Metacognition in human decision-making: confidence and error monitoring

Nick Yeung, Christopher Summerfield, Nick Yeung, Christopher Summerfield

Abstract

People are capable of robust evaluations of their decisions: they are often aware of their mistakes even without explicit feedback, and report levels of confidence in their decisions that correlate with objective performance. These metacognitive abilities help people to avoid making the same mistakes twice, and to avoid overcommitting time or resources to decisions that are based on unreliable evidence. In this review, we consider progress in characterizing the neural and mechanistic basis of these related aspects of metacognition-confidence judgements and error monitoring-and identify crucial points of convergence between methods and theories in the two fields. This convergence suggests that common principles govern metacognitive judgements of confidence and accuracy; in particular, a shared reliance on post-decisional processing within the systems responsible for the initial decision. However, research in both fields has focused rather narrowly on simple, discrete decisions-reflecting the correspondingly restricted focus of current models of the decision process itself-raising doubts about the degree to which discovered principles will scale up to explain metacognitive evaluation of real-world decisions and actions that are fluid, temporally extended, and embedded in the broader context of evolving behavioural goals.

Figures

Figure 1.
Figure 1.
The drift-diffusion model. Accumulating evidence (the decision variable, y-axis) over time (x-axis) is shown for two illustrative trials (marked a and b, grey and black lines), one on which the choice θ is made and the other on which the choice –θ is made. A decision is triggered when evidence reaches θ or –θ. Grey line, trial 1; black line, trial 2.
Figure 2.
Figure 2.
Theories of error detection within the DDM framework. The drift-diffusion process is illustrated schematically for two trials, one in which decision θ is the correct response and one trial in which this decision is incorrect. Both decisions occur at the same time point (a). Following the correct response (grey line), post-decision processing continues to accumulate in favour of the decision just made. Following errors (black line), the drift rate regresses to its true mean, causing the DV to re-cross the decision bound (b), subsequently cross a change-of-mind bound (c), and finally cross the originally correct decision bound, –θ (d). The grey shaded area indicates a period of uncertainty, or conflict, between the re-crossing of the θ bound (b) and later crossing of the –θ bound (d).
Figure 3.
Figure 3.
Schematic of a model in which both the mean and variance of information in an array are estimated in a serial sampling framework. (a) The left panel shows the posterior probability distribution p (H | data) over a continuous space of possible perceptual hypotheses (e.g. these dots are moving to the right with 30% coherence; this signal is 40% visible; etc.) at a given time, t. This distribution reflects the evidence sampled from the stimulus thus far, i.e. between onset and time t (grey dots). The new sample received at time t is shown in red. Right panel: at time t + 1, this distribution (light grey) is updated in the light of the newly sampled information, giving rise to a new probability distribution. In this model, confidence is reflected in the precision of the posterior distribution, i.e. the reciprocal of its standard deviation. (b) The evolving posterior probability distribution over perceptual hypotheses (y-axis) for each successive time point (x-axis; blue–red colourmap; red values indicate higher probabilities). The posterior distribution is updated following the arrival of successive samples with low variance (left panel) or high variance (right panel). Precision of the probabilistic representation of evidence strength increases more rapidly for the low-variability samples.

References

    1. Gold J. I., Shadlen M. N. 2007. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–57410.1146/annurev.neuro.29.051605.113038 ()
    1. Bogacz R., Brown E., Moehlis J., Holmes P., Cohen J. D. 2006. The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 113, 700–76510.1037/0033-295X.113.4.700 ()
    1. Ratcliff R., McKoon G. 2008. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 20, 873–92210.1162/neco.2008.12-06-420 ()
    1. Smith P. L., Ratcliff R. 2004. Psychology and neurobiology of simple decisions. Trends Neurosci. 27, 161–16810.1016/j.tins.2004.01.006 ()
    1. Wald A., Wolfowitz J. 1949. Bayes solutions of sequential decision problems. Proc. Natl Acad. Sci. USA 35, 99–10210.1073/pnas.35.2.99 ()
    1. Ratcliff R. 1978. A theory of memory retrieval. Psychol. Rev. 85, 59–10810.1037/0033-295X.85.2.59 ()
    1. Busemeyer J. R., Johnson J. G. 2004. Computational models of decision making. In Handbook of judgment and decision making (eds. Koehler D., Harvey N.), pp. 133–154 Oxford, UK: Blackwell
    1. Ratcliff R., Rouder J. N. 1998. Modeling response times for two-choice decisions. Psychol. Sci. 9, 347–35610.1111/1467-9280.00067 ()
    1. Petrusic W. M., Baranski J. V. 2003. Judging confidence influences decision processing in comparative judgments. Psychon. Bull. Rev. 10, 177–18310.3758/BF03196482 ()
    1. Galvin S. J., Podd J. V., Drga V., Whitmore J. 2003. Type 2 tasks in the theory of signal detectability: discrimination between correct and incorrect decisions. Psychon. Bull. Rev. 10, 843–87610.3758/BF03196546 ()
    1. Evans S., Azzopardi P. 2007. Evaluation of a ‘bias-free’ measure of awareness. Spat. Vis. 20, 61–7710.1163/156856807779369742 ()
    1. Maniscalco B., Lau H. 2012. A signal detection theoretic approach for estimating metacognitive sensitivity from confidence ratings. Conscious. Cogn.10.1016/j.concog.2011.09.021 ()
    1. Peirce C. S., Jastrow J. 1884. On small differences of sensation. Mem. Natl Acad. Sci. 3, 73–83
    1. Vickers D., Burt J., Smith P., Brown M. 1985. Experimental paradigms emphasizing state or process limitations: 1. Effects on speed accuracy tradeoffs. Acta Psychol. 59, 129–161
    1. Pleskac T. J., Busemeyer J. R. 2010. Two-stage dynamic signal detection: a theory of choice, decision time, and confidence. Psychol. Rev. 117, 864–90110.1037/a0019737 ()
    1. Link S. W. 2003. Confidence and random walk theory. In Modeling choice, decision time, and confidence 893 (ed. Borg B. B. E.). Stockholm, Sweden: International Society for Psychophysics
    1. Heath R. A. 1984. Random-walk and accumulator models of psychophysical discrimination—a critical evaluation. Perception 13, 57–6510.1068/p130057 ()
    1. Vickers D., Packer J. 1982. Effects of alternating set for speed or accuracy on response-time, accuracy and confidence in a unidimensional discrimination task. Acta Psychol. 50, 179–19710.1016/0001-6918(82)90006-3 ()
    1. Kepecs A., Uchida N., Zariwala H. A., Mainen Z. F. 2008. Neural correlates, computation and behavioural impact of decision confidence. Nature 455, 227–23110.1038/nature07200 ()
    1. Kiani R., Shadlen M. N. 2009. Representation of confidence associated with a decision by neurons in the parietal cortex. Science 324, 759–76410.1126/science.1169405 ()
    1. Britten K. H., Shadlen M. N., Newsome W. T., Movshon J. A. 1992. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765
    1. Roitman J. D., Shadlen M. N. 2002. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22, 9475–9489
    1. Shadlen M. N., Newsome W. T. 2001. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936
    1. Smith J. D., Couchman J. J., Beran M. J. 2012. The highs and lows of theoretical interpretation in animal-metacognition research. Phil. Trans. R. Soc. B 367, 1297–130910.1098/rstb.2011.0366 ()
    1. Kepecs A., Mainen Z. F. 2012. A computational framework for the study of confidence in humans and animals. Phil. Trans. R. Soc. B 367, 1322–133710.1098/rstb.2012.0037 ()
    1. Resulaj A., Kiani R., Wolpert D. M., Shadlen M. N. 2009. Changes of mind in decision-making. Nature 461, 263–26610.1038/nature08275 ()
    1. Rabbitt P. M. A. 1966. Errors and error correction in choice-response tasks. J. Exp. Psychol. 71, 264–27210.1037/h0022853 ()
    1. Rabbitt P. M. A., Vyas S. M. 1981. Processing a display even after you make a response to it. How perceptual errors can be corrected. Quart. J. Exp. Psychol. 33A, 223–239
    1. Rabbitt P. M. A. 2002. Consciousness is slower than you think. Quart. J. Exp. Psychol. A 55, 1081–109210.1080/02724980244000080 ()
    1. Jentzsch I., Dudschig C. 2009. Why do we slow down after an error? Mechanisms underlying the effects of posterror slowing. Quart. J. Exp. Psychol. 62, 209–21810.1080/17470210802240655 ()
    1. Falkenstein M., Hohnsbein J., Hoorman J., Blanke L. 1991. Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalogr. Clin. Neurophysiol. 78, 447–45510.1016/0013-4694(91)90062-9 ()
    1. Steinhauser M., Maier M., Hubner R. 2008. Modeling behavioral measures of error detection in choice tasks: response monitoring versus conflict monitoring. J. Exp. Psychol. Hum. Percept. Perform. 34, 158–17610.1037/0096-1523.34.1.158 ()
    1. Joordens S., Piercey C. D., Azarbehi R. 2009. Modeling performance at the trial level within a diffusion framework: a simple yet powerful method for increasing efficiency via error detection and correction. Can. J. Exp. Psychol. 63, 81–93
    1. Yeung N., Botvinick M. M., Cohen J. D. 2004. The neural basis of error detection: conflict monitoring and the error-related negativity. Psychol. Rev. 111, 931–95910.1037/0033-295X.111.4.931 ()
    1. Holroyd C. B., Coles M. G. H. 2002. The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev. 109, 679–70910.1037/0033-295X.109.4.679 ()
    1. Rabbitt P. M. A., Cumming G., Vyas S. M. 1978. Some errors of perceptual analysis in visual search can be detected and corrected. Quart. J. Exp. Psychol. 30, 319–33210.1080/14640747808400679 ()
    1. Rabbitt P. M. A., Rodgers B. 1977. What does a man do after he makes an error? An analysis of response programming. Quart. J. Exp. Psychol. 29, 727–74310.1080/14640747708400645 ()
    1. Nieuwenhuis S., Ridderinkhof K. R., Blom J., Band G. P. H., Kok A. 2001. Error-related brain potentials are differentially related to awareness of response errors: evidence from an antisaccade task. Psychophysiology 38, 752–76010.1111/1469-8986.3850752 ()
    1. Debener S., Ullsperger M., Siegel M., Fiehler K., von Cramon D. Y., Engel A. K. 2005. Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J. Neurosci. 25, 11 730–11 73710.1523/JNEUROSCI.3286-05.2005 ()
    1. Ridderinkhof K. R., Ramautar J. R., Wijnen J. G. 2009. To P(E) or not to P(E): a P3-like ERP component reflecting the processing of response errors. Psychophysiology 46, 531–53810.1111/j.1469-8986.2009.00790.x ()
    1. Linden D. E. 2005. The P300: where in the brain is it produced and what does it tell us? Neuroscientist 11, 563–57610.1177/1073858405280524 ()
    1. Nieuwenhuis S., Aston-Jones G., Cohen J. D. 2005. Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychol. Bull. 131, 510–53210.1037/0033-2909.131.4.510 ()
    1. Overbeek T. J. M., Nieuwenhuis S., Ridderinkhof K. R. 2005. Dissociable components of error processing: on the functional significance of the Pe vis-à-vis the ERN/Ne. J. Psychophysiol. 19, 319–32910.1027/0269-8803.19.4.319 ()
    1. Gehring W. J., Fencsik D. 1999. Slamming on the brakes: an electrophysiological study of error response inhibition. Presented at Annual meeting of the Cognitive Neuroscience Society, Washington, DC, 1999 April
    1. Rodriguez-Fornells A., Kurzbuch A. R., Muente T. F. 2002. Time course of error detection and correction in humans: neurophysiological evidence. J. Neurosci. 22, 9990–9996
    1. Gehring W. J., Goss B., Coles M. G. H., Meyer D. E., Donchin E. 1993. A neural system for error detection and compensation. Psychol. Sci. 4, 385–39010.1111/j.1467-9280.1993.tb00586.x ()
    1. Hughes G., Yeung N. 2011. Dissociable correlates of response conflict and error awareness in error-related brain activity. Neuropsychologia 49, 405–41510.1016/j.neuropsychologia.2010.11.036 ()
    1. Scheffers M. K., Coles M. G. H. 2000. Performance monitoring in a confusing world: error-related brain activity, judgements of response accuracy, and types of errors. J. Exp. Psychol. Hum. Percep. Perform. 26, 141–15110.1037/0096-1523.26.1.141 ()
    1. Steinhauser M., Yeung N. 2010. Decision processes in human performance monitoring. J. Neurosci. 30, 15 643–15 65310.1523/JNEUROSCI.1899-10.2010 ()
    1. Notebaert W., Houtman F., Van Opstal F., Gevers W., Fias W., Verguts T. 2009. Post-error slowing: an orienting account. Cognition 111, 275–27910.1016/j.cognition.2009.02.002 ()
    1. Bogacz R., Wagenmakers E. J., Forstmann B. U., Nieuwenhuis S. 2010. The neural basis of the speed-accuracy tradeoff. Trends Neurosci. 33, 10–1610.1016/j.tins.2009.09.002 ()
    1. Botvinick M. M., Braver T. S., Carter C. S., Barch D. M., Cohen J. D. 2001. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–65210.1037/0033-295X.108.3.624 ()
    1. Ratcliff R., Frank M. J. 2012. Reinforcement-based decision making in corticostriatal circuits: mutual constraints by neurocomputational and diffusion models. Neural Comput. 24, 1–4410.1162/NECO_a_00270 ()
    1. Schultz W., Dayan P., Montague P. R. 1997. A neural substrate of prediction and reward. Science 275, 1593–159910.1126/science.275.5306.1593 ()
    1. Hester R., Barre N., Murphy K., Silk T. J., Mattingley J. B. 2008. Human medial frontal cortex activity predicts learning from errors. Cerebral Cortex 18, 1933–194010.1093/cercor/bhm219 ()
    1. Hester R., Madeley J., Murphy K., Mattingley J. B. 2009. Learning from errors: error-related neural activity predicts improvements in future inhibitory control performance. J. Neurosci. 29, 7158–716510.1523/JNEUROSCI.4337-08.2009 ()
    1. Rushworth M. F. S., Behrens T. E., Rudebeck P. H., Walton M. E. 2007. Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends Cogn. Sci. 11, 168–17610.1016/j.tics.2007.01.004 ()
    1. Gratton G., Coles M. G. H., Sirevaag E. J., Eriksen C. W., Donchin E. 1988. Pre- and poststimulus activation of response channels: a psychophysiological analysis. J. Exp. Psychol. Hum. Percep. Perform 14, 331–34410.1037/0096-1523.14.3.331 ()
    1. Graziano M., Poloseki P., Shalom D. E., Sigman M. 2011. Parsing a perceptual decision into a sequence of moments of thought. Front. Integr. Neurosci. 5, 45.10.3389/fnint.2011.00045 ()
    1. Krajbich I., Armel C., Rangel A. 2010. Visual fixations and the computation and comparison of value in simple choice. Nat. Neurosci. 13, 1292–129810.1038/nn.2635 ()
    1. Burle B., Roger C., Allain S., Vidal F., Hasbroucq T. 2008. Error negativity does not reflect conflict: a reappraisal of conflict monitoring and anterior cingulate cortex activity. J. Cogn. Neurosci. 20, 1637–165510.1162/jocn.2008.20110 ()
    1. Lashley K. S. 1951. The problem of serial order in behavior. In Cerebral mechanisms in behavior: the Hixon Symposium (ed. Jeffress L. A.), pp. 112–136 New York, NY: Wiley
    1. Botvinick M. M. 2008. Hierarchical models of behavior and prefrontal function. Trends Cogn. Sci. 12, 201–20810.1016/j.tics.2008.02.009 ()
    1. Koechlin E., Summerfield C. 2007. An information theoretical approach to prefrontal executive function. Trends Cogn. Sci. 11, 229–23510.1016/j.tics.2007.04.005 ()
    1. Logan G. D., Crump M. J. 2010. Cognitive illusions of authorship reveal hierarchical error detection in skilled typists. Science 330, 683–68610.1126/science.1190483 ()
    1. Krigolson O. E., Holroyd C. B. 2006. Evidence for hierarchical error processing in the human brain. Neuroscience 137, 13–1710.1016/j.neuroscience.2005.10.064 ()
    1. Montgomery D. A., Sorkin R. D. 1996. Observer sensitivity to element reliability in a multielement visual display. Hum. Factors 38, 484–49410.1518/001872096778702024 ()
    1. Schultz W., Preuschoff K., Camerer C., Hsu M., Fiorillo C. D., Tobler P. N., Bossaerts P. 2008. Explicit neural signals reflecting reward uncertainty. Phil. Trans. R. Soc. B 363, 3801–381110.1098/rstb.2008.0152 ()
    1. O'Neill M., Schultz W. 2011. Coding of reward risk by orbitofrontal neurons is mostly distinct from coding of reward value. Neuron 68, 789–80010.1016/j.neuron.2010.09.031 ()
    1. Behrens T. E., Woolrich M. W., Walton M. E., Rushworth M. F. 2007. Learning the value of information in an uncertain world. Nat. Neurosci. 10, 1214–122110.1038/nn1954 ()
    1. Beck J. M., Ma W. J., Kiani R., Hanks T., Churchland A. K., Roitman J., Shadlen M. N., Latham P. E., Pouget A. 2008. Probabilistic population codes for Bayesian decision making. Neuron 60, 1142–115210.1016/j.neuron.2008.09.021 ()
    1. Ma W. J., Beck J. M., Latham P. E., Pouget A. 2006. Bayesian inference with probabilistic population codes. Nat. Neurosci. 9, 1432–143810.1038/nn1790 ()
    1. Ratcliff R., Starns J. J. 2009. Modeling confidence and response time in recognition memory. Psychol. Rev. 116, 59–8310.1037/a0014086 ()
    1. Yu A. J., Dayan P. 2005. Uncertainty, neuromodulation, and attention. Neuron 46, 681–9210.1016/j.neuron.2005.04.026 ()
    1. de Gardelle V., Summerfield C. 2011. Robust averaging during perceptual judgment. Proc. Natl Acad. Sci. USA 108, 13 341–13 34610.1073/pnas.1104517108 ()

Source: PubMed

3
Subscribe