Plasma levels of surfactant protein D and KL-6 for evaluation of lung injury in critically ill mechanically ventilated patients

Rogier M Determann, Annick A N M Royakkers, Jack J Haitsma, Haibo Zhang, Arthur S Slutsky, V Marco Ranieri, Marcus J Schultz, Rogier M Determann, Annick A N M Royakkers, Jack J Haitsma, Haibo Zhang, Arthur S Slutsky, V Marco Ranieri, Marcus J Schultz

Abstract

Background: Preventing ventilator-associated lung injury (VALI) has become pivotal in mechanical ventilation of patients with acute lung injury (ALI) or its more severe form, acute respiratory distress syndrome (ARDS). In the present study we investigated whether plasma levels of lung-specific biological markers can be used to evaluate lung injury in patients with ALI/ARDS and patients without lung injury at onset of mechanical ventilation.

Methods: Plasma levels of surfactant protein D (SP-D), Clara Cell protein (CC16), KL-6 and soluble receptor for advanced glycation end-products (sRAGE) were measured in plasma samples obtained from 36 patients - 16 patients who were intubated and mechanically ventilated because of ALI/ARDS and 20 patients without lung injury at the onset of mechanical ventilation and during conduct of the study. Patients were ventilated with either a lung-protective strategy using lower tidal volumes or a potentially injurious strategy using conventional tidal volumes. Levels of biological markers were measured retrospectively at baseline and after 2 days of mechanical ventilation.

Results: Plasma levels of CC16 and KL-6 were higher in ALI/ARDS patients at baseline as compared to patients without lung injury. SP-D and sRAGE levels were not significantly different between these patients. In ALI/ARDS patients, SP-D and KL-6 levels increased over time, which was attenuated by lung-protective mechanical ventilation using lower tidal volumes (P = 0.02 for both biological markers). In these patients, with either ventilation strategy no changes over time were observed for plasma levels of CC16 and sRAGE. In patients without lung injury, no changes of plasma levels of any of the measured biological markers were observed.

Conclusion: Plasma levels of SP-D and KL-6 rise with potentially injurious ventilator settings, and thus may serve as biological markers of VALI in patients with ALI/ARDS.

Figures

Figure 1
Figure 1
Mechanical ventilation parameters. Mechanical ventilation parameters in patients with ALI/ARDS (circles) and without lung injury at onset of mechanical ventilation (squares). Open symbols: patients ventilated with a lung-protective mechanical ventilation strategy with lower tidal volumes; closed symbols: patients ventilated with a potentially lung-injurious strategy using conventional tidal volumes. VT, tidal volume; Pmax, maximum airway pressure.
Figure 2
Figure 2
Baseline biomarker levels and lung injury score. Scatter plots of baseline levels of surfactant protein D (SP-D), Clara cell protein (CC16), KL-6 and soluble receptor for advanced glycation end products (sRAGE) as a function of lung injury score (LIS). The correlation is expressed as Spearman's rho (ρ).
Figure 3
Figure 3
Biomarker levels per group at two time points. Levels of surfactant protein D (SP-D), Clara cell protein (CC16), KL-6 and soluble receptor for advanced glycation end products (sRAGE) in patients without lung injury at onset of mechanical ventilation (no lung injury) and ALI/ARDS patients (ALI/ARDS), ventilated with either lung-protective mechanical ventilation (open boxes) or potentially lung-injurious mechanical ventilation (grey boxes). In each group, the left bar represents T = 0 hours, the right bar represents T = 48 hours after inclusion. Box plots represent 25th, 50th and 75th percentile; whiskers represent values within 10th and 90th percentile; "°" represent outliers and "*" represent extreme outliers. # P < 0.05 for difference in absolute values between groups at baseline; ‡ P < 0.05 for difference in increases over time between groups.

References

    1. Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, Hudson LD. Incidence and outcomes of acute lung injury. N Engl J Med. 2005;353:1685–1693. doi: 10.1056/NEJMoa050333.
    1. Anonymous. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342:1301–1308. doi: 10.1056/NEJM200005043421801.
    1. Leaver SK, Evans W. Acute respiratory distress syndrome. BMJ. 2007;335:389–394. doi: 10.1136/.
    1. Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, Bruno F, Slutsky AS. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA. 1999;282:54–61. doi: 10.1001/jama.282.1.54.
    1. Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347–354. doi: 10.1056/NEJM199802053380602.
    1. Villar J, Kacmarek RM, Perez-Mendez L, Aguirre-Jaime A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med. 2006;34:1311–1318. doi: 10.1097/01.CCM.0000215598.84885.01.
    1. Bowler RP, Duda B, Chan ED, Enghild JJ, Ware LB, Matthay MA, Duncan MW. Proteomic analysis of pulmonary edema fluid and plasma in patients with acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2004;286:L1095–1104. doi: 10.1152/ajplung.00304.2003.
    1. de Torre C, Ying SX, Munson PJ, Meduri GU, Suffredini AF. Proteomic analysis of inflammatory biomarkers in bronchoalveolar lavage. Proteomics. 2006;6:3949–3957. doi: 10.1002/pmic.200500693.
    1. Terragni PP, Rosboch G, Tealdi A, Corno E, Menaldo E, Davini O, Gandini G, Herrmann P, Mascia L, Quintel M, Slutsky AS, Gattinoni L, Ranieri VM. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2007;175:160–166. doi: 10.1164/rccm.200607-915OC.
    1. Eisner MD, Parsons P, Matthay MA, Ware L, Greene K. Acute Respiratory Distress Syndrome Network. Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury. Thorax. 2003;58:983–988. doi: 10.1136/thorax.58.11.983.
    1. Lesur O, Langevin S, Berthiaume Y, Legare M, Skrobik Y, Bellemare JF, Levy B, Fortier Y, Lauzier F, Bravo G, Nickmilder M, Rousseau E, Bernard A. Critical Care Research Group of the Quebec Respiratory Health Network. Outcome value of Clara cell protein in serum of patients with acute respiratory distress syndrome. Intensive Care Med. 2006;32:1167–1174. doi: 10.1007/s00134-006-0235-1.
    1. Ishizaka A, Matsuda T, Albertine KH, Koh H, Tasaka S, Hasegawa N, Kohno N, Kotani T, Morisaki H, Takeda J, Nakamura M, Fang X, Martin TR, Matthay MA, Hashimoto S. Elevation of KL-6, a lung epithelial cell marker, in plasma and epithelial lining fluid in acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol. 2004;286:L1088–1094. doi: 10.1152/ajplung.00420.2002.
    1. Uchida T, Shirasawa M, Ware LB, Kojima K, Hata Y, Makita K, Mednick G, Matthay ZA, Matthay MA. Receptor for advanced glycation end-products is a marker of type I cell injury in acute lung injury. Am J Respir Crit Care Med. 2006;173:1008–1015. doi: 10.1164/rccm.200509-1477OC.
    1. Slutsky, Tremblay. Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med. 1998;157(6 Pt 1):1721–1725.
    1. Ware LB, Matthay MA. Acute respiratory distress syndrome. N Engl J Med. 2000;342:1334–1349. doi: 10.1056/NEJM200005043421806.
    1. Hermans C, Bernard A. Lung epithelium-specific proteins: characteristics and potential applications as markers. Am J Respir Crit Care Med. 1999;159:646–678.
    1. Murray JF, Matthay MA, Luce JM, Flick MR. An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis. 1988;138:720–723.
    1. Ventilation with lower tidal volumes as compared to traditional tidal volumes of patients not suffering from acute lung injury. Netherlands Trial Register.
    1. Determann RM, Wolthuis EK, Choi G, Bresser P, Bernard AM, Lutter R, Schultz MJ. Lung epithelial injury markers are not influenced by use of lower tidal volumes during elective surgery in patients without preexisting lung injury. Am J Physiol Lung Cell Mol Physiol. 2008;294:L344–350. doi: 10.1152/ajplung.00268.2007.
    1. Heijden M van der, Verheij J, van Nieuw Amerongen GP, Groeneveld AB. Crystalloid or colloid fluid loading and pulmonary permeability, edema, and injury in septic and nonseptic criticallly ill patients with hypovolemia. Crit Care Med. 2009;37:1275–1281. doi: 10.1097/CCM.0b013e31819cedfd.
    1. Choi G, Wolthuis EK, Bresser P, Levi M, Poll T van der, Dzoljic M, Vroom MB, Schultz MJ. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents alveolar coagulation in patients without lung injury. Anesthesiology. 2006;105:689–695. doi: 10.1097/00000542-200610000-00013.
    1. Michelet P, D'Journo XB, Roch A, Doddoli C, Marin V, Papazian L, Decamps I, Bregeon F, Thomas P, Auffray JP. Protective ventilation influences systemic inflammation after esophagectomy: a randomized controlled study. Anesthesiology. 2006. pp. 911–919.
    1. Yano T, Mason RJ, Pan T, Deterding RR, Nielsen LD, Shannon JM. KGF regulates pulmonary epithelial proliferation and surfactant protein gene expression in adult rat lung. Am J Physiol Lung Cell Mol Physiol. 2000;279:L1146–1158.
    1. Kohno N. Serum marker KL-6/MUC1 for the diagnosis and management of interstitial pneumonitis. J Med Invest. 1999;46:151–158.
    1. Ohnishi H, Yokoyama A, Kondo K, Hamada H, Abe M, Nishimura K, Hiwada K, Kohno N. Comparative study of KL-6, surfactant protein A, surfactant protein D, and monocyte chemoattractant protein-1 as serum markers for interstitial lung diseases. Am J Respir Crit Care Med. 2002;165:378–381.

Source: PubMed

3
Subscribe