Antimycobacterial Activity and Safety Profile Assessment of Alpinia galanga and Tinospora cordifolia

Mohamed F Alajmi, Ramzi A Mothana, Adnan J Al-Rehaily, Jamal M Khaled, Mohamed F Alajmi, Ramzi A Mothana, Adnan J Al-Rehaily, Jamal M Khaled

Abstract

Tuberculosis (TB) remains a common deadly infectious disease and worldwide a major health problem. The current study was therefore designed to investigate the in vitro antimycobacterial activity of different extracts of Alpinia galanga and Tinospora cordifolia. Moreover, a safety assessment for both plants was carried out. Dichloromethane and ethanolic extracts of each plant were examined against H37Rv INH-sensitive and resistant INH strains of Mycobacterium tuberculosis. The safety assessment of both plants has been performed through in vivo acute and chronic toxicity studies in animal model. Body weight, food consumption, water intake, organ's weight, and haematological and biochemical parameters of blood and serum were evaluated. The extracts of A. galanga and T. cordifolia produced significant and dose-dependent inhibitory activity with maximum effect of 18-32% at 50 μg/ml against both strains of M. tuberculosis. No effect on the body weight or food and water consumption was observed but A. galanga caused significantly an increase in the relative weight of the heart, liver, spleen, and kidney. Haematological studies of both plants revealed a slight but significant fall in the RBC and WBC level as well as haemoglobin and platelets. In addition, A. galanga extracts increased significantly liver enzymes and bilirubin and glucose.

Figures

Figure 1
Figure 1
Effect of Alpinia galanga dichloromethane extract (AGDC) and Alpinia galanga ethanol extract (AGET) on sensitive strain (AGDCS and AGETS) and resistant strain (AGDCR and AGETR) of Mycobacterium tuberculosis (MT). Results presented as mean % inhibition ± SD and compared to control nontreated MT.
Figure 2
Figure 2
Effect of Tinospora cordifolia dichloromethane extract (TCDC) and Tinospora cordifolia ethanol extract (TCET) on sensitive strain (TCDCS and TCETS) and resistant strain (TCDCR and TCETR) of Mycobacterium tuberculosis (MT). Results are presented as mean of per cent inhibition ± SD and compared to control nontreated MT.

References

    1. Jordao L., Vieira O. V. Tuberculosis: new aspects of an old disease. International Journal of Cell Biology. 2011;2011:13. doi: 10.1155/2011/403623.403623
    1. Sabran S. F., Mohamed M., Abu Bakar M. F. Ethnomedical knowledge of plants used for the treatment of tuberculosis in Johor, Malaysia. Evidence-Based Complementary and Alternative Medicine. 2016;2016 doi: 10.1155/2016/2850845.2850845
    1. Organization W. H. Global tuberculosis report 2016. 2016
    1. Nguta J. M., Appiah-Opong R., Nyarko A. K., Yeboah-Manu D., Addo P. G. A. Medicinal plants used to treat TB in Ghana. International Journal of Mycobacteriology. 2015;4(2):116–123. doi: 10.1016/j.ijmyco.2015.02.003.
    1. Kahaliw W., Aseffa A., Abebe M., Teferi M., Engidawork E. Evaluation of the antimycobacterial activity of crude extracts and solvent fractions of selected Ethiopian medicinal plants. BMC Complementary and Alternative Medicine. 2017;17(1, article no. 143) doi: 10.1186/s12906-017-1563-0.
    1. Mitscher L. A., Baker W. R. A search for novel chemotherapy against tuberculosis amongst natural products. Pure and Applied Chemistry. 1998;70(2):365–371. doi: 10.1351/pac199870020365.
    1. Juntachote T., Berghofer E., Siebenhandl S., Bauer F. The antioxidative properties of Holy basil and Galangal in cooked ground pork. Meat Science. 2006;72(3):446–456. doi: 10.1016/j.meatsci.2005.08.009.
    1. Gupta P., Bhatter P., D'souza D., et al. Evaluating the anti Mycobacterium tuberculosis activity of Alpinia galanga (L.) Willd. axenically under reducing oxygen conditions and in intracellular assays. BMC Complementary and Alternative Medicine. 2014;14, article no. 84 doi: 10.1186/1472-6882-14-84.
    1. Elyani H., Risandiansyah R. Antibacterial potential of four herbal plants (Syzygium cumini, Piper ornatum, Anredera cordifolia, and Alpinia galanga) against Staphylococcus aureus and Escherichia coli. JIMR-Journal of Islamic Medicine Research. 2017;1(2)
    1. Sanusi S. B., Bakar A., Fadzelly M., Mohamed M., Sabran S. F., Mainasara M. M. Southeast asian medicinal plants as a potential source of antituberculosis agent. Evidence-Based Complementary and Alternative Medicine. 2017;2017
    1. Verma R., Mishra G., Singh P., Jha K., Khosa R. Alpinia galanga–An important medicinal plant: a review. Der Pharmacia Sinica. 2011;2(1):142–154. doi: 10.4103/0974-8520.169006.
    1. Shetty G. R., Monisha S. Pharmacology of an endangered medicinal plant Alpinia galanga-a review. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2015;6(1):499–511.
    1. Choudhary N., Siddiqui M., Azmat S., Khatoon S. Tinospora cordifolia: ethnobotany, phytopharmacology and phytochemistry aspects. International Journal of Pharmaceutical Sciences and Research. 2013;4(3):p. 891.
    1. Badar V. A., Thawani V. R., Wakode P. T., et al. Efficacy of Tinospora cordifolia in allergic rhinitis. Journal of Ethnopharmacology. 2005;96(3):445–449. doi: 10.1016/j.jep.2004.09.034.
    1. Krishna K., Jigar B., Jagruti P. Guduchi (Tinospora cordifolia): Biological and medicinal properties, a review. The Internet Journal of Alternative Medicine. 2009;6(2):1–10.
    1. Kaushik A., Husain A., Awasthi H., Singh D. P., Khan R., Mani D. Antioxidant and hepatoprotective potential of Swaras and Hima extracts of Tinospora cordifolia and Boerhavia diffusa in Swiss albino mice. Pharmacognosy Magazine. 2017;13(51) Supplement 3:S658–S662. doi: 10.4103/pm.pm_448_16.
    1. Polu P. R., Nayanbhirama U., Khan S., Maheswari R. Assessment of free radical scavenging and anti-proliferative activities of Tinospora cordifolia Miers (Willd) BMC Complementary and Alternative Medicine. 2017;17(1, article no. 457) doi: 10.1186/s12906-017-1953-3.
    1. Bansal P., Malik M., Das S., Kaur J. Tinospora cordifolia induces cell cycle arrest in human oral squamous cell carcinoma cells. The Gulf Journal of Oncology. 2017;1(24):10–14.
    1. Sharma N., Kumar A., Sharma P. R., et al. A new clerodane furano diterpene glycoside from Tinospora cordifolia triggers autophagy and apoptosis in HCT-116 colon cancer cells. Journal of Ethnopharmacology. 2018;211:295–310. doi: 10.1016/j.jep.2017.09.034.
    1. Haque M. A., Jantan I., Abbas Bukhari S. N. Tinospora species: An overview of their modulating effects on the immune system. Journal of Ethnopharmacology. 2017;207:67–85. doi: 10.1016/j.jep.2017.06.013.
    1. Dhama K., Sachan S., Khandia R., et al. Medicinal and beneficial health applications of tinospora cordifolia (Guduchi): A miraculous herb countering various diseases/disorders and its immunomodulatory effects. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery. 2017;10(2):96–111. doi: 10.2174/1872214811666170301105101.
    1. Wagner H., Bladt S. Plant Drug Analysis: A Thin Layer Chromatography Atlas. Springer Science & Business Media; 1996.
    1. OECD. OECD Guidelines for the Testing of Chemicals. Organization for Economic; 1994.
    1. Shah A. H., Qureshi S., Tariq M., Ageel A. M. Toxicity studies on six plants used in the traditional Arab system of medicine. Phytotherapy Research. 1989;3(1):25–29. doi: 10.1002/ptr.2650030107.
    1. Walker B. R., Colledge N. R. Davidson's Principles and Practice of Medicine E-Book. Elsevier Health Sciences; 2013.
    1. Daniel W. W., Cross C. L. Biostatistics: A Foundation for Analysis in The Health Sciences. 6th. pp. 273-303. New York, USA: Wiley; 1995.
    1. Organization W. H. Global tuberculosis report 2013. World Health Organization; 2013.
    1. Nguta J. M., Appiah-Opong R., Nyarko A. K., Yeboah-Manu D., Addo P. G. A. Current perspectives in drug discovery against tuberculosis from natural products. International Journal of Mycobacteriology. 2015;4(3):165–183. doi: 10.1016/j.ijmyco.2015.05.004.
    1. Narayanan A. S., Raja S. S. S., Ponmurugan K., et al. Antibacterial activity of selected medicinal plants against multiple antibiotic resistant uropathogens: A study from Kolli Hills, Tamil Nadu, India. Beneficial Microbes. 2011;2(3):235–243. doi: 10.3920/BM2010.0033.
    1. Nipanikar S., Chitlange S., Nagore D. Evaluation of anti-inflammatory and antimicrobial activity of AHPL/AYCAP/0413 capsule. Pharmacognosy Research. 2017;9(3):273. doi: 10.4103/0974-8490.210328.
    1. Soundhari C., Rajarajan S. In vitro screening of lyophilised extracts of Alpinia galanga L. and Oldenlandia umbellata L. for antimycobacterial activity. International Journal of Biological and Pharmaceutical Research. 2013;4(6):427–432.
    1. Warit S., Rukseree K., Prammananan T., et al. In vitro activities of enantiopure and racemic 1′-acetoxychavicol acetate against clinical isolates of mycobacterium tuberculosis. Scientia Pharmaceutica. 2017;85(3):32. doi: 10.3390/scipharm85030032.
    1. Gupta P. K., Chakraborty P., Kumar S., et al. G1-4A, a polysaccharide from Tinospora cordifolia inhibits the survival of Mycobacterium tuberculosis by modulating host immune responses in TLR4 dependent manner. PLoS ONE. 2016;11(5) doi: 10.1371/journal.pone.0154725.e0154725
    1. Manse Y., Ninomiya K., Nishi R., et al. Labdane-type diterpenes, galangalditerpenes A–C, with melanogenesis inhibitory activity from the fruit of alpinia galanga. Molecules. 2017;22(12):p. 2279. doi: 10.3390/molecules22122279.
    1. Kaur A., Singh R., Dey C. S., Sharma S. S., Bhutani K. K., Singh I. P. Antileishmanial phenylpropanoids from Alpinia galanga (Linn.) Willd. Indian Journal of Experimental Biology. 2010;48(3):314–317.
    1. Abdullah F., Subramanian P., Ibrahim H., Malek S. N. A., Lee G. S., Hong S. L. Chemical composition, antifeedant, repellent, and toxicity activities of the rhizomes of galangal, alpinia galanga against asian subterranean termites, coptotermes gestroi and coptotermes curvignathus (Isoptera: Rhinotermitidae) Journal of Insect Science. 2015;15(7, article no. 175) doi: 10.1093/jisesa/ieu175.
    1. Tadtong S., Watthanachaiyingcharoen R., Kamkaen N. Antimicrobial constituents and synergism effect of the essential oils from Cymbopogon citratus and Alpinia galanga. Natural Product Communications (NPC) 2014;9(2):277–280.
    1. Patel M. B., Mishra S. Isoquinoline alkaloids from tinospora cordifolia inhibit rat lens aldose reductase. Phytotherapy Research. 2012;26(9):1342–1347. doi: 10.1002/ptr.3721.
    1. Van Kiem P., Van Minh C., Dat N. T., et al. Aporphine alkaloids, clerodane diterpenes, and other constituents from Tinospora cordifolia. Fitoterapia. 2010;81(6):485–489. doi: 10.1016/j.fitote.2010.01.005.
    1. Nyandoro S. S., Munissi J. J. E., Kombo M., et al. Flavonoids from Erythrina schliebenii. Journal of Natural Products. 2017;80(2):377–383. doi: 10.1021/acs.jnatprod.6b00839.
    1. Jnawali H. N., Jeon D., Jeong M.-C., et al. Antituberculosis Activity of a Naturally Occurring Flavonoid, Isorhamnetin. Journal of Natural Products. 2016;79(4):961–969. doi: 10.1021/acs.jnatprod.5b01033.
    1. Christopher R., Nyandoro S. S., Chacha M., De Koning C. B. A new cinnamoylglycoflavonoid, antimycobacterial and antioxidant constituents from Heritiera littoralis leaf extracts. Natural Product Research (Formerly Natural Product Letters) 2014;28(6):351–358. doi: 10.1080/14786419.2013.863202.
    1. McCulloch M. W. B., Haltli B., Marchbank D. H., Kerr R. G. Evaluation of pseudopteroxazole and pseudopterosin derivatives against Mycobacterium tuberculosis and other pathogens. Marine Drugs. 2012;10(8):1711–1728. doi: 10.3390/md10081711.
    1. Isaka M., Chinthanom P., Sappan M., et al. Antitubercular activity of mycelium-associated ganoderma lanostanoids. Journal of Natural Products. 2017;80(5):1361–1369. doi: 10.1021/acs.jnatprod.6b00973.
    1. Isaka M., Chinthanom P., Sappan M., Danwisetkanjana K., Boonpratuang T., Choeyklin R. Antitubercular Lanostane Triterpenes from Cultures of the Basidiomycete Ganoderma sp. BCC 16642. Journal of Natural Products. 2016;79(1):161–169. doi: 10.1021/acs.jnatprod.5b00826.
    1. Ramos Alvarenga R. F., Wan B., Inui T., Franzblau S. G., Pauli G. F., Jaki B. U. Airborne antituberculosis activity of Eucalyptus citriodora essential oil. Journal of Natural Products. 2014;77(3):603–610. doi: 10.1021/np400872m.
    1. Gu J.-Q., Wang Y., Franzblau S. G., Montenegro G., Timmermann B. N. Constituents of Senecio chionophilus with potential antitubercular activity. Journal of Natural Products. 2004;67(9):1483–1487. doi: 10.1021/np049831z.
    1. Mishra S. K., Tripathi G., Kishore N., Singh R. K., Singh A., Tiwari V. K. Drug development against tuberculosis: Impact of alkaloids. European Journal of Medicinal Chemistry. 2017;137:504–544. doi: 10.1016/j.ejmech.2017.06.005.
    1. Diallo A., Eklu-Gadegbeku K., Amegbor K., et al. In vivo and in vitro toxicological evaluation of the hydroalcoholic leaf extract of Ageratum conyzoides L. (Asteraceae) Journal of Ethnopharmacology. 2014;155(2):1214–1218. doi: 10.1016/j.jep.2014.07.005.
    1. Irene I. I., Chukwunonso C. A. Body and organ weight changes following administration of aqueous extracts of Ficus exasperata. Vahl on white albino rats. Journal of Animal and Veterinary Advances. 2006;5(4):277–279.
    1. Popp J. A. Best Practice for The Routine Pathology Evaluation of The Immune System. Los Angeles, CA, USA: Sage Publications Sage; 2005.
    1. Qureshi S., Shah A. H., Ageel A. M. Toxicity studies on Alpinia galanga and Curcuma longa. Planta Medica. 1992;58(2):124–127. doi: 10.1055/s-2006-961412.

Source: PubMed

3
Subscribe