Practical strategies to reduce nosocomial transmission to healthcare professionals providing respiratory care to patients with COVID-19

Ramandeep Kaur, Tyler T Weiss, Andrew Perez, James B Fink, Rongchang Chen, Fengming Luo, Zongan Liang, Sara Mirza, Jie Li, Ramandeep Kaur, Tyler T Weiss, Andrew Perez, James B Fink, Rongchang Chen, Fengming Luo, Zongan Liang, Sara Mirza, Jie Li

Abstract

Coronavirus disease (COVID-19) is an emerging viral infection that is rapidly spreading across the globe. SARS-CoV-2 belongs to the same coronavirus class that caused respiratory illnesses such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). During the SARS and MERS outbreaks, many frontline healthcare workers were infected when performing high-risk aerosol-generating medical procedures as well as when providing basic patient care. Similarly, COVID-19 disease has been reported to infect healthcare workers at a rate of ~ 3% of cases treated in the USA. In this review, we conducted an extensive literature search to develop practical strategies that can be implemented when providing respiratory treatments to COVID-19 patients, with the aim to help prevent nosocomial transmission to the frontline workers.

Keywords: Aerosol-generating procedures; Nosocomial infection; Respiratory care.

Conflict of interest statement

Dr. Fink is the Chief Science Officer for Aerogen Pharma Corp. Dr. Li declares receiving unrestricted research grants from Fisher & Paykel Healthcare Ltd and Rice Foundation. Other authors have no conflict of interests to declare.

Figures

Fig. 1
Fig. 1
Flow diagram of the literature search
Fig. 2
Fig. 2
Wearing a surgical mask over high-flow high humidity nasal cannula
Fig. 3
Fig. 3
a SVN setup with filter and one-way valve. b SVN setup with a filter
Fig. 4
Fig. 4
a Non-heated single limb ventilator circuit. b Heated single limb ventilator circuit
Fig. 5
Fig. 5
Resuscitation bag setup with a filter
Fig. 6
Fig. 6
T-piece setup for tracheostomy patients
Fig. 7
Fig. 7
a Bronchoscope insertion via the nose. b Bronchoscope insertion via the mouth. c Bronchoscope insertion via the endotracheal tube. d Bronchoscope insertion via the NIV mask

References

    1. World Health Organization. Coronavirus disease 2019 (COVID-19) situation report – 1. Accessed 22 Mar 2020.
    1. World Health Organization. Coronavirus disease 2019 (COVID-19) situation report – 141. Accessed 9 June 2020.
    1. World Health Organization . Transmission of SARS-CoV-2: implications for infection prevention precautions. 2020.
    1. Liu Y, Ning Z, Chen Y, et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature. 2020; 10.1038/s41586-020-2271-3.
    1. Dhand R, Li J. Coughs and sneezes: their role in transmission of respiratory viral infections, including SARS-CoV-2 [published online ahead of print, 2020 Jun 16]. Am J Respir Crit Care Med. 2020; 10.1164/rccm.202004-1263PP.
    1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.
    1. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069.
    1. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513.
    1. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China. Lancet Respir Med. 2020:S2213–2600(20)30079–5.
    1. Arentz M, Yim E, Klaff L, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington state. JAMA. Published online March. 2020;19. 10.1001/jama.2020.4326.
    1. Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy [published online ahead of print, 2020 Apr 6] JAMA. 2020;323(16):1574–1581.
    1. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323(20):2052–2059.
    1. Seto WH, Tsang D, Yung RW, et al. Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS) Lancet. 2003;361(9368):1519–1520.
    1. Scales DC, Green K, Chan AK, et al. Illness in intensive care staff after brief exposure to severe acute respiratory syndrome. Emerg Infect Dis. 2003;9(10):1205–1210.
    1. Chu DK, Akl EA, Duda S, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet 2020; published online June 1. 10.1016/S0140-6736(20)31142-9.
    1. Gamage B, Moore D, Copes R, Yassi A, Bryce E, BC Interdisciplinary Respiratory Protection Study Group Protecting health care workers from SARS and other respiratory pathogens: a review of the infection control literature. Am J Infect Control. 2005;33(2):114–121.
    1. Suwantarat N, Apisarnthanarak A. Risks to healthcare workers with emerging diseases: lessons from MERS-CoV, Ebola, SARS, and avian flu. Curr Opin Infect Dis. 2015;28(4):349–361.
    1. Raboud J, Shigayeva A, McGeer A, et al. Risk factors for SARS transmission from patients requiring intubation: a multicentre investigation in Toronto, Canada. PLoS One. 2010;5(5):e10717.
    1. Judson SD, Munster VJ. Nosocomial transmission of emerging viruses via aerosol-generating medical procedures. Viruses. 2019;11(10):940.
    1. Tran K, Cimon K, Severn M, Pessoa-Silva CL, Conly J. Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. PLoS One. 2012;7(4):e35797.
    1. Hui DS, Chan MT, Chow B. Aerosol dispersion during various respiratory therapies: a risk assessment model of nosocomial infection to health care workers. Hong Kong Med J. 2014;20(Suppl 4):9–13.
    1. Macintyre CR, Seale H, Yang P, et al. Quantifying the risk of respiratory infection in healthcare workers performing high-risk procedures. Epidemiol Infect. 2014;142(9):1802–1808.
    1. Center for Disease Control and Prevention. Coronavirus disease 2019. Cases, data and surveillance. . Accessed 10 July 2020.
    1. Hui DS, Chow BK, Chu L, et al. Exhaled air dispersion and removal is influenced by isolation room size and ventilation settings during oxygen delivery via nasal cannula. Respirology. 2011;16(6):1005–1013.
    1. Ip M, Tang JW, Hui DS, et al. Airflow and droplet spreading around oxygen masks: a simulation model for infection control research. Am J Infect Control. 2007;35(10):684–689.
    1. Hui DS, Ip M, Tang JW, et al. Airflows around oxygen masks: a potential source of infection? Chest. 2006;130(3):822–826.
    1. Hui DS, Hall SD, Chan MT, et al. Exhaled air dispersion during oxygen delivery via a simple oxygen mask. Chest. 2007;132(2):540–546.
    1. Hui DS, Chow BK, Chu L, et al. Exhaled air dispersion during coughing with and without wearing a surgical or N95 mask. PLoS One. 2012;7(12):e50845.
    1. Milton DK, Fabian MP, Cowling BJ, Grantham ML, McDevitt JJ. Influenza virus aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks. PLoS Pathog. 2013;9(3):e1003205.
    1. Johnson DF, Druce JD, Birch C, Grayson ML. A quantitative assessment of the efficacy of surgical and N95 masks to filter influenza virus in patients with acute influenza infection. Clin Infect Dis. 2009;49(2):275–277.
    1. Leung CCH, Joynt GM, Gomersall CD, et al. Comparison of high-flow nasal cannula versus oxygen face mask for environmental bacterial contamination in critically ill pneumonia patients: a randomized controlled crossover trial. J Hosp Infect. 2019;101(1):84–87.
    1. Wang K, Zhao W, Li J, Shu W, Duan J. The experience of high-flow nasal cannula in hospitalized patients with 2019 novel coronavirus-infected pneumonia in two hospitals of Chongqing, China. Ann Intensive Care. 2020;10(1):37.
    1. Hui DS, Chow BK, Chu LCY, et al. Exhaled air and aerosolized droplet dispersion during application of a jet nebulizer. Chest. 2009;135(3):648–654.
    1. McGrath JA, O'Sullivan A, Bennett G, et al. Investigation of the quantity of exhaled aerosols released into the environment during nebulisation. Pharmaceutics. 2019;11(2):75.
    1. Simonds AK, Hanak A, Chatwin M, et al. Evaluation of droplet dispersion during non-invasive ventilation, oxygen therapy, nebuliser treatment and chest physiotherapy in clinical practice: implications for management of pandemic influenza and other airborne infections. Health Technol Assess. 2010;14(46):131–172.
    1. Lee J, Yoo D, Ryu S, et al. Quantity, size distribution, and characteristics of cough-generated aerosol produced by patients with an upper respiratory tract infection. Aerosol Air Qual Res. 2019;19(4):840–853.
    1. Hui DS, Hall SD, Chan MT, et al. Noninvasive positive-pressure ventilation: an experimental model to assess air and particle dispersion. Chest. 2006;130(3):730–740.
    1. Hui DS, Chow BK, Ng SS, et al. Exhaled air dispersion distances during noninvasive ventilation via different Respironics face masks. Chest. 2009;136(4):998–1005.
    1. Fowler RA, Guest CB, Lapinsky SE, et al. Transmission of severe acute respiratory syndrome during intubation and mechanical ventilation. Am J Respir Crit Care Med. 2004;169(11):1198–1202.
    1. Cheung TM, Yam LY, So LK, et al. Effectiveness of noninvasive positive pressure ventilation in the treatment of acute respiratory failure in severe acute respiratory syndrome. Chest. 2004;126(3):845–850.
    1. Chan MTV, Chow BK, Lo T, et al. Exhaled air dispersion during bag-mask ventilation and sputum suctioning - implications for infection control. Sci Rep. 2018;8(1):198.
    1. Cai SJ, Wu LL, Chen DF. et al, Analysis of bronchoscope-guided tracheal intubation in 12 cases with COVID-19 under the personal protective equipment with positive pressure protective hood. Chin J Tuberc Respir Dis. 2020;43 Epub ahead of print. 10.3760/cma.j.cn112147-20200222-00153.
    1. Christian MD, Loutfy M, McDonald LC, et al. Possible SARS coronavirus transmission during cardiopulmonary resuscitation. Emerg Infect Dis. 2004;10(2):287–293.
    1. O'Neil CA, Li J, Leavey A, et al. Characterization of aerosols generated during patient care activities. Clin Infect Dis. 2017;65(8):1335–1341.
    1. Thompson K, Pappachan JV, Bennett AM, Mittal H, Macken S, Dove BK, et al. Influenza aerosols in UK hospitals during the H1N1 (2009) pandemic – the risk of aerosol generation during medical procedures. PLoS One. 2013;8(2):e56278.
    1. Weber TP, Stilianakis NI. Inactivation of influenza A viruses in the environment and modes of transmission: a critical review. J Inf Secur. 2008;57(5):361–373.
    1. Lindsley WG, Blachere FM, Beezhold DH, et al. Viable influenza A virus in airborne particles expelled during coughs versus exhalations. Influenza Other Respir Viruses. 2016;10(5):404–413.
    1. Stilianakis NI, Drossinos Y. Dynamics of infectious disease transmission by inhalable respiratory droplets. J R Soc Interface. 2010;7(50):1355–1366.
    1. Jensen PA, Lambert LA, Iademarco MF, Ridzon R, CDC Guidelines for preventing the transmission of Mycobacterium tuberculosis in health-care settings, 2005. MMWR Recomm Rep. 2005;54(RR-17):1–141.
    1. Bean B, Moore BM, Sterner B, Peterson LR, Gerding DN, Balfour HH., Jr Survival of influenza viruses on environmental surfaces. J Infect Dis. 1982;146(1):47–51.
    1. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. Published online 2020 Mar 17. 10.1056/NEJMc2004973.
    1. Center for Disease Control and Prevention. .
    1. Li J, Fink JB, Ehrmann S. High-flow nasal cannula for COVID-19 patients: low risk of bio-aerosol dispersion. Eur Respir J. 2020;55(5):2000892.
    1. Somogyi R, Vesely AE, Azami T, et al. Dispersal of respiratory droplets with open vs closed oxygen delivery masks: implications for the transmission of severe acute respiratory syndrome. Chest. 2004;125(3):1155–1157.
    1. Li J, Jing GQ, Scott JB. Year in review 2019: high-flow nasal cannula (HFNC) oxygen therapy for adult patients. Respir Care. 2020;65(4):545–557.
    1. Rochwerg B, Granton D, Wang DX, et al. High flow nasal cannula compared with conventional oxygen therapy for acute hypoxemic respiratory failure: a systematic review and meta-analysis. Intensive Care Med. 2019;45(5):563–572.
    1. Patel M, Gangemi A, Marron R, et al. Use of high flow nasal therapy to treat moderate to severe hypoxemic respiratory failure in COVID-19. medRxiv 2020.05.22.20109355. 10.1101/2020.05.22.20109355.
    1. Hui DS, Chow BK, Lo T, et al. Exhaled air dispersion during high flow nasal cannula therapy versus CPAP via different masks. Eur Respir J. 2019;53:1802339.
    1. Leonard S, Atwood CW Jr, Walsh BK, et al. Preliminary findings on control of dispersion of aerosols and droplets during high-velocity nasal insufflation therapy using a simple surgical mask: implications for the high-flow nasal cannula [published online ahead of print, 2020 Apr 2]. Chest. 2020; 10.1016/j.chest.2020.03.043.
    1. Sandrock C, Stollenwerk N. Acute febrile respiratory illness in the ICU: reducing disease transmission. Chest. 2008;133(5):1221–1231.
    1. Zhonghua Jie He He Hu Xi Za Zhi. Expert Consensus on Preventing Nosocomial Transmission During Respiratory Care for Critically Ill Patients Infected by 2019 Novel coronavirus pneumonia. Chin J Tuberc Respir Dis. 2020;17 Epub ahead of print. 10.3760/cma.j.issn.1001-0939.2020.0020.
    1. Keeley D. Everyone with asthma should have a metered dose inhaler and a spacer. BMJ. 2018;360:k648.
    1. Baudin F, Buisson A, Vanel B, Massenavette B, Pouyau R, Javouhey E. Nasal high flow in management of children with status asthmaticus: a retrospective observational study. Ann Intensive Care. 2017;7(1):55.
    1. Li J, Harnois LJ, Markos B, et al. Epoprostenol delivered via high flow nasal cannula for ICU subjects with severe hypoxemia comorbid with pulmonary hypertension or right heart dysfunction. Pharmaceutics. 2019;11(6):281.
    1. Li J, Gurnani PK, Roberts KM, Fink JB, Vines D. The clinical impact of flow titration on epoprostenol delivery via high flow nasal cannula for ICU patients with pulmonary hypertension or right ventricular dysfunction: a retrospective cohort comparison study. J Clin Med. 2020;9(2):464.
    1. Li J, Gong L, Fink JB. The ratio of nasal cannula gas flow to patient inspiratory flow on trans-nasal pulmonary aerosol delivery for adults: an in vitro study. Pharmaceutics. 2019;11(5):225.
    1. Li J, Gong L, Ari A, Fink JB. Decrease the flow setting to improve trans-nasal pulmonary aerosol delivery via “high-flow nasal cannula” to infants and toddlers. Pediatr Pulmonol. 2019;54(6):914–921.
    1. Patel BK, Wolfe KS, Pohlman AS, Hall JB, Kress JP. Effect of noninvasive ventilation delivered by helmet vs face mask on the rate of endotracheal intubation in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2016;315(22):2435–2441.
    1. Bellani G, Laffey JG, Pham T, et al. Noninvasive ventilation of patients with acute respiratory distress syndrome. Insights from the LUNG SAFE study. Am J Respir Crit Care Med. 2017;195(1):67–77.
    1. Alraddadi BM, Qushmaq I, Al-Hameed FM, et al. Noninvasive ventilation in critically ill patients with the Middle East respiratory syndrome. Influenza Other Respir Viruses. 2019;13(4):382–390.
    1. Hui DS, Chow BK, Lo T, et al. Exhaled air dispersion during noninvasive ventilation via helmets and a total facemask. Chest. 2015;147(5):1336–1343.
    1. Cheung JC, Ho LT, Cheng JV, Cham EYK, Lam KN. Staff safety during emergency airway management for COVID-19 in Hong Kong [published online ahead of print, 2020 Feb 24] Lancet Respir Med. 2020;S2213–2600(20):30084–30089.
    1. Wax RS, Christian MD. Practical recommendations for critical care and anesthesiology teams caring for novel coronavirus (2019-nCoV) patients. Can J Anaesth. 2020; 10.1007/s12630-020-01591-x.
    1. Yao W, Wang T, Jiang B, et al. Emergency tracheal intubation in 202 patients with COVID-19 in Wuhan, China: lessons learnt and international expert recommendations [published online ahead of print, 2020 Apr 10]. Br J Anaesth. 2020; S0007–0912(20)30203–8.
    1. Yam LY, Chen RC, Zhong NSSARS. ventilatory and intensive care. Respirology. 2003;8(Suppl):S31–S35.
    1. Zuo MZ, Huang YG, Ma WH. et al, Expert recommendations for tracheal intubation in critically ill patients with noval coronavirus disease 2019 [published online ahead of print, 2020 Feb 27]. Chin Med Sci J. 2020; 10.24920/003724.
    1. Canelli R, Connor CW, Gonzalez M, Nozari A, Ortega R. Barrier enclosure during endotracheal intubation. N Engl J Med. 2020;382(20):1957–1958.
    1. Chen C, Shen N, Li X, Zhang Q, Hei Z. New device and technique to protect intubation operators against COVID-19 [published online ahead of print, 2020 May 8]. Intensive Care Med. 2020:1–3 10.1007/s00134-020-06072-9.
    1. Coronavirus disease 2019 (COVID-19): anesthetic concerns, including airway management and infection control. UpToDate. 2020. . opens in new tab.
    1. Jhou HJ, Chen PH, Lin C, Yang LY, Lee CH, Peng CK. High-flow nasal cannula therapy as apneic oxygenation during endotracheal intubation in critically ill patients in the intensive care unit: a systematic review and meta-analysis. Sci Rep. 2020;10(1):3541.
    1. Chan MT, Chow BK, Chu L, Hui DS. Mask ventilation and dispersion of exhaled air. Am J Respir Crit Care Med. 2013;187(7):e12–e14.
    1. Han J, Liu Y. Effect of ventilator circuit changes on ventilator-associated pneumonia: a systematic review and meta-analysis. Respir Care. 2010;55(4):467–474.
    1. Mehta AB, Syeda SN, Bajpayee L, Cooke CR, Walkey AJ, Wiener RS. Trends in tracheostomy for mechanically ventilated patients in the United States, 1993-2012. Am J Respir Crit Care Med. 2015;192(4):446–454.
    1. Chao TN, Braslow BM, Martin ND, et al. Tracheotomy in ventilated patients with COVID-19 [published online ahead of print, 2020 May 5]. Ann Surg. 2020; 10.1097/SLA.0000000000003956.
    1. Pichi B, Mazzola F, Bonsembiante A, et al. CORONA-steps for tracheotomy in COVID-19 patients: a staff-safe method for airway management. Oral Oncol 2020;105:104682. 10.1016/j.oraloncology.2020.104682.
    1. Bertroche JT, Pipkorn P, Zolkind P, Buchman CA, Zevallos JP. Negative-pressure aerosol cover for COVID-19 tracheostomy [published online ahead of print, 2020 Apr 28]. JAMA Otolaryngol Head Neck Surg. 2020:e201081 10.1001/jamaoto.2020.1081.
    1. Turbil E, Terzi N, Schwebel C, Cour M, Argaud L, Guérin C. Does endo-tracheal tube clamping prevent air leaks and maintain positive end-expiratory pressure during the switching of a ventilator in a patient in an intensive care unit? A bench study. PLoS One. 2020;15(3):e0230147.
    1. Li YC, Lin HL, Liao FC, et al. Potential risk for bacterial contamination in conventional reused ventilator systems and disposable closed ventilator-suction systems. PLoS One. 2018;13(3):e0194246.
    1. Subirà C, Hernández G, Vázquez A, et al. Effect of pressure support vs T-piece ventilation strategies during spontaneous breathing trials on successful extubation among patients receiving mechanical ventilation: a randomized clinical trial [published correction appears in JAMA. 2019 Aug 20;322(7):696] JAMA. 2019;321(22):2175–2182.
    1. De Seta D, Carta F, Puxeddu R. Management of tracheostomy during COVID-19 outbreak: heat and moisture exchanger filter and closed suctioning system [published online ahead of print, 2020]. Oral Oncol. 2020:104777 10.1016/j.oraloncology.2020.104777.
    1. Jee D, Park SY. Lidocaine sprayed down the endotracheal tube attenuates the airway-circulatory reflexes by local anesthesia during emergence and extubation. Anesth Analg. 2003;96(1) 10.1097/00000539-200301000-00058.
    1. Matava CT, Yu J, Denning S. Clear plastic drapes may be effective at limiting aerosolization and droplet spray during extubation: implications for COVID-19. Can J Anaesth. 2020;67(7):902–904.
    1. Wahidi MM, Lamb C, Murgu S, et al. American Association for Bronchology and Interventional Pulmonology (AABIP) statement on the use of bronchoscopy and respiratory specimen collection in patients with suspected or confirmed COVID-19 infection. March 19th Updates. Accessed on 20 Mar 2020 at .
    1. Respiratory Care Committee of Chinese Thoracic Society Expert consensus on preventing nosocomial transmission during respiratory care for critically ill patients infected by 2019 novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi. 2020;43(4):288–296.
    1. Ferioli M, Cisternino C, Leo V, Pisani L, Palange P, Nava S. Protecting healthcare workers from SARS-CoV-2 infection: practical indications. Eur Respir Rev. 2020;29(155):200068.
    1. ATS, Pulmonary function laboratories: advice regarding COVID-19. 2020. . Accessed 29 Mar 2020.
    1. Bignamini E, Cazzato S, Cutrera R, et al. Italian pediatric respiratory society recommendations on pediatric pulmonary function testing during COVID-19 pandemic. Ital J Pediatr. 2020;46:68.
    1. Zhi ZJHHHXZ, et al. Task force of Pulmonary Function Testing and Clinical Respiratory Physiology, Chinese Association of Chest Physicians; Pulmonary Function Testing Group, Respiratory Therapeutics Group. Chin Thorac Soc. 2020;43(4):302–307.
    1. Recommendation from ERS Group 9.1 (Respiratory function technologists /Scientists) Lung function testing during COVID-19 pandemic and beyond. . Accessed 10 July 2020.
    1. Hull JH, Lloyd JK, Cooper BG. Lung function testing in the COVID-19 endemic. Lancet Respir Med. 2020;8(7):666–667.

Source: PubMed

3
Subscribe