Transcutaneous Vagus Nerve Stimulation (tVNS) Enhances Response Selection During Sequential Action

Bryant J Jongkees, Maarten A Immink, Alessandra Finisguerra, Lorenza S Colzato, Bryant J Jongkees, Maarten A Immink, Alessandra Finisguerra, Lorenza S Colzato

Abstract

Transcutaneous vagus nerve stimulation (tVNS) is a non-invasive and safe technique that transiently enhances brain GABA and noradrenaline levels. Although tVNS has been used mainly to treat clinical disorders such as epilepsy, recent studies indicate it is also an effective tool to investigate and potentially enhance the neuromodulation of action control. Given the key roles of GABA and noradrenaline in neural plasticity and cortical excitability, we investigated whether tVNS, through a presumed increase in level of these neurotransmitters, modulates sequential behavior in terms of response selection and sequence learning components. To this end we assessed the effect of single-session tVNS in healthy young adults (N = 40) on performance on a serial reaction time task, using a single-blind, sham-controlled between-subject design. Active as compared to sham tVNS did not differ in terms of acquisition of an embedded response sequence and in terms of performance under randomized response schedules. However, active tVNS did enhance response selection processes. Specifically, the group receiving active tVNS did not exhibit inhibition of return during response reversals (i.e., when trial N requires the same response as trial N-2, e.g., 1-2-1) on trials with an embedded response sequence. This finding indicates that tVNS enhances response selection processes when selection demands are particularly high. More generally, these results add to converging evidence that tVNS enhances action control performance.

Keywords: GABA; cognitive enhancement; implicit motor sequence learning; response selection; tVNS.

Figures

FIGURE 1
FIGURE 1
Positioning of the tVNS electrodes in the active (left) and in the sham (right) condition.
FIGURE 2
FIGURE 2
Mean reaction time in the SRT task as a function of block, sequence type, and tVNS group. Error bars reflect standard error of the means.
FIGURE 3
FIGURE 3
Mean reaction time in the SRT task as a function of trial type, sequence type, and tVNS group. Error bars reflect standard error of the means. Whereas both groups demonstrate a typical increase in reaction time on reversal trials during random response sequences, this increase is eliminated in the active tVNS group on trials with an embedded (SOC) response sequence. ∗p < 0.001.

References

    1. Abrahamse E. L., Noordzij M. L. (2011). Designing training programs for perceptual-motor skills: practical implications from the serial reaction time task. Eur. Rev. Appl. Psychol. 61 65–76. 10.1016/j.erap.2010.12.001
    1. Abrahamse E. L., Ruitenberg M. F. L., de Kleine E., Verwey W. B. (2013). Control of automated behavior: insights from the discrete sequence production task. Front. Hum. Neurosci. 7:82. 10.3389/fnhum.2013.00082
    1. Bar-Gad I., Morris G., Bergman H. (2003). Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog. Neurobiol. 71 439–473. 10.1016/j.pneurobio.2003.12.001
    1. Ben-Menachem E., Hamberger A., Hedner T., Hammond E. J., Uthman B. M., Slater J., et al. (1995). Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Res. 20 221–227. 10.1016/0920-1211(94)00083-9
    1. Beste C., Steenbergen L., Sellaro R., Grigoriadou S., Zhang R., Chmielewski W., et al. (2016). Effects of concomitant stimulation of the GABAergic and norepinephrine system on inhibitory control - a study using transcutaneous vagus nerve stimulation. Brain Stimul. 9 811–818. 10.1016/j.brs.2016.07.004
    1. Boy F., Evans C. J., Edden R. A. E., Lawrence A. D., Singh K. D., Husain M., et al. (2011). Dorsolateral prefrontal y-aminobutric acid in men predicts individual differences in rash impulsivity. Biol. Psychiatry 70 866–872. 10.1016/j.biopsych.2011.05.030
    1. Boy F., Evans C. J., Edden R. A. E., Singh K. D., Husain M., Sumner P. (2010). Individual differences in subconscious motor control predicted by GABA concentration in SMA. Curr. Biol. 20 1779–1785. 10.1016/j.cub.2010.09.003
    1. Capone F., Assenza G., Di Pino G., Musumeci G., Ranieri F., Florio L., et al. (2015). The effect of transcutaneous vagus nerve stimulation on cortical excitability. J. Neural Transm. 122 679–685. 10.1007/s00702-014-1299-7
    1. Cho R. Y., Nystrom L. E., Brown E. T., Jones A. D., Braver T. S., Holmes P. J., et al. (2002). Mechanisms underlying dependencies of performance on stimulus history in a two-alternative forced-choice task. Cogn. Affect. Behav. Neurosci. 2 283–299. 10.3758/CABN.2.4.283
    1. Colzato L. S., de Rover M., van den Wildenberg W. P. M., Nieuwenhuis S. (2013). Genetic marker of norepinephrine synthesis predicts individual differences in post-error slowing: a pilot study. Neuropsychologia 51 2600–2604. 10.1016/j.neuropsychologia.2013.07.026
    1. Colzato L. S., Ritter S. M., Steenbergen L. (2018). Transcutaneous vagus nerve stimulation (tVNS) enhances divergent thinking. Neuropsychologia 10.1016/j.neuropsychologia.2018.01.003
    1. de Beaumont L., Tremblay S., Poirier J., Lassonde M., Théoret H. (2012). Altered bidirectional plasticity and reduced implicit motor learning in concussed athletes. Cereb. Cortex 22 112–121. 10.1093/cercor/bhr096
    1. de la Vega A., Brown M. S., Snyder H. R., Singel D., Munakata Y., Banich M. T. (2014). Individual differences in the balance of GABA to glutamate in PFC predict the ability to select among competing options. J. Cogn. Neurosci. 26 2490–2502. 10.1162/jocn_a_00655
    1. Deroost N., Soetens E. (2006). The role of response selection in sequence learning. Q. J. Exp. Psychol. 59 449–456. 10.1080/17470210500462684
    1. Dietrich S., Smith J., Scherzinger C., Hofmann-Preiß K., Eisenkolb A., Ringler R. (2008). A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI. Biomed. Eng. 53 104–111. 10.1515/BMT.2008.022
    1. Floyer-Lea A., Wylezinska M., Kincses T., Matthews P. M. (2006). Rapid modulation of GABA concentration in human sensorimotor cortex during motor learning. J. Neurophysiol. 95 1639–1644. 10.1152/jn.00346.2005
    1. Hommel B. (1996). The cognitive representation of action: automatic integration of perceived action effects. Psychol. Res. 59 176–186. 10.1007/BF00425832
    1. Jacobs H. I. L., Riphagen J. M., Razat C. M., Wiese S., Sack A. T. (2015). Transcutaneous vagus nerve stimulation boosts associative memory in older individuals. Neurobiol. Aging 36 1860–1867. 10.1016/j.neurobiolaging.2015.02.023
    1. Jones A. D., Cho R. Y., Nystrom L. E., Cohen J. D., Braver T. S. (2002). A computational model of anterior cingulate function in speeded response tasks: effects of frequency, sequence, and conflict. Cogn. Affect. Behav. Neurosci. 2 300–317. 10.3758/CABN.2.4.300
    1. Jongkees B. J., Immink M. A., Colzato L. S. (2017a). Influences of glutamine administration on response selection and sequence learning: a randomized-controlled trial. Sci. Rep. 7:2693. 10.1038/s41598-017-02957-w
    1. Jongkees B. J., Sellaro R., Beste C., Nitsche M. A., Kühn S., Colzato L. S. (2017b). L-Tyrosine administration modulates the effect of transcranial direct current stimulation on working memory in healthy humans. Cortex 90 103–114. 10.1016/j.cortex.2017.02.014
    1. Klein R. M. (2000). Inhibition of return. Trends Cogn. Sci. 4 138–147. 10.1016/S1364-6613(00)01452-2
    1. Kraus T., Kiess O., Hösl K., Terekhin P., Kornhuber J., Forster C. (2013). CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal - a pilot study. Brain Stimul. 6 798–804. 10.1016/j.brs.2013.01.011
    1. Kraus T., Kiess O., Schanze A., Kornhuber J., Forster C. (2007). BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation. J. Neural Transm. 114 1485–1493. 10.1007/s00702-007-0755-z
    1. Kreuzer P. M., Landgrebe M., Husser O., Resch M., Schecklmann M., Geisreiter F., et al. (2012). Transcutaneous vagus nerve stimulation: retrospective assessment of cardiac safety in a pilot study. Front. Psychiatry 3:70. 10.3389/fpsyt.2012.00070
    1. Lin C.-H., Knowlton B. J., Chiang M.-C., Iacoboni M., Udompholkul P., Wu A. D. (2011). Brain-behavior correlates of optimizing learning through interleaved practice. Neuroimage 56 1758–1772. 10.1016/j.neuroimage.2011.02.066
    1. Lupiáñez J., Tudela P., Rueda C. (1999). Inhibitory control in attentional orientation: a review about the inhibition of return. Cognitiva 11 23–44. 10.1174/021435599760374050
    1. Marrosu F., Serra A., Maleci A., Puligheddu M., Biggio G., Piga M. (2003). Correlation between GABA(A) receptor density and vagus nerve stimulation in individuals with drug-resistant partial epilepsy. Epilepsy Res. 55 59–70. 10.1016/S0920-1211(03)00107-4
    1. Mayr U., Keele S. W. (2000). Changing internal constraints on action: the role of backward inhibition. J. Exp. Psychol. Gen. 129 4–26. 10.1037/0096-3445.129.1.4
    1. Moeller S. J., Tomasi D., Honorio J., Volkow N. D., Goldstein R. Z. (2012). Dopaminergic involvement during mental fatigue in health and cocaine addiction. Transl. Psychiatry 2:e176. 10.1038/tp.2012.110
    1. Munakata Y., Herd S. A., Chatham C. H., Depue B. E., Banich M. T., O’Reilly R. C. (2011). A unified framework for inhibitory control. Trends Cogn. Sci. 15 453–459. 10.1016/j.tics.2011.07.011
    1. Nakamura H., Kitagawa H., Kawaguchi Y., Tsuji H. (1997). Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans. J. Physiol. 498 817–823. 10.1113/jphysiol.1997.sp021905
    1. Nissen M. J., Bullemer P. (1987). Attentional requirements of learning: evidence from performance measures. Cogn. Psychol. 19 1–32. 10.1016/0010-0285(87)90002-8
    1. Peuker E. T., Filler T. J. (2002). The nerve supply of the human auricle. Clin. Anat. 15 35–37. 10.1002/ca.1089
    1. Plenz D. (2003). When inhibition goes incognito: feedback interaction between spiny projection neurons in striatal function. Trends Neurosci. 26 436–443. 10.1016/S0166-2236(03)00196-6
    1. Plewnia C., Schroeder P. A., Wolkenstein L. (2015). Targeting the biased brain: non-invasive brain stimulation to ameliorate cognitive control. Lancet Psychiatry 2 351–356. 10.1016/S2215-0366(15)00056-5
    1. Posner M. I., Cohen Y. (1984). “Components of visual orienting,” in Attention and Performance X, eds Bouma H., Bouwhuis D. (London: Lawrence Erlbaum; ), 531–556.
    1. Raedt R., Clinckers R., Mollet L., Vonck K., El Tahry R., Wyckhuys T., et al. (2011). Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model. J. Neurochem. 117 461–469. 10.1111/j.1471-4159.2011.07214.x
    1. Reed J., Johnson P. (1994). Assessing implicit learning with indirect tests: determining what is learned about sequence structure. J. Exp. Psychol. Learn. Mem. Cogn. 20 585–594. 10.1037/0278-7393.20.3.585
    1. Robertson E. M. (2007). The serial reaction time task: implicit motor skill learning? J. Neurosci. 27 10073–10075. 10.1523/JNEUROSCI.2747-07.2007
    1. Roosevelt R. W., Smith D. C., Clough R. W., Jensen R. A., Browning R. A. (2006). Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain Res. 1119 124–132. 10.1016/j.brainres.2006.08.048
    1. Ruitenberg M. F. L., Abrahamse E. L., de Kleine E., Verwey W. B. (2014). Post-error slowing in sequential action: an aging study. Front. Psychol. 5:119. 10.3389/fpsyg.2014.00119
    1. Sakai K., Hikosaka O., Nakamura K. (2004). Emergence of rhythm during motor learning. Trends Cogn. Sci. 8 547–553. 10.1016/j.tics.2004.10.005
    1. Schwarb H., Schumacher E. H. (2012). Generalized lessons about sequence learning from the study of the serial reaction time task. Adv. Cogn. Psychol. 8 165–178. 10.2478/v10053-008-0113-1
    1. Sellaro R., van Leusden J. W. R., Tona K.-D., Verkuil B., Nieuwenhuis S., Colzato L. S. (2015). Transcutaneous vagus nerve stimulation enhances post-error slowing. J. Cogn. Neurosci. 27 2126–2132. 10.1162/jocn_a_00851
    1. Sheehan D. V., Lecrubier Y., Sheehan K. H., Amorim P., Janavs J., Weiller E., et al. (1998). The mini-international neuropsychiatric interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 59 22–33.
    1. Snyder H. R., Hutchison N., Nyhus E., Curran T., Banich M. T., O’Reilly R. C. (2010). Neural inhibition enables selection during language processing. Proc. Natl. Acad. Sci. U.S.A. 107 16483–16488. 10.1073/pnas.1002291107
    1. Sperling W., Reulbach U., Bleich S., Padberg F., Kornhuber J., Mueck-Weymann M. (2010). Cardiac effects of vagus nerve stimulation in patients with major depression. Pharmacopsychiatry 43 7–11. 10.1055/s-0029-1237374
    1. Stagg C. J., Bachtiar V., Johansen-Berg H. (2011). The role of GABA in human motor learning. Curr. Biol. 21 480–484. 10.1016/j.cub.2011.01.069
    1. Steenbergen L., Sellaro R., Stock A.-K., Verkuil B., Beste C., Colzato L. S. (2015). Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during action cascading processes. Eur. Neuropsychopharmacol. 25 773–778. 10.1016/j.euroneuro.2015.03.015
    1. Tam H., Maddox W. T., Huang-Pollock C. L. (2013). Posterror slowing predicts rule-based but not information-integration category learning. Psychon. Bull. Rev. 20 1343–1349. 10.3758/s13423-013-0441-0
    1. Tubau E., Hommel B., López-Moliner J. (2007). Modes of executive control in sequence learning: from stimulus-based to plan-based control. J. Exp. Psychol. Gen. 136 43–63. 10.1037/0096-3445.136.1.43
    1. Ullsperger M., Harsay H. A., Wessel J. R., Ridderinkhof K. R. (2010). Conscious perception of errors and its relation to the anterior insula. Brain Struct. Funct. 214 629–643. 10.1007/s00429-010-0261-1
    1. van Leusden J. W. R., Sellaro R., Colzato L. S. (2015). Transcutaneous vagal nerve stimulation (tVNS): a new neuromodulation tool in healthy humans? Front. Psychol. 6:102. 10.3389/fpsyg.2015.00102
    1. van Veen V., Carter C. S. (2006). Error detection, correction, and prevention in the brain: a brief review of data and theories. Clin. EEG Neurosci. 37 330–335. 10.1177/155005940603700411
    1. van Veen V., Cohen J. D., Botvinick M. M., Stenger V. A., Carter C. S. (2001). Anterior cingulate cortex, conflict monitoring, and levels of processing. Neuroimage 14 1302–1308. 10.1006/nimg.2001.0923
    1. Vaquero J. M. M., Jiménez L., Lupiáñez J. (2006). The problem of reversals in assessing implicit sequence learning with serial reaction time tasks. Exp. Brain Res. 175 97–109. 10.1007/s00221-006-0523-6
    1. Wardle M. C., Yang A., de Wit H. (2012). Effect of d-amphetamine on post-error slowing in healthy volunteers. Psychopharmacology 220 109–115. 10.1007/s00213-011-2462-6
    1. Werhahn K. J., Kunesch E., Noachtar S., Benecke R., Classen J. (1999). Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J. Physiol. 517 591–597. 10.1111/j.1469-7793.1999.0591t.x
    1. Willingham D. B. (1999). Implicit motor sequence learning is not purely perceptual. Mem. Cognit. 27 561–572. 10.3758/BF03211549
    1. Willingham D. B., Nissen M. J., Bullemer P. (1989). On the development of procedural knowledge. J. Exp. Psychol. Learn. Mem. Cogn. 15 1047–1060. 10.1037/0278-7393.15.6.1047
    1. Ziemann U., Reis J., Schwenkreis P., Rosanova M., Strafella A., Badawy R., et al. (2015). TMS and drugs revisited 2014. Clin. Neurophysiol. 126 1847–1868. 10.1016/j.clinph.2014.08.028

Source: PubMed

3
Subscribe