Editorial: New Advances in Electrocochleography for Clinical and Basic Investigation

Martin Pienkowski, Oliver F Adunka, Jeffery T Lichtenhan, Martin Pienkowski, Oliver F Adunka, Jeffery T Lichtenhan

No abstract available

Keywords: balance disorders; cochlea; cochlear implants; electrocochleography (ECochG); hearing disorders.

References

    1. Bramhall N. F., Konrad-Martin D., McMillan G. P., Griest S. E. (2017). Auditory brainstem response altered in humans with noise exposure despite normal outer hair cell function. Ear Hear. 38, e1–e12. 10.1097/AUD.0000000000000370
    1. Brotherton H., Plack C. J., Maslin M., Schaette R., Munro K. J. (2015). Pump up the volume: could excessive neural gain explain tinnitus and hyperacusis? Audiol. Neurootol. 20 273–282. 10.1159/000430459
    1. Chertoff M. E., Amani-Taleshi D., Guo Y., Burkard R. (2002). The influence of inner hair cell loss on the instantaneous frequency of the cochlear microphonic. Hear. Res. 174, 93–100.
    1. Chertoff M. E., Earl B. R., Diaz F. J., Sorensen J. L. (2012). Analysis of the cochlear microphonic to a low-frequency tone embedded in filtered noise. J. Acoust. Soc. Am. 132, 3351–3362. 10.1121/1.4757746
    1. Chertoff M. E., Lichtenhan J., Willis M. (2010). Click- and chirp-evoked human compound action potentials. J Acoust Soc Am. 127, 2992–2996. 10.1121/1.2967890
    1. Dallos P., Cheatham M. A. (1976). Production of cochlear potentials by inner and outer hair cells. J. Acoust. Soc. Am. 60, 510–512. 10.1121/1.381086
    1. Davis H., Deatherage B. H., Eldredge D. H., Smith C. A. (1958). Summating potentials of the cochlea. Am. J. Physiol. 195, 251–261.
    1. Eggermont J. J. (1974). Basic principles for electrocochleography. Acta. Otolaryngol. Suppl. 316, 7–16.
    1. Ferraro J. A. (1986). Electrocochleography. Semin. Hear. 7, 239–240.
    1. Ferraro J. A. (2010). Electrocochleography: a review of recording approaches, clinical applications, and new findings in adults and children. J. Am. Acad. Audiol. 21, 145–152. 10.3766/jaaa.21.3.2
    1. Ferraro J. A., Ferguson R. (1989). Tympanic ECochG and conventional ABR: a combined approach for the identification of wave I and the I-V interwave interval. Ear. Hear. 10, 161–166.
    1. Forgues M., Koehn H. A., Dunnon A. K., Pulver S. H., Buchman C. A., Adunka O. F., et al. . (2014). Distinguishing hair cell from neural potentials recorded at the round window. J. Neurophysiol. 111, 580–593. 10.1152/jn.00446.2013
    1. Hannah K., Ingeborg D., Leen M., Annelies B., Birgit P., Freya S., et al. . (2014). Evaluation of the olivocochlear efferent reflex strength in the susceptibility to temporary hearing deterioration after music exposure in young adults. Noise Health 16, 108–115. 10.4103/1463-1741.132094
    1. Harrison R. V. (1998). An animal model of auditory neuropathy. Ear. Hear. 19, 355–361.
    1. Harrison R. V., Gordon K. A., Papsin B. C., Negandhi J., James A. L. (2015). Auditory neuropathy spectrum disorder (ANSD) and cochlear implantation. Int. J. Pediatr. Otorhinolaryngol. 79, 1980–1987. 10.1016/j.ijporl.2015.10.006
    1. Henderson D., Subramaniam M., Boettcher F. A. (1993). Individual susceptibility to noise-induced hearing loss: an old topic revisited. Ear. Hear. 14, 152–168.
    1. Jewett D. L., Williston J. S. (1971). Auditory-evoked far fields averaged from the scalp of humans. Brain 94, 681–696.
    1. Kujawa S. G., Liberman M. C. (2009). Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J. Neurosci. 29, 14077–14085. 10.1523/JNEUROSCI.2845-09.2009
    1. Kujawa S. G., Liberman M. C. (2015). Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear. Res. 330, 191–199. 10.1016/j.heares.2015.02.009
    1. Liberman M. C., Epstein M. J., Cleveland S. S., Wang H., Maison S. F. (2016). Toward a differential diagnosis of hidden hearing loss in humans. PLoS ONE 11:e0162726. 10.1371/journal.pone.0162726
    1. Lichtenhan J. T., Chertoff M. E. (2008). Temporary hearing loss influences post-stimulus time histogram and single neuron action potential estimates from human compound action potentials. J. Acoust. Soc. Am. 123, 2200–2212. 10.1121/1.2885748
    1. Lichtenhan J. T., Cooper N. P., Guinan J. J., Jr. (2013). A new auditory threshold estimation technique for low frequencies: proof of concept. Ear. Hear. 34, 42–51. 10.1097/AUD.0b013e31825f9bd3
    1. Lichtenhan J. T., Hartsock J. J., Gill R. M., Guinan J. J., Jr., Salt A. N. (2014). The auditory nerve overlapped waveform (ANOW) originates in the cochlear apex. J. Assoc. Res. Otolaryngol. 15, 395–411. 10.1007/s10162-014-0447-y
    1. Lichtenhan J. T., Wilson U. S., Hancock K. E., Guinan J. J., Jr. (2016). Medial olivocochlear efferent reflex inhibition of human cochlear nerve responses. Hear. Res. 333, 216–224. 10.3109/14992027.2015.1122238
    1. Lobarinas E., Salvi R., Ding D. (2016). Selective inner hair cell dysfunction in chinchillas impairs hearing-in-noise in the absence of outer hair cell loss. J. Assoc. Res. Otolaryngol. 17, 89–101. 10.1007/s10162-015-0550-8
    1. Maison S. F., Liberman M. C. (2000). Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. J. Neurosci. 20, 4701–4707. 10.1523/JNEUROSCI.20-12-04701.2000
    1. McClellan J. H., Formeister E. J., Merwin W. H., III., Dillon M. T., Calloway N., Iseli C., et al. . (2014). Round window electrocochleography and speech perception outcomes in adult cochlear implant subjects: comparison with audiometric and biographical information. Otol. Neurotol. 35, e245–e252. 10.1097/MAO.0000000000000557
    1. McLean W. J., McLean D. T., Eatock R. A., Edge A. S. (2016). Distinct capacity for differentiation to inner ear cell types by progenitor cells of the cochlea and vestibular organs. Development 143, 4381–4393. 10.1242/dev.139840
    1. McLean W. J., Yin X., Lu L., Lenz D. R., McLean D., Langer R., et al. . (2017). Clonal expansion of Lgr5-positive cells from mammalian cochlea and high-purity generation of sensory hair cells. Cell. Rep. 18, 1917–1929. 10.1016/j.celrep.2017.01.066
    1. McMahon C. M., Patuzzi R. B., Gibson W. P., Sanli H. (2008). Frequency-specific electrocochleography indicates that presynaptic and postsynaptic mechanisms of auditory neuropathy exist. Ear. Hear. 29, 314–325. 10.1097/AUD.0b013e3181662c2a
    1. Noreña A. J. (2011). An integrative model of tinnitus based on a central gain controlling neural sensitivity. Neurosci. Biobehav. Rev. 35, 1089–1109. 10.1016/j.neubiorev.2010.11.003
    1. Paul B. T., Bruce I. C., Roberts L. E. (2017). Evidence that hidden hearing loss underlies amplitude modulation encoding deficits in individuals with and without tinnitus. Hear. Res. 344, 170–182. 10.1016/j.heares.2016.11.010
    1. Pienkowski M. (2017). On the etiology of listening difficulties in noise despite clinically normal audiograms. Ear. Hear. 38, 135–148. 10.1097/AUD.0000000000000388
    1. Pienkowski M., Tyler R. S., Roncancio E. R., Jun H. J., Brozoski T., Dauman N., et al. (2014). A review of hyperacusis and future directions: part II. Measurement, mechanisms, and treatment. Am. J. Audiol. 23, 420–436. 10.1044/2014_AJA-13-0037
    1. Prendergast G., Guest H., Munro K. J., Kluk K., Léger A., Hall D. A., et al. . (2017). Effects of noise exposure on young adults with normal audiograms I: Electrophysiology. Hear. Res. 344, 68–81. 10.1016/j.heares.2016.10.028
    1. Puria S., Guinan J. J., Jr., Liberman M. C. (1996). Olivocochlear reflex assays: effects of contralateral sound on compound action potentials versus ear-canal distortion products. J. Acoust. Soc. Am. 99, 500–507.
    1. Rance G., Starr A. (2015). Pathophysiological mechanisms and functional hearing consequences of auditory neuropathy. Brain 138, 3141–3158. 10.1093/brain/awv270
    1. Roche J. P., Huang B. Y., Castillo M., Bassim M. K., Adunka O. F., Buchman C. A. (2010). Imaging characteristics of children with auditory neuropathy spectrum disorder. Otol. Neurotol. 31, 780–788.
    1. Ruben R. J., Bordley J. E., Lieberman A. T. (1961). Cochlear potentials in man. Laryngoscope 71, 1141–1164. 10.1288/00005537-196110000-00001
    1. Ruth R. A., Lambert P. R., Ferraro J. A. (1988). Electrocochleography: methods and clinical applications. Am. J. Otol. Suppl, 9, 1–11.
    1. Santarelli R., del Castillo I., Starr A. (2013). Auditory neuropathies and electrocochleography. Hear. Bal. Commun. 11, 130–137. 10.3109/21695717.2013.815446
    1. Santarelli R., Rossi R., Scimemi P., Cama E., Valentino M. L., LaMorgia C., et al. . (2015). OPA1-related auditory neuropathy: site of lesion and outcome of cochlear implantation. Brain 138, 563–576. 10.1093/brain/awu378
    1. Sass K. (1998). Sensitivity and specificity of transtympanic electrocochleography in Ménière's disease. Acta Otolaryngol. 118, 150–156. 10.1080/00016489850154838
    1. Schaette R., McAlpine D. (2011). Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J. Neurosci. 31, 13452–13457. 10.1523/JNEUROSCI.2156-11.2011
    1. Sergeyenko Y., Lall K., Liberman M. C., Kujawa S. G. (2013). Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J. Neurosci. 33, 13686–13694. 10.1523/JNEUROSCI.1783-13.2013
    1. Snyder R. L., Schreiner C. E. (1984). The auditory neurophonic: basic properties. Hear. Res. 15, 261–280.
    1. Valero M. D., Burton J. A., Hauser S. N., Hackett T. A., Ramachandran R., Liberman M. C. (2017). Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta). Hear. Res. 353, 213–223. 10.1016/j.heares.2017.07.003
    1. Walton J., Gibson W. P., Sanli H., Prelog K. (2008). Predicting cochlear implant outcomes in children with auditory neuropathy. Otol. Neurotol. 29, 302–309. 10.1097/MAO.0b013e318164d0f6
    1. Wever E. G., Bray C. W. (1930). Auditory nerve impulses. Science 71, 215. 10.1126/science.71.1834.215
    1. Widen J. E., Ferraro J. A., Trouba S. E. (1995). Progressive neural hearing impairment: case report. J. Am. Acad. Audiol. 6, 217–224.

Source: PubMed

3
Subscribe