Efficacy and safety of intra-articular injection of mesenchymal stem cells in the treatment of knee osteoarthritis: A systematic review and meta-analysis

Wei Ma, Cuimiao Liu, Shilu Wang, Honghao Xu, Haichao Sun, Xiao Fan, Wei Ma, Cuimiao Liu, Shilu Wang, Honghao Xu, Haichao Sun, Xiao Fan

Abstract

Objective: To evaluate the effects and safety of intra-articular injection of mesenchymal stem cells on patients with knee osteoarthritis by a systematic review and meta-analysis.

Methods: PubMed, EMBASE, and Cochrane Library were retrieved. An assessment of the risk of bias was done through the Cochrane Collaborative Bias Risk Tool, publication bias was assessed by plotting funnel plots and Egger tests. Pain and functional improvements in patients with knee osteoarthritis were determined by changes in VAS scores and WOMAC scores at baseline and follow-up endpoints. For the evaluation of MRI, the WORMS score and changes in cartilage volume were used. In addition, the number of adverse events in the intervention group and the control group were counted to explore the safety.

Results: A total of 10 randomized controlled trials involving 335 patients were included. In the pooled analysis, compared with the control groups, the VAS scores of MSC groups decreased significantly (MD,-19.24; 95% CI: -26.31 to -12.18, P < .00001. All of the WOMAC scores also improved significantly: the total scores (SMD, - 0.66; 95% CI: - 1.09 to -0.23, P = .003), pain scores (SMD, - 0.46; 95% CI: - 0.75 to -0.17, P = .002), stiffness scores (SMD, -0.32; 95% CI: -0.64 to 0.00 P = 0.05), and functional scores (SMD, -0.36; 95% CI: -0.69 to -0.04, P = .03). Two studies with non-double-blind designs were the main source of heterogeneity. In terms of cartilage repair, there was no significant difference in the WORMS score, but there was a significant increase in cartilage volume in the MSC group (SMD, 0.69; 95% CI: 0.25 to 1.13, P = .002). The proportion of patients with adverse events in the MSCs treatment group was significantly higher than that in the control group (OR, 3.20; 95% CI: 1.50 to 6.83, P = .003).

Conclusions: Intra-articular injection of mesenchymal stem cells is effective and safety to relieve pain and improve motor function of patients with knee osteoarthritis in a short term which is different to conclusions of previous study.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Figure 1
Figure 1
The process of literature screening in strict accordance with the inclusion/exclusion criteria. RCT, randomized controlled trial.
Figure 2
Figure 2
Summary of the risk of bias assessment for the included studies.
Figure 3
Figure 3
Evaluation of publication bias by funnel plot symmetry (A) Funnel plot of VAS scores (Egger, P = .49), (B) Funnel plot of WOMAC total scores (Egger, P = .22).
Figure 4
Figure 4
Forest plots of mean difference with 95% CI in visual analog scale (VAS) scores. Fixed-effects models were used.
Figure 5
Figure 5
Forest plots of standardized mean difference with 95% CI in WOMAC scores. (A) WOMAC total scores. (B) WOMAC pain scores. (C) WOMAC stiffness scores. (D) WOMAC functional scores. Random effects models were used in A, Fixed-effect models were used in B, C, and D.
Figure 6
Figure 6
Forest plots of mean difference with 95% CI in WORMS scores. Fixed-effects models were used.
Figure 7
Figure 7
Forest plots of standardized mean difference with 95% CI in changes in cartilage volume. Fixed-effect effects models were used.
Figure 8
Figure 8
Forest plots of odds ratios with 95% CI in number of patients with adverse events. Fixed-effects models were used.

References

    1. Migliore A, Gigliucci G, Alekseeva L, et al. Treat-to-target strategy for knee osteoarthritis. International technical expert panel consensus and good clinical practice statements. Ther Adv Musculoskelet Dis 2019;11: 1759720x19893800.
    1. Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis 2014;73:1323–30.
    1. Hsieh CK, Chang CJ, Liu ZW, et al. Extracorporeal shockwave therapy for the treatment of knee osteoarthritis: a meta-analysis. Int Orthop 2020.
    1. Ranmuthu CDS, Ranmuthu CKI, Khan WS. Evaluating the current literature on treatments containing adipose-derived stem cells for osteoarthritis: a progress update. Curr Rheumatol Rep 2018;20:67.
    1. Antony B, Jones G, Jin X, et al. Do early life factors affect the development of knee osteoarthritis in later life: a narrative review. Arthritis Res Ther 2016;18:202.
    1. Farr Ii J, Miller LE, Block JE. Quality of life in patients with knee osteoarthritis: a commentary on nonsurgical and surgical treatments. Open Orthop J 2013;7:619–23.
    1. D’Arrigo D, Roffi A, Cucchiarini M, et al. Secretome and extracellular vesicles as new biological therapies for knee osteoarthritis: a systematic review. J Clin Med 2019;8:
    1. Doyle EC, Wragg NM, Wilson SL. Intraarticular injection of bone marrow-derived mesenchymal stem cells enhances regeneration in knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2020.
    1. Jafarzadeh SR, Felson DT. Updated Estimates Suggest a Much Higher Prevalence of Arthritis in United States Adults Than Previous Ones. Arthritis Rheumatol 2018;70:185–92.
    1. Deshpande BR, Katz JN, Solomon DH, et al. Number of Persons With Symptomatic Knee Osteoarthritis in the US: Impact of Race and Ethnicity, Age, Sex, and Obesity. Arthritis Care Res 2016;68:1743–50.
    1. Pas HI, Winters M, Haisma HJ, et al. Stem cell injections in knee osteoarthritis: a systematic review of the literature. Br J Sports Med 2017;51:1125–33.
    1. Jevsevar DS, Brown GA, Jones DL, et al. The American Academy of Orthopaedic Surgeons evidence-based guideline on: treatment of osteoarthritis of the knee, 2nd edition. J Bone Joint Surg Am 2013;95:1885–6.
    1. Harirforoosh S, Asghar W, Jamali F. Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J Pharm Pharm Sci 2013;16:821–47.
    1. Gutthann SP, Garcia Rodriguez LA, Raiford DS. Individual nonsteroidal antiinflammatory drugs and other risk factors for upper gastrointestinal bleeding and perforation. Epidemiology (Cambridge, Mass) 1997;8:18–24.
    1. Fibel KH, Hillstrom HJ, Halpern BC. State-of-the-Art management of knee osteoarthritis. World J Clin Cases 2015;3:89–101.
    1. Glynn LG, Mustafa A, Casey M, et al. Platelet-rich plasma (PRP) therapy for knee arthritis: a feasibility study in primary care. Pilot Feasibility Stud 2018;4:93.
    1. Altman R, Hackel J, Niazi F, et al. Efficacy and safety of repeated courses of hyaluronic acid injections for knee osteoarthritis: A systematic review. Semin Arthritis Rheum 2018;48:168–75.
    1. Pourcho AM, Smith J, Wisniewski SJ, et al. Intraarticular platelet-rich plasma injection in the treatment of knee osteoarthritis: review and recommendations. Am J Phys Med Rehabil 2014;93: Suppl 3: S108–21.
    1. Jevsevar D, Donnelly P, Brown GA, et al. Viscosupplementation for osteoarthritis of the knee: a systematic review of the evidence. J Bone Joint Surg Am 2015;97:2047–60.
    1. Lu L, Dai C, Zhang Z, et al. Treatment of knee osteoarthritis with intra-articular injection of autologous adipose-derived mesenchymal progenitor cells: a prospective, randomized, double-blind, active-controlled, phase IIb clinical trial. Stem Cell Res Ther 2019;10:143.
    1. Bastos R, Mathias M, Andrade R, et al. Intra-articular injection of culture-expanded mesenchymal stem cells with or without addition of platelet-rich plasma is effective in decreasing pain and symptoms in knee osteoarthritis: a controlled, double-blind clinical trial. Knee Surg Sports Traumatol Arthrosc 2019.
    1. Migliorini F, Rath B, Colarossi G, et al. Improved outcomes after mesenchymal stem cells injections for knee osteoarthritis: results at 12-months follow-up: a systematic review of the literature. Arch Orthop Trauma Surg 2019.
    1. Steinhaus ME, Christ AB, Cross MB. Total Knee Arthroplasty for Knee Osteoarthritis: Support for a Foregone Conclusion? HSS J 2017;13:207–10.
    1. Peersman G, Jak W, Vandenlangenbergh T, et al. Cost-effectiveness of unicondylar versus total knee arthroplasty: a Markov model analysis. The Knee 2014;21: Suppl 1: S37–42.
    1. Healy WL, Della Valle CJ, Iorio R, et al. Complications of total knee arthroplasty: standardized list and definitions of the Knee Society. Clin Orthop Relat Res 2013;471:215–20.
    1. Khalifeh Soltani S, Forogh B, Ahmadbeigi N, et al. Safety and efficacy of allogenic placental mesenchymal stem cells for treating knee osteoarthritis: a pilot study. Cytotherapy 2019;21:54–63.
    1. Kim SH, Djaja YP, Park YB, et al. Intra-articular injection of culture-expanded mesenchymal stem cells without adjuvant surgery in knee osteoarthritis: a systematic review and meta-analysis. Am J Sports Med 2019;363546519892278.
    1. Yubo M, Yanyan L, Li L, et al. Clinical efficacy and safety of mesenchymal stem cell transplantation for osteoarthritis treatment: A meta-analysis. PloS One 2017;12:e0175449.
    1. Kim SH, Ha CW, Park YB, et al. Intra-articular injection of mesenchymal stem cells for clinical outcomes and cartilage repair in osteoarthritis of the knee: a meta-analysis of randomized controlled trials. Arch Orthop Trauma Surg 2019;139:971–80.
    1. Xia P, Wang X, Lin Q, et al. Efficacy of mesenchymal stem cells injection for the management of knee osteoarthritis: a systematic review and meta-analysis. Int Orthop 2015;39:2363–72.
    1. Lee WS, Kim HJ, Kim KI, et al. Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: a phase iib, randomized, placebo-controlled clinical trial. Stem Cells Transl Med 2019;8:504–11.
    1. Kuah D, Sivell S, Longworth T, et al. Safety, tolerability and efficacy of intra-articular Progenza in knee osteoarthritis: a randomized double-blind placebo-controlled single ascending dose study. J Transl Med 2018;16:49.
    1. Emadedin M, Labibzadeh N, Liastani MG, et al. Intra-articular implantation of autologous bone marrow-derived mesenchymal stromal cells to treat knee osteoarthritis: a randomized, triple-blind, placebo-controlled phase 1/2 clinical trial. Cytotherapy 2018;20:1238–46.
    1. Lamo-Espinosa JM, Mora G, Blanco JF, et al. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: multicenter randomized controlled clinical trial (phase I/II). J Transl Med 2016;14:246.
    1. Vega A, Martin-Ferrero MA, Del Canto F, et al. Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: a randomized controlled trial. Transplantation 2015;99:1681–90.
    1. Freitag J, Bates D, Wickham J, et al. Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: a randomized controlled trial. Regen Med 2019;14:213–30.
    1. Matas J, Orrego M, Amenabar D, et al. Umbilical cord-derived mesenchymal stromal cells (MSCs) for knee osteoarthritis: repeated MSC dosing is superior to a single msc dose and to hyaluronic acid in a controlled randomized phase I/II Trial. Stem Cells Transl Med 2019;8:215–24.
    1. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ (Clinical research ed) 2009;339:b2700.
    1. Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ (Clinical research ed) 2011;343:d5928.
    1. Gupta PK, Chullikana A, Rengasamy M, Shetty N, Pandey V, Agarwal V, et al. Efficacy and safety of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells (Stempeucel(R)): preclinical and clinical trial in osteoarthritis of the knee joint. Arthr Rese Ther 2016;18:301.
    1. Kim TK, Chawla A, Meshram P. CORR synthesis: what is the evidence for the clinical use of stem cell-based therapy in the treatment of osteoarthritis of the knee? Clin Orthop Relat Res 2019.
    1. Lopa S, Colombini A, Moretti M, et al. Injective mesenchymal stem cell-based treatments for knee osteoarthritis: from mechanisms of action to current clinical evidences. Knee Surg Sports Traumatol Arthrosc 2019;27:2003–20.
    1. Park YB, Ha CW, Rhim JH, et al. Stem cell therapy for articular cartilage repair: review of the entity of cell populations used and the result of the clinical application of each entity. Am J Sports Med 2018;46:2540–52.
    1. Pers YM, Ruiz M, Noel D, et al. Mesenchymal stem cells for the management of inflammation in osteoarthritis: state of the art and perspectives. Osteoarthr Cartil 2015;23:2027–35.
    1. Dimarino AM, Caplan AI, Bonfield TL. Mesenchymal stem cells in tissue repair. Front Immunol 2013;4:201.
    1. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315–7.
    1. Jevotovsky DS, Alfonso AR, Einhorn TA, et al. Osteoarthritis and stem cell therapy in humans: a systematic review. Osteoarthritis Cartilage 2018;26:711–29.
    1. Bartolucci J, Verdugo FJ, Gonzalez PL, et al. Safety and Efficacy of the Intravenous Infusion of Umbilical Cord Mesenchymal Stem Cells in Patients With Heart Failure: A Phase 1/2 Randomized Controlled Trial (RIMECARD Trial [Randomized Clinical Trial of Intravenous Infusion Umbilical Cord Mesenchymal Stem Cells on Cardiopathy]). Circ Res 2017;121:1192–204.
    1. Consentius C, Reinke P, Volk HD. Immunogenicity of allogeneic mesenchymal stromal cells: what has been seen in vitro and in vivo? Regen Med 2015;10:305–15.
    1. Lohan P, Treacy O, Griffin MD, et al. Anti-donor immune responses elicited by allogeneic mesenchymal stem cells and their extracellular vesicles: are we still learning? Front Immunol 2017;8:1626.
    1. Glenn JD, Whartenby KA. Mesenchymal stem cells: emerging mechanisms of immunomodulation and therapy. World J Stem Cells 2014;6:526–39.
    1. Lin CS, Lin G, Lue TF. Allogeneic and xenogeneic transplantation of adipose-derived stem cells in immunocompetent recipients without immunosuppressants. Stem Cells Dev 2012;21:2770–8.
    1. Shah K, Zhao AG, Sumer H. New approaches to treat osteoarthritis with mesenchymal stem cells. Stem cells Int 2018;2018:5373294.
    1. Rock KL, Kono H. The inflammatory response to cell death. Ann Rev Pathol 2008;3:99–126.
    1. Park YB, Ha CW, Lee CH, et al. Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up. Stem Cells Transl Med 2017;6:613–21.
    1. Moradi L, Vasei M, Dehghan MM, et al. Regeneration of meniscus tissue using adipose mesenchymal stem cells-chondrocytes co-culture on a hybrid scaffold: In vivo study. Biomaterials 2017;126:18–30.
    1. Ahmed AS, Sheng MH, Wasnik S, et al. Effect of aging on stem cells. World J Exp Med 2017;7:1–0.

Source: PubMed

3
Subscribe