18F-Fluorocholine Positron Emission Tomography/Computed Tomography is a Highly Sensitive but Poorly Specific Tool for Identifying Malignancy in Thyroid Nodules with Indeterminate Cytology: The Chocolate Study

Renaud Ciappuccini, Idlir Licaj, Audrey Lasne-Cardon, Emmanuel Babin, Dominique de Raucourt, David Blanchard, Vianney Bastit, Virginie Saguet-Rysanek, Justine Lequesne, Damien Peyronnet, Jean-Michel Grellard, Bénédicte Clarisse, Stéphane Bardet, Renaud Ciappuccini, Idlir Licaj, Audrey Lasne-Cardon, Emmanuel Babin, Dominique de Raucourt, David Blanchard, Vianney Bastit, Virginie Saguet-Rysanek, Justine Lequesne, Damien Peyronnet, Jean-Michel Grellard, Bénédicte Clarisse, Stéphane Bardet

Abstract

Background: Refining the risk of malignancy in patients presenting with thyroid nodules with indeterminate cytology (IC) is a critical challenge. We investigated the performances of 18F-fluorocholine (FCH) positron emission tomography/computed tomography (PET/CT) to predict malignancy. Methods: Between May 2016 and March 2019, 107 patients presenting with a thyroid nodule ≥15 mm with IC and eligible for surgery were included in this prospective study. Head-and-neck PET/CT acquisitions were performed 20 and 60 minutes after injection of 1.5 MBq/kg of FCH. PET/CT acquisition was scored positive when maximal standardized uptake value in the IC nodule was higher than in the thyroid background. Pathology was the gold standard for diagnosis. Results: At pathology, 19 (18%) nodules were malignant, 87 were benign, and one was a noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP). Sensitivity, specificity, accuracy, positive-predictive value (PPV), and negative-predictive value (NPV) of FCH PET/CT in detecting cancer or NIFTP were 90%, 50%, 55%, 29%, and 96% at 20 minutes and 85%, 49%, 67%, 28%, and 94% at 60 minutes, respectively. Higher specificity (58% vs. 33%, p = 0.01) was observed in nononcocytic (n = 72) than in oncocytic IC nodules (n = 35). The pre-PET/CT probability of cancer or NIFTP in Bethesda III-IV nodules was 11% and the post-PET/CT probability was 19% in PET-positives and 0% in PET-negatives. In retrospective analysis, 42% of surgeries would have been unnecessary after PET/CT and 81% before (p < 0.001), resulting in a hypothetical 48% reduction (95% confidence interval [32-64]). Conclusions: FCH PET/CT offers high NPV to reliably exclude cancer in PET-negative IC nodules, but suffers from low PPV, particularly in those with oncocytic cytology. ClinicalTrials.gov identifier: NCT02784223.

Keywords: 18F-choline PET/CT; PET/CT; fluorocholine PET/CT; indeterminate cytology; thyroid nodules.

Conflict of interest statement

No competing financial interests exist.

Figures

FIG. 1.
FIG. 1.
Correlation between cytology and pathology in the 107 patients. C-PTC, classic variant of papillary thyroid cancer; FV-PTC, follicular variant of papillary thyroid cancer; HCC, Hürthle cell cancer; TC-PTC, tall-cell variant of papillary thyroid cancer; NIFTP, noninvasive follicular thyroid neoplasm with papillary-like nuclear features.
FIG. 2.
FIG. 2.
Clinical example of a true-positive FCH PET/CT in a 20-year-old female patient with thyroid cancer. She was referred for a right 29 mm thyroid nodule [(A), CT scan, arrow] EU-TIRADS 3, and Bethesda IV (follicular neoplasm). High FCH uptake was observed in the nodule on both PET/CT acquisitions [(B, C), MIP and fused transaxial slice, at 20 minutes; (E, F), MIP and fused transaxial slice, at 60 minutes] (Patient 9, see Table 2 for SUVmax). Pathology revealed a 23 mm FV-PTC (pT2NxMx) [(D), HES staining, × 10]. FCH, 18F-fluorocholine; PET/CT, positron emission tomography/computed tomography; EU-TIRADS, European Thyroid Imaging Reporting and Data System; MIP, maximum intensity projection image; HES, hematoxylin and eosin stain.
FIG. 3.
FIG. 3.
Clinical example of a false-negative FCH PET/CT result. A 50-year-old female patient with a 24 mm nodule in the left thyroid lobe [(A), CT scan, arrow] EU-TIRADS 4, and Bethesda V. PET/CT did not show any FCH uptake in the thyroid nodule neither at 20 minutes [(B), MIP; (C), fused transaxial slice] nor at 60 minutes [(E), MIP; (F), fused transaxial slice] (Patient 11, see Table 2 for SUVmax). An 18 mm C-PTC (pT1bN0Mx) was found on pathology [(D), HES staining, × 10].
FIG. 4.
FIG. 4.
Clinical example of false-negative FCH PET/CT result. A 51-year-old female patient was referred for a 15 mm nodule of the right thyroid lobe [(A), CT scan, arrow] EU-TIRADS 5, and Bethesda V. FCH PET/CT showed diffuse thyroid uptake on both acquisitions [(B, C), MIP and fused transaxial slice, at 20 minutes] (SUVmax = 9.29); (E, F) MIP and fused transaxial slice, at 60 minutes (SUVmax = 8.25), which was higher than in the nodule (Patient 10, see Table 2 for SUVmax). A 12-mm FV-PTC (pT1bN0Mx) was found on pathology [(D), HES staining, × 10).
FIG. 5.
FIG. 5.
Quantitative assessment of FCH uptake in benign, NIFTP, and malignant nodules scanned with PET/CT according to the pathological subtype and the acquisition time [(A), at 20 minutes; (B), at 60 minutes].
FIG. 6.
FIG. 6.
FCH PET/CT results in two patients with a cytology consistent with oncocytic (Hürthle) cell neoplasm (Bethesda IV). (AF) True-positive FCH PET/CT in a 65-year-old female patient with a right 53 mm thyroid nodule [(A), CT scan, arrow] and EU-TIRADS 3. High FCH tumor uptake was present on both acquisitions [(B, C), MIP and fused transaxial slice, at 20 minutes; (E, F), MIP and fused transaxial slice, at 60 minutes] (Patient 2, see Table 2 for SUVmax). Pathology showed a 55 mm HCC (pT3aNxMx) [(D), HES staining, × 10). (GL) False-positive FCH PET/CT in a 71-year-old female patient referred for a 38 mm right thyroid nodule [(G), CT scan, arrow] and EU-TIRADS 4. PET/CT showed high FCH uptake in the nodule on both acquisitions [(H, I), MIP and fused transaxial slice, at 20 minutes (SUVmax = 6.47); (K, L), MIP and fused transaxial slice, at 60 minutes (SUVmax = 6.59)]. A 40-mm oncocytic adenoma was found on pathology [(J), HES staining, × 5].
FIG. 7.
FIG. 7.
Cancer risk in indeterminate cytology thyroid nodules based on cytology and FCH PET/CT results.

References

    1. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L. 2016. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26:1–133
    1. Paschke R, Cantara S, Crescenzi A, Jarzab B, Musholt TJ, Sobrinho SM. 2017. European Thyroid Association guidelines regarding thyroid nodule molecular fine-needle aspiration cytology diagnostics. Eur Thyroid J 6:115–129
    1. Bardet S, Goardon N, Lequesne J, Vaur D, Ciappuccini R, Leconte A, Monpeyssen H, Saguet-Rysanek V, Clarisse B, Lasne-Cardon A, Menegaux F, Leenhardt L, Buffet C. 2020. Diagnostic and prognostic value of a 7-panel mutation testing in thyroid nodules with indeterminate cytology: the SWEETMAC study. Endocrine [Epub ahead of print]; DOI: 10.1007/s12020-020-02411-4
    1. Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL, Yip L, Seethala RR, Tublin ME, Stang MT, Coyne C, Johnson JT, Stewart AF, Nikiforova MN. 2011. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab 96:3390–3397
    1. Steward DL, Carty SE, Sippel RS, Yang SP, Sosa JA, Sipos JA, Figge JJ, Mandel S, Haugen BR, Burman KD, Baloch ZW, Lloyd RV, Seethala RR, Gooding WE, Chiosea SI, Gomes-Lima C, Ferris RL, Folek JM, Khawaja RA, Kundra P, Loh KS, Marshall CB, Mayson S, McCoy KL, Nga ME, Ngiam KY, Nikiforova MN, Poehls JL, Ringel MD, Yang H, Yip L, Nikiforov YE. 2019. Performance of a multigene genomic classifier in thyroid nodules with indeterminate cytology: a prospective blinded multicenter study. JAMA Oncol 5:204–212
    1. Patel KN, Angell TE, Babiarz J, Barth NM, Blevins T, Duh QY, Ghossein RA, Harrell RM, Huang J, Kennedy GC, Kim SY, Kloos RT, LiVolsi VA, Randolph GW, Sadow PM, Shanik MH, Sosa JA, Traweek ST, Walsh PS, Whitney D, Yeh MW, Ladenson PW. 2018. Performance of a genomic sequencing classifier for the preoperative diagnosis of cytologically indeterminate thyroid nodules. JAMA Surg 153:817–824
    1. Aktolun C, Bayhan H, Kir M. 1992. Clinical experience with Tc-99m MIBI imaging in patients with malignant tumors. Preliminary results and comparison with Tl-201. Clin Nucl Med 17:171–176
    1. Briele B, Hotze A, Kropp J, Bockisch A, Overbeck B, Grunwald F, Kaiser W, Biersack HJ. 1991. [A comparison of 201Tl and 99mTc-MIBI in the follow-up of differentiated thyroid carcinomas]. Nuklearmedizin 30:115–124 (Article in German).
    1. Giovanella L, Campenni A, Treglia G, Verburg FA, Trimboli P, Ceriani L, Bongiovanni M. 2016. Molecular imaging with (99m)Tc-MIBI and molecular testing for mutations in differentiating benign from malignant follicular neoplasm: a prospective comparison. Eur J Nucl Med Mol Imaging 43:1018–1026
    1. Hurtado-Lopez LM, Arellano-Montano S, Torres-Acosta EM, Zaldivar-Ramirez FR, Duarte-Torres RM, Alonso-De-Ruiz P, Martinez-Duncker I, Martinez-Duncker C. 2004. Combined use of fine-needle aspiration biopsy, MIBI scans and frozen section biopsy offers the best diagnostic accuracy in the assessment of the hypofunctioning solitary thyroid nodule. Eur J Nucl Med Mol Imaging 31:1273–1279
    1. Saggiorato E, Angusti T, Rosas R, Martinese M, Finessi M, Arecco F, Trevisiol E, Bergero N, Puligheddu B, Volante M, Podio V, Papotti M, Orlandi F. 2009. 99mTc-MIBI imaging in the presurgical characterization of thyroid follicular neoplasms: relationship to multidrug resistance protein expression. J Nucl Med 50:1785–1793
    1. Sharma R, Mondal A, Shankar LR, Sahoo M, Bhatnagar P, Sawroop K, Chopra MK, Kashyap R. 2004. Differentiation of malignant and benign solitary thyroid nodules using 30- and 120-minute tc-99m MIBI scans. Clin Nucl Med 29:534–537
    1. de Geus-Oei LF, Pieters GF, Bonenkamp JJ, Mudde AH, Bleeker-Rovers CP, Corstens FH, Oyen WJ. 2006. 18F-FDG PET reduces unnecessary hemithyroidectomies for thyroid nodules with inconclusive cytologic results. J Nucl Med 47:770–775
    1. Deandreis D, Al Ghuzlan A, Auperin A, Vielh P, Caillou B, Chami L, Lumbroso J, Travagli JP, Hartl D, Baudin E, Schlumberger M, Leboulleux S. 2012. Is (18)F-fluorodeoxyglucose-PET/CT useful for the presurgical characterization of thyroid nodules with indeterminate fine needle aspiration cytology? Thyroid 22:165–172
    1. Giovanella L, Suriano S, Maffioli M, Ceriani L. 2011. 18FDG-positron emission tomography/computed tomography (PET/CT) scanning in thyroid nodules with nondiagnostic cytology. Clin Endocrinol (Oxf) 74:644–648
    1. Hales NW, Krempl GA, Medina JE. 2008. Is there a role for fluorodeoxyglucose positron emission tomography/computed tomography in cytologically indeterminate thyroid nodules? Am J Otolaryngol 29:113–118
    1. Kim JM, Ryu JS, Kim TY, Kim WB, Kwon GY, Gong G, Moon DH, Kim SC, Hong SJ, Shong YK. 2007. 18F-fluorodeoxyglucose positron emission tomography does not predict malignancy in thyroid nodules cytologically diagnosed as follicular neoplasm. J Clin Endocrinol Metab 92:1630–1634
    1. Nguyen TT, Lange NGE, Nielsen AL, Thomassen A, Dossing H, Godballe C, Rohde M. 2018. PET/CT and prediction of thyroid cancer in patients with follicular neoplasm or atypia. Eur Arch Otorhinolaryngol 275:2109–2117
    1. Rosario PW, Rocha TG, Calsolari MR. 2019. Fluorine-18-fluorodeoxyglucose positron emission tomography in thyroid nodules with indeterminate cytology: a prospective study. Nucl Med Commun 40:185–187
    1. Sebastianes FM, Cerci JJ, Zanoni PH, Soares J Jr., Chibana LK, Tomimori EK, de Camargo RY, Izaki M, Giorgi MC, Eluf-Neto J, Meneghetti JC, Pereira MA. 2007. Role of 18F-fluorodeoxyglucose positron emission tomography in preoperative assessment of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab 92:4485–4488
    1. Traugott AL, Dehdashti F, Trinkaus K, Cohen M, Fialkowski E, Quayle F, Hussain H, Davila R, Ylagan L, Moley JF. 2010. Exclusion of malignancy in thyroid nodules with indeterminate fine-needle aspiration cytology after negative 18F-fluorodeoxyglucose positron emission tomography: interim analysis. World J Surg 34:1247–1253
    1. Bardet S, Ciappuccini R, Pellot-Barakat C, Monpeyssen H, Michels JJ, Tissier F, Blanchard D, Menegaux F, de RD, Lefort M, Reznik Y, Rouxel A, Heutte N, Brenac F, Leconte A, Buffet C, Clarisse B, Leenhardt L. 2017. Shear wave elastography in thyroid nodules with indeterminate cytology: results of a prospective bicentric study. Thyroid 27:1441–1449
    1. Grimaldi S, Young J, Kamenicky P, Hartl D, Terroir M, Leboulleux S, Berdelou A, Hadoux J, Hescot S, Remy H, Baudin E, Schlumberger M, Deandreis D. 2018. Challenging pre-surgical localization of hyperfunctioning parathyroid glands in primary hyperparathyroidism: the added value of (18)F-fluorocholine PET/CT. Eur J Nucl Med Mol Imaging 45:1772–1780
    1. Quak E, Blanchard D, Houdu B, Le Roux Y, Ciappuccini R, Lireux B, de Raucourt D, Grellard JM, Licaj I, Bardet S, Reznik Y, Clarisse B, Aide N. 2018. F18-choline PET/CT guided surgery in primary hyperparathyroidism when ultrasound and MIBI SPECT/CT are negative or inconclusive: the APACH1 study. Eur J Nucl Med Mol Imaging 45:658–666
    1. Evans JD, Jethwa KR, Ost P, Williams S, Kwon ED, Lowe VJ, Davis BJ. 2018. Prostate cancer-specific PET radiotracers: a review on the clinical utility in recurrent disease. Pract Radiat Oncol 8:28–39
    1. 2012 FDA approves 11C-choline for PET in prostate cancer. J Nucl Med 53:11N
    1. Wu HB, Wang QS, Wang MF, Li HS. 2011. Utility of (11)C-choline imaging as a supplement to F-18 FDG PET imaging for detection of thyroid carcinoma. Clin Nucl Med 36:91–95
    1. Albano D, Durmo R, Bertagna F, Giubbini R. 2019. 18F-choline PET/CT incidental thyroid uptake in patients studied for prostate cancer. Endocrine 63:531–536
    1. Aziz AL, Courbon F, Dierickx LO, Pascal P, Zerdoud S. 2015. Oncocytic adenoma of thyroid incidentally detected by 18F-fluorocholine PET/CT. J Nucl Med Technol 43:133–134
    1. Hodolic M, Huchet V, Balogova S, Michaud L, Kerrou K, Nataf V, Cimitan M, Fettich J, Talbot JN. 2014. Incidental uptake of (18)F-fluorocholine (FCH) in the head or in the neck of patients with prostate cancer. Radiol Oncol 48:228–234
    1. Paone G, Treglia G, Bongiovanni M, Ruberto T, Ceriani L, Giovanella L. 2013. Incidental detection of Hürthle cell adenoma by 18F-choline PET/CT scan in a patient with prostate cancer. Rev Esp Med Nucl Imagen Mol 32:340–341
    1. Treglia G, Giovannini E, Mirk P, Di Franco D, Oragano L, Bertagna F. 2014. A thyroid incidentaloma detected by 18F-choline PET/CT. Clin Nucl Med 39:e267–e269
    1. Ciappuccini R, Jeanne C, Bardet S. 2018. Incidental focal thyroid uptake on (18)F-Choline PET-CT: need to rule out thyroid cancer. Endocrine 62:729–730
    1. Ciappuccini R, Edet-Sanson A, Saguet-Rysanek V, Gauthe M, Bardet S. 2019. Thyroid incidentaloma on 18F-fluorocholine PET/CT and 68Ga-PSMA PET/CT revealing a medullary thyroid carcinoma. Clin Nucl Med 44:663–665
    1. Lalire P, Zalzali M, Garbar C, Bruna-Muraille C, Morland D. 2016. Incidental detection of oxyphilic papillary thyroid carcinoma by 18F-fluorocholine PET/CT. Clin Nucl Med 41:512–513
    1. Ouattara A, de Oliveira TR, Holz S, Van den Bossche H, Strybol D, Assenmacher C, Everaerts W, De Meerleer G, Joniau S. 2017. Incidental detection of occult thyroid carcinoma with (11)C-choline PET/CT for high risk prostate cancer. Curr Urol 10:217–220
    1. Baloch ZW, LiVolsi VA, Asa SL, Rosai J, Merino MJ, Randolph G, Vielh P, DeMay RM, Sidawy MK, Frable WJ. 2008. Diagnostic terminology and morphologic criteria for cytologic diagnosis of thyroid lesions: a synopsis of the National Cancer Institute Thyroid Fine-Needle Aspiration State of the Science Conference. Diagn Cytopathol 36:425–437
    1. Russ G, Bonnema SJ, Erdogan MF, Durante C, Ngu R, Leenhardt L. 2017. European Thyroid Association guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: the EU-TIRADS. Eur Thyroid J 6:225–237
    1. International Agency for Research on Cancer 2017. WHO Classification of Tumours of Endocrine Organs 2017. Fourth edition. International Agency for Research on Cancer, Lyon, France
    1. Brierley JD, Gospodarowicz MK, Wittekind C. 2016. TNM Classification of Malignant Tumours. Eighth edition. Wiley-Blackwell, Oxford, United Kingdom
    1. Bongiovanni M, Spitale A, Faquin WC, Mazzucchelli L, Baloch ZW. 2012. The bethesda system for reporting thyroid cytopathology: a meta-analysis. Acta Cytol 56:333–339
    1. Munoz PN, Villar del Moral JM, Muros Fuentes MA, Lopez de la Torre M, Arcelus Martinez JI, Becerra MP, Esteva MD, Canadas GM, Coll Del Rey E, Bueno LP, Ferron Orihuela JA. 2013. Could 18F-FDG-PET/CT avoid unnecessary thyroidectomies in patients with cytological diagnosis of follicular neoplasm? Langenbecks Arch Surg 398:709–716
    1. Piccardo A, Puntoni M, Treglia G, Foppiani L, Bertagna F, Paparo F, Massollo M, Dib B, Paone G, Arlandini A, Catrambone U, Casazza S, Pastorino A, Cabria M, Giovanella L. 2016. Thyroid nodules with indeterminate cytology: prospective comparison between 18F-FDG-PET/CT, multiparametric neck ultrasonography, 99mTc-MIBI scintigraphy and histology. Eur J Endocrinol 174:693–703
    1. Wang N, Zhai H, Lu Y. 2013. Is fluorine-18 fluorodeoxyglucose positron emission tomography useful for the thyroid nodules with indeterminate fine needle aspiration biopsy? A meta-analysis of the literature. J Otolaryngol Head Neck Surg 42:38.
    1. Giovanella L, Suriano S, Maffioli M, Ceriani L, Spriano G. 2010. (99m)Tc-sestamibi scanning in thyroid nodules with nondiagnostic cytology. Head Neck 32:607–611
    1. Vargas-Salas S, Martinez JR, Urra S, Dominguez JM, Mena N, Uslar T, Lagos M, Henriquez M, Gonzalez HE. 2018. Genetic testing for indeterminate thyroid cytology: review and meta-analysis. Endocr Relat Cancer 25:R163–R177

Source: PubMed

3
Subscribe