doi: 10.1371/journal.pone.0066975.e66975

Source: PubMed

3
Subscribe