The Effects of Curcumin on Wound Healing in a Rat Model of Nasal Mucosal Trauma

Gokhan Emiroglu, Zerrin Ozergin Coskun, Yildiray Kalkan, Ozlem Celebi Erdivanli, Levent Tumkaya, Suat Terzi, Abdulkadir Özgür, Munir Demirci, Engin Dursun, Gokhan Emiroglu, Zerrin Ozergin Coskun, Yildiray Kalkan, Ozlem Celebi Erdivanli, Levent Tumkaya, Suat Terzi, Abdulkadir Özgür, Munir Demirci, Engin Dursun

Abstract

We explored the effects of topical curcumin on the healing of nasal mucosal wounds. A total of 32 Sprague-Dawley Albino rats were randomized in equal numbers into four groups, and unilateral nasal wounds were created using an interdental brush. Group 1 (the sham-control group) contained untreated rats with traumatized right-side nasal cavities; Group 2 and 3 rats were similarly traumatized and treated with topical curcumin (5 and 10 mg/mL) dissolved in dimethyl sulfoxide daily for 7 days after trauma; Group 4 rats were treated with topical dimethyl sulfoxide only. All rats were decapitated on day 15 and the healing sites evaluated by blinded observers in terms of the presence of cellular hyperplasia, goblet cell hypertrophy and degeneration, leucocytic infiltration, ciliary loss and degeneration, edema, and vascular dilation. On histopathological evaluation, all of cellular hyperplasia, leukocytic infiltration, and edema were significantly reduced in Group 3 compared with Group 1 (p = 0.001, p = 0.004, and p = 0.008, resp.). Thus, curcumin reduced the inflammatory response and significantly accelerated wound healing.

Figures

Figure 1
Figure 1
Application of drops to the right nasal cavity of the rat after traumatization.
Figure 2
Figure 2
Nasal mucosa of Group 1 (sham-control group). (a) d: vascular dilatation; g: goblet cell; e: edema; arrowhead: leukocytic infiltration. (b) v: vacuolization; h: bleeding. Trichrome staining: (a) 20x and (b) 40x.
Figure 3
Figure 3
Nasal mucosa of Group 2 (low-dose curcumin group). (a) e: edema; h: bleeding; d: vascular dilatation. (b) h: bleeding; v: vacuolization; d: vascular dilatation; de: degenerative cell. Trichrome staining: (a) 20x and (b) 40x.
Figure 4
Figure 4
Nasal mucosa of Group 3 (high-dose curcumin group). (a) e: edema; h: bleeding; d: vascular dilatation; de: degenerative cell. (b) e: edema; d: vascular dilatation; arrowhead: leukocytic infiltration. Trichrome staining: (a) 20x and (b) 40x.
Figure 5
Figure 5
Nasal mucosa of Group 4 (DMS group). (a) e: edema; h: bleeding; d: dilatation. (b) e: edema; h: bleeding; v: vacuolization; d: vascular dilatation. Trichrome staining: (a) 20x and (b) 40x.

References

    1. Akbik D., Ghadiri M., Chrzanowski W., Rohanizadeh R. Curcumin as a wound healing agent. Life Sciences. 2014;116(1):1–7. doi: 10.1016/j.lfs.2014.08.016.
    1. Agrawal D. K., Mishra P. K. Curcumin and its analogues: potential anticancer agents. Medicinal Research Reviews. 2010;30(5):818–860. doi: 10.1002/med.20188.
    1. Lima C. F., Pereira-Wilson C., Rattan S. I. S. Curcumin induces heme oxygenase-1 in normal human skin fibroblasts through redox signaling: relevance for anti-aging intervention. Molecular Nutrition and Food Research. 2011;55(3):430–442. doi: 10.1002/mnfr.201000221.
    1. Gencer Z. K., Saydam L., Cohen N. A., Cingi C. N-acetylcysteine effects on sinonasal cilia function. ENT Updates. 2015;5(3):87–92. doi: 10.2399/jmu.2015003002.
    1. Watelet J. B., Demetter P., Claeys C., Van Cauwenberge P., Cuvelier C., Bachert C. Wound healing after paranasal sinus surgery: neutrophilic inflammation influences the outcome. Histopathology. 2006;48(2):174–181. doi: 10.1111/j.1365-2559.2005.02310.x.
    1. Khalmuratova R., Jeon S.-Y., Kim D. W., et al. Wound healing of nasal mucosa in a rat. American Journal of Rhinology and Allergy. 2009;23(6):e33–e37. doi: 10.2500/ajra.2009.23.3390.
    1. Birdane L., San T., Muluk N. B., Burukoglu D., Cingi C. Efficacy of Curcumin in the healing of paracentesis in rats. International Journal of Pediatric Otorhinolaryngology. 2014;78(2):280–284. doi: 10.1016/j.ijporl.2013.11.024.
    1. Panchatcharam M., Miriyala S., Gayathri V. S., Suguna L. Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species. Molecular and Cellular Biochemistry. 2006;290(1-2):87–96. doi: 10.1007/s11010-006-9170-2.
    1. Jagetia G. C., Rajanikant G. K. Acceleration of wound repair by curcumin in the excision wound of mice exposed to different doses of fractionated gamma radiation. International Wound Journal. 2012;9(1):76–92. doi: 10.1111/j.1742-481x.2011.00848.x.
    1. Akpolat M., Kanter M., Uzal M. C. Protective effects of curcumin against gamma radiation-induced ileal mucosal damage. Archives of Toxicology. 2009;83(6):609–617. doi: 10.1007/s00204-008-0352-4.
    1. Thangapazham R. L., Sharad S., Maheshwari R. K. Skin regenerative potentials of curcumin. BioFactors. 2013;39(1):141–149. doi: 10.1002/biof.1078.
    1. Phan T.-T., See P., Lee S.-T., Chan S.-Y. Protective effects of curcumin against oxidative damage on skin cells in vitro: its implication for wound healing. Journal of Trauma - Injury, Infection and Critical Care. 2001;51(5):927–931. doi: 10.1097/00005373-200111000-00017.
    1. Joe B., Vijaykumar M., Lokesh B. R. Biological properties of curcumin-cellular and molecular mechanisms of action. Critical Reviews in Food Science and Nutrition. 2004;44(2):97–111. doi: 10.1080/10408690490424702.
    1. Hayden M. S., West A. P., Ghosh S. NF-κB and the immune response. Oncogene. 2006;25(51):6758–6780. doi: 10.1038/sj.onc.1209943.
    1. Qian Z., Dai M., Zheng X., et al. Chitosan-alginate sponge: preparation and application in curcumin delivery for dermal wound healing in rat. Journal of Biomedicine and Biotechnology. 2009;2009:8. doi: 10.1155/2009/595126.595126
    1. Anand P., Kunnumakkara A. B., Newman R. A., Aggarwal B. B. Bioavailability of curcumin: problems and promises. Molecular Pharmaceutics. 2007;4(6):807–818. doi: 10.1021/mp700113r.
    1. Wang S., Tan M., Zhong Z., Chen M., Wang Y. Nanotechnologies for curcumin: an ancient puzzler meets modern solutions. Journal of Nanomaterials. 2011;2011 doi: 10.1155/2011/723178.723178
    1. Gurtovenko A. A., Anwar J. Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. Journal of Physical Chemistry B. 2007;111(35):10453–10460. doi: 10.1021/jp073113e.
    1. Capriotti K., Capriotti J. A. Onychomycosis treated with a dilute povidone–iodine/dimethyl sulfoxide preparation. International Medical Case Reports Journal. 2015;8:231–233. doi: 10.2147/IMCRJ.S90775.
    1. Lee W.-H., Loo C.-Y., Young P. M., Traini D., Mason R. S., Rohanizadeh R. Recent advances in curcumin nanoformulation for cancer therapy. Expert Opinion on Drug Delivery. 2014;11(8):1183–1201. doi: 10.1517/17425247.2014.916686.
    1. Lee W.-H., Bebawy M., Loo C.-Y., Luk F., Mason R. S., Rohanizadeh R. Fabrication of curcumin micellar nanoparticles with enhanced anti-cancer activity. Journal of Biomedical Nanotechnology. 2015;11(6):1093–1105. doi: 10.1166/jbn.2015.2041.

Source: PubMed

3
Subscribe