Tuning and fine-tuning of synapses with adenosine

A M Sebastião, J A Ribeiro, A M Sebastião, J A Ribeiro

Abstract

The 'omnipresence' of adenosine in all nervous system cells (neurons and glia) together with the intensive release of adenosine following insults, makes adenosine as a sort of 'maestro' of synapses leading to the homeostatic coordination of brain function. Besides direct actions of adenosine on the neurosecretory mechanisms, where adenosine operates to tune neurotransmitter release, receptor-receptor interactions as well as interplays between adenosine receptors and transporters occur as part of the adenosine's attempt to fine tuning synaptic transmission. This review will focus on the different ways adenosine can use to trigger or brake the action of several neurotransmitters and neuromodulators. Adenosine receptors cross talk with other G protein coupled receptors (GPCRs), with ionotropic receptors and with receptor kinases. Most of these interactions occur through A2A receptors, which in spite their low density in some brain areas, such as the hippocampus, may function as metamodulators. Tonic adenosine A2A receptor activity is a required step to allow synaptic actions of neurotrophic factors, namely upon synaptic transmission at both pre- and post-synaptic level as well as upon synaptic plasticity and neuronal survival. The implications of these interactions in normal brain functioning and in neurologic and psychiatric dysfunction will be discussed.

Keywords: Adenosine; G protein coupled receptors; epilepsy; ionotropic receptors; metamodulation; neurodegenerative diseases; receptor cross-talk; receptor kinases..

Figures

Fig. (1)
Fig. (1)
Schematic representation of the reported cross-talk between adenosine receptors and receptors for neuropeptides. The putative therapeutic value of those interactions is also indicated. (+) denotes facilitation and (-) denotes inhibition. See text and references (indicated in brackets) for details.
Fig. (2)
Fig. (2)
Schematic representation of the reported cross-talk between adenosine receptors and metabotropic glutamate receptors. The coupling of each receptor to G proteins (αβγ subunits) is also indicated. (+) denotes facilitation and (-) denotes inhibition. Whenever the mechanisms involved in the interaction have been evaluated, they are indicated close to the arrow. PKC: protein kinase C. See text and references (indicated in brackets) for details.
Fig. (3)
Fig. (3)
Schematic representation of the reported cross-talk between adenosine A2A receptors and CB1 receptors and corresponding implications for drug addiction. (+) denotes facilitation and (-) denotes inhibition. Whenever the mechanisms involved in the interaction have been evaluated, they are indicated close to the arrow. cAMP: cyclic AMP; DARPP-32: Dopamine- and cAMPregulated phosphoprotein. See text and references (indicated in brackets) for details.
Fig. (4)
Fig. (4)
Schematic representation of the reported cross-talk among different purine receptors. Interaction with equilibrative nucleoside transporter (ENT) is also indicated. (+) denotes facilitation and (-) denotes inhibition. Evidence for tight molecular interactions, that may involve heteromerization, is also pointed out. See text and references (indicated in brackets) for details.
Fig. (5)
Fig. (5)
Negative and positive actions of A1 and A2A adenosine receptors to protect neuronal cells. Note that whereas A1 receptors possess predominant neuroprotective actions, A2A receptors may operate mechanisms leading to neuronal protection or damage. A better knowledge of the time windows for those actions, and how to manipulate them will allow the increase in the therapeutic potential of adenosine related drugs.

References

    1. Abbracchio MP, Fogliatto G, Paoletti AM, Rovati GE, Cattabeni F. Prolonged in vitro exposure of rat brain slices to adenosine analogues: selective desensitization of A1 but not A2 receptors. Eur. J. Pharmacol. 1992;227:317–324.
    1. Adams CL, Cowen MS, Short JL, Lawrence AJ. Combined antagonism of glutamate mGlu5 and adenosine A2A receptors interact to regulate alcohol-seeking in rats. Int. J. Neuropsychopharmacol. 2008;11:229–241.
    1. Alexander SP, Curtis AR, Hill SJ, Kendall DA. Activation of a metabotropic excitatory aminoacid receptor potentiates A2b adenosine receptor-stimulated cyclic AMP accumulation. Neurosci. Lett. 1992;146:231–233.
    1. Alexander S P, Reddington M. The cellular localization of adenosine receptors in rat neostriatum. Neuroscience. 1989;28:645–551.
    1. Andersson M, Usiello A, Borgkvist A, Pozzi L, Dominguez C, Fienberg AA, Svenningsson P, Fredholm BB, Borrelli E, Greengard P, Fisone G. Cannabinoid action depends on phosphorylation of dopamine- and cAMP-regulated phosphoprotein of 32 kDa at the protein kinase A site in striatal projection neurons. J. Neurosci. 2005;25:8432–8438.
    1. Bailey A, Ledent C, Kelly M, Hourani SM, Kitchen I. Changes in spinal delta and kappa opioid systems in mice deficient in the A2A receptor gene. J. Neurosci. 2002;22:9210–9220.
    1. Balkowiec A, Katz D. Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons. J. Neurosci. 2002;22:10399–10407.
    1. Bekar L, Libionka W, Tian GF, Xu Q, Torres A, Wang X, Lovatt D, Williams E, Takano T, Schnermann J, Bakos R, Nedergaard M. Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat. Med. 2008;14:17–19.
    1. Biber K, Lubrich B, Fiebich BL, Boddeke HW, van Calker D. Interleukin-6 enhances expression of adenosine A(1) receptor mRNA and signaling in cultured rat cortical astrocytes and brain slices. Neuropsychopharmacology. 2001;24:86–96.
    1. Biber K, Pinto-Duarte A, Wittendorp MC, Dolga AM, Fernandes CC, Kunzel JVFD, Keijser JN, Devries R, Ijzerman AP, Ribeiro JA, Eisel U, Sebastião AM, Boddeke GM. Interleukin-6 upregulates neuronal adenosine A1 receptors: implications for neuromodulation and neuroprotection. Neuropsychopharmacology. 2008;33:2237–2250.
    1. Boison D. The adenosine kinase hypothesis of epileptogenesis. Prog. Neurobiol. 2008;84:249–262.
    1. Boulanger L, Poo M. Presynaptic depolarization facilitates neurotrophin-induced synaptic potentiation. Nat. Neurosci. 1999a;2:346–351.
    1. Boulanger L, Poo M. Gating of BDNF-induced synaptic potentiation by cAMP. Science . 999b;284:1982–1984.
    1. Budd DC, Nichols DG. Protein kinase C-mediated suppression of the presynaptic adenosine A1 receptor by a facilitatory metabotropic glutamate receptor. J. Neurochem. 1995;65:615–621.
    1. Carriba P, Ortiz O, Patkar K, Justinova Z, Stroik J, Themann A, Müller C, Woods AS, Hope BT, Ciruela F, Casadó V, Canela EI, Lluis C, Goldberg SR, Moratalla R, Franco R, Ferré S. Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology. 2007;32:2249–2259.
    1. Carruthers AM, Sellers LA, Jenkins DW, Jarvie EM, Feniuk W, Humphrey PP. Adenosine A(1) receptor-mediated inhibition of protein kinase A-induced calcitonin generelated peptide release from rat trigeminal neurons. Mol. Pharmacol. 2001;59:1533–1541.
    1. Castrén E, Võikar V, Rantamäki T. Role of neurotrophic factors in depression. Curr. Opin. Pharmacol. 2007;7:18–21.
    1. Chase TN, Bibbiani F, Bara-Jimenez W, Dimitrova T, Oh-Lee JD. Translating A2A antagonist KW6002 from animal models to Parkinsonian patients. Neurology. 2003;61:S107–S111.
    1. Cheng HC, Shih HM, Chern Y. Essential role of cAMP-response element-binding protein activation by A2A adenosine receptors in rescuing the nerve growth factor-induced neurite outgrowth impaired by blockage of the MAPK cascade. J. Biol. Chem. 2002;277:33930–33942.
    1. Chou SY, Lee YC, Chen HM, Chiang MC, Lai HL, Chang HH, Wu YC, Sun CN, Chien CL, Lin YS, Wang SC, Tung YY, Chang C, Chern Y. CGS21680 attenuates symptoms of Huntington's disease in a transgenic mouse model. J. Neurochem. 2005;93:310–320.
    1. Chung HJ, Ge WP, Qian X, Wiser O, Jan YN, Jan LY. G protein-activated inwardly rectifying potassium channels mediate depotentiation of long-term potentiation. Proc. Natl. Acad. Sci. 2009;106:635–640.
    1. Ciccarelli R, Di Iorio P, Bruno V, Battaglia G, D'Alimonte I, D'Onofrio M, Nicoletti F, Caciagli F. Activation of A(1) adenosine or mGlu3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100beta protein from cultured astrocytes. Glia. 1999;27:275–281.
    1. Ciruela F, Casadó V, Rodrigues R J, Luján R, Burgueño J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortés A, Canela EI, López-Giménez JF, Milligan G, Lluis C, Cunha RA, Ferré S, Franco R. Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J. Neurosci. 2006;26:2080–2087.
    1. Coccurello R, Breysse N, Amalric M. Simultaneous blockade of adenosine A2A and metabotropic glutamate mGlu5 receptors increase their efficacy in reversing Parkinsonian deficits in rats. Neuropsychopharmacology. 2004;29:1451–1461.
    1. Cormier RJ, Mennerick S, Melbostad H, Zorumski CF. Basal levels of adenosine modulate mGluR5 on rat hippocampal astrocytes. Glia. 2001;33:24–35.
    1. Correia-de-Sá P, Ribeiro JA. Potentiation by tonic A2a-adenosine receptor activation of CGRP-facilitated [3H]-ACh release from rat motor nerve endings. Br. J. Pharmacol. 1994;111:582–588.
    1. Correia-de-Sá P, Ribeiro JA. Tonic adenosine A2A receptor activation modulates nicotinic autoreceptor function at the rat neuromuscular junction. Eur. J. Pharmacol. 1994;271:349–355.
    1. Correia-de-Sá P, Timóteo MA, Ribeiro JA. Presynaptic A1 inhibitory/A2A facilitatory adenosine receptor activation balance depends on motor nerve stimulation paradigm at the rat hemidiaphragm. J. Neurophysiol. 1996;76:3910–3919.
    1. Correia-de-Sá P, Timóteo MA, Ribeiro JA. Synergism between A(2A)-adenosine receptor activation and vasoactive intestinal peptide to facilitate [3H]-acetylcholine release from the rat motor nerve terminals. Neurosci. Lett. 2001;309:101–114.
    1. Correia-de-Sá P, Sebastiãos AM, Ribeiro JA. Inhibitory and excitatory effects of adenosine receptor agonists on evoked transmitter release from phrenic nerve ending of the rat. Br. J. Pharmacol. 1991;103:1614–1620.
    1. Costenla AR, De Mendonça A, Sebastião A, Ribeiro JA. An adenosine analogue inhibits NMDA receptor-mediated responses in bipolar cells of the rat retina. Exp. Eye Res. 1999;68:367–370.
    1. Cristovão-Ferreira S, Vaz SH, Ribeiro JA, Sebastião AM. Adenosine A2A receptors enhance GABA transport into nerve terminals by restaining PKC inhibition of GAT-1. J. Neurochem. 2009 (in the press)
    1. Cunha RA, Ribeiro JA. Purinergic modulation of [3H]GABA release from hippocampal nerve terminals. Neuropharmacology. 2000;39:1156–1167.
    1. Cunha RA, Constantino MC, Sebastião AM, Ribeiro JA. Modification of A1 and A2a adenosine receptor binding in aged striatum, hippocampus and cortex of the rat. Neuroreport. 1995;6:1583–1588.
    1. Cunha RA, Correia-de-Sá P, Sebastião AM, Ribeiro JA. Preferential activation of excitatory adenosine receptors at rat hippocampal and neuromuscular synapses by adenosine formed from released adenine nucleotides. Br. J. Pharmacol. 1996;119:253–260.
    1. Cunha RA, Johansson B, van der Ploeg I, Sebastião AM, Ribeiro JA, Fredholm BB. Evidence for functionally important adenosine A2a receptors in the rat hippocampus. Brain Res. 1994;649:208–216.
    1. Cunha-Reis D, Fontinha BM, Ribeiro JA, Sebastião AM. Tonic adenosine A1 and A2A receptor activation is required for the excitatory action of VIP on synaptic transmission in the CA1 area of the hippocampus. Neuropharmacology. 2007;52:313–320.
    1. Cunha-Reis D, Ribeiro JA, Sebastião AM. VIP enhances synaptic transmission to hippocampal CA1 pyramidal cells through activation of both VPAC1 and VPAC2 receptors. Brain Res. 2005;1049:52–60.
    1. Cunha-Reis D, Ribeiro JA, Sebastião AM. A1 and A2A receptor activation by endogenous adenosine is required for VIP enhancement of K+ -evoked [3H]-GABA release from rat hippocampal nerve terminals. Neurosci. Lett. 2008;430:207–212.
    1. Cunha-Reis D, Sebastião AM, Wirkner K, Illes P, Ribeiro JA. VIP enhances both pre- and post-synaptic GABAergic transmission to hippocampal interneurones leading to increased excitatory synaptic transmission to CA1 pyramidal cells. Br. J. Pharmacol. 2004;143:733–744.
    1. de Mendonça JA, Ribeiro JA. Adenosine and neuronal plasticity. Life Sci. 1997;60:245–251.
    1. de Mendonça A, Sebastião AM, Ribeiro JA. Inhibition of NMDA receptor-mediated currents in isolated rat hippocampal neurones by adenosine A1 receptor activation. Neuroreport. 1995;6:1097–1100.
    1. de Mendonça A, Sebastião AM, Ribeiro JA. Adenosine: does it have a neuroprotective role after all? Brain Res. Rev. 2000;33:258–274.
    1. DeSanty KP, Dar MS. Involvement of the cerebellar adenosine A(1) receptor in cannabinoid-induced motor incoordination in the acute and tolerant state in mice. Brain Res. 2001;905:178–187.
    1. Di Iorio P, Battaglia G, Ciccarelli R, Ballerini P, Giuliani P, Poli A, Nicoletti F, Caciagli F. Interaction between A1 adenosine and class II metabotropic glutamate receptors in the regulation of purine and glutamate release from rat hippocampal slices. J. Neurochem. 1996;67:302–309.
    1. Díaz-Hernández M, Pereira MF, Pintor J, Cunha RA, Ribeiro JA, Miras-Portugal MT. Modulation of the rat hippocampal dinucleotide receptor by adenosine receptor activation. J. Pharmacol. Exp. Ther. 2002;301:441–450.
    1. Díaz-Hernández M, Pintor J, Miras-Portugal MT. Modulation of the dinucleotide receptor present in rat midbrain synaptosomes by adenosine and ATP. Br. J. Pharmacol. 2000;130:434–440.
    1. Diógenes MJ, Assaife-Lopes N, Pinto-Duarte A, Ribeiro JA, Sebastião AM. Influence of age on BDNF modulation of hippocampal synaptic transmission: interplay with adenosine A2A receptors. Hippocampus. 2007;17:577–585.
    1. Diógenes MJ, Fernandes CC, Sebastião AM, Ribeiro JA. Activation of adenosine A2A receptor facilitates brain-derived neurotrophic factor modulation of synaptic transmission in hippocampal slices. J. Neurosci. 2004;24:2905–2913.
    1. Dixon AK, Widdowson L, Richardson PJ. Desensitisation of the adenosine A1 receptor by the A2A receptor in rat striatum. J. Neurochem. 1997;69:315–321.
    1. Donoso MV, Aedo F, Huidobro-Toro JP. The role of adenosine A2A and A3 receptors on the differential modulation of norepinephrine and neuropeptide Y release from peripheral sympathetic nerve terminals. J. Neurochem. 2006;96:1680–1695.
    1. Duarte-Araújo M, Timóteo MA, Correia-de-Sá P. Adenosine activating A(2A)-receptors coupled to adenylate cyclase/cyclic AMP pathway downregulates nicotinic autoreceptor function at the rat myenteric nerve terminals. Neurochem. Int. 2004;45:641–651.
    1. Dunwiddie TV, Diao L, Kim HO, Jiang JL, Jacobson KA. Activation of hippocampal adenosine A3 receptors produces a desensitization of A1 receptor-mediated responses in rat hippocampus. J. Neurosci. 1997;17:607–614.
    1. Eisenach JC, Hood DD, Curry R, Sawynok J, Yaksh TL, Li X. Intrathecal but not intravenous opioids release adenosine from the spinal cord. J. Pain. 2004;5:64–68.
    1. Fernandes CC, Pinto-Duarte A, Ribeiro JA, Sebastião AM. Postsynaptic action of brain-derived neurotrophic factor attenuates α7 nicotinic acetylcholine receptor-mediated responses in hippocampal interneurons. J. Neurosci. 2008;28:5611–5618.
    1. Ferré S. An update on the mechanisms of the psychostimulant effects of caffeine. J. Neurochem. 2005;105:1067–1079.
    1. Ferré S, Ciruela F, Woods AS, Lluis C, Franco R. Functional relevance of neurotransmitter receptor heteromers in the central nervous system. Trends Neurosci. 2007;30:440–446.
    1. Ferré S, Popoli P, Rimondini R, Reggio R, Kehr J, Fuxe K. Adenosine A2A and group I metabotropic glutamate receptors synergistically modulate the binding characteristics of dopamine D2 receptors in the rat striatum. Neuropharmacology. 1999;38:129–140.
    1. Ferré S, Popoli P, Tinner-Staines B, Fuxe K. Adenosine A1 receptor-dopamine D1 receptor interaction in the rat limbic system: modulation of dopamine D1 receptor antagonist binding sites. Neurosci. Lett. 1996;208:109–112.
    1. Ferré S, von Euler G, Johansson B, Fredholm BB, Fuxe K. Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc. Natl. Acad. Sci. USA. 1991;88:7238–7241.
    1. Ferreira JM, Paes-de-Carvalho R. Long-term activation of adenosine A2A receptors blocks glutamate excitotoxicity in cultures of avian retinal neurons. Brain Res. 2001;900:169–176.
    1. Fiebich BL, Biber K, Gyufko K, Berger M, Bauer J, van Calker D. Adenosine A2B receptors mediate an increase in interleukin (IL)-6 mRNA and IL-6 protein synthesis in human astroglioma cells. J. Neurochem. 1996;66:1426–1431.
    1. Fields RD, Burnstock G. Purinergic signalling in neuronglia interactions . Nat.Rev. Neurosci. 2006;7:423–436.
    1. Florán B, Barajas C, Florán L, Erlij D, Aceves J. Adenosine A1 receptors control dopamine D1-dependent [(3)H]GABA release in slices of substantia nigra pars reticulata and motor behavior in the rat. Neuroscience. 2002;115:743–751.
    1. Fontinha BM, Delgado-García JM, Madroñal N, Ribeiro JA, Sebastião AM, Gruart A. Adenosine A2A receptor modulation of hippocampal CA3-CA1 synapse plasticity during associative learning in behaving mice. Neuropsychopharmacology. 2009 (in the press)
    1. Fontinha BM, Diógenes MJ, Ribeiro JA, Sebastião AM. Enhancement of long-term potentiation by brain-derived neurotrophic factor requires adenosine A(2A) receptor activation by endogenous adenosine. Neuropharmacology. 2008;54:924–933.
    1. Fuxe K, Ferré S, Genedani S, Franco R, Agnati LF. Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol. Behav. 2007;92:210–217.
    1. Gauthier LR, Charrin BC, Borrell-Pagès M, Dompierre JP, Rangone H, Cordelières FP, De Mey J, MacDonald ME, Lessmann V, Humbert S, Saudou F. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell. 2004;118:127–138.
    1. Ginsborg BL, Hirst GD. Cyclic AMP, transmitter release and the effect of adenosine on neuromuscular transmission. Nat. New Biol. 1971;232:63–64.
    1. Ginsborg BL, Hirst GD. The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat. J. Physiol. 1972;224:629–45.
    1. Goadsby PJ. Calcitonin gene-related peptide (CGRP) antagonists and migraine: is this a new era? Neurology. 2008;70:1300–1301.
    1. Golembiowska K, Dziubina A. Striatal adenosine A(2A) receptor blockade increases extracellular dopamine release following l-DOPA administration in intact and dopamine-denervated rats. Neuropharmacology. 2004;47:414–426.
    1. Gomes CA, Simões PF, Canas PM, Quiroz C, Sebastião AM, Ferré S, Cunha RA, Ribeiro JA. GDNF control of the glutamatergic cortico-striatal pathway requires tonic activation of adenosine A2A Receptors. J. Neurochem. 2009 [Epub ahead of print]
    1. Gomes CA, Vaz SH, Ribeiro JA, Sebastião AM. Glial cell line-derived neurotrophic factor (GDNF) enhances dopamine release from striatal nerve endings in an adenosine A2A receptor-dependent manner. Brain Res. 2006;1113:129–136.
    1. Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA. Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature. 1996;383:713–716.
    1. Greengard P. The neurobiology of slow synaptic transmission. Science. 2001;294:1024–1030.
    1. Halassa MM, Fellin T, Haydon PG. The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol. Med. 2007;13:54–63.
    1. Hartmann M, Heumann R, Lessmann V. Synaptic secretion of BDNF after high-frequency stimulation of glutamatergic synapses. EMBO J. 2001;20:5887–5897.
    1. Hasselmo ME, Giocomo LM. Cholinergic modulation of cortical function. J. Mol. Neurosci. 2006;30:133–135.
    1. Heese K, Fiebich BL, Bauer J, Otten U. Nerve growth factor (NGF) expression in rat microglia is induced by adenosine A2a-receptors. Neurosci. Lett. 1997;231:83–86.
    1. Huber A, Güttinger M, Möhler H, Boison D. Seizure suppression by adenosine A(2A) receptor activation in a rat model of audiogenic brainstem epilepsy. Neurosci. Lett. 2002;329:289–292.
    1. Jeong HJ, Jang IS, Nabekura J, Akaike N. Adenosine A1 receptor-mediated presynaptic inhibition of GABAergic transmission in immature rat hippocampal CA1 neurons. J. Neurophysiol. 2003;89:1214–1222.
    1. Ji D, Lape R, Dani JA. Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron. 2001;31:131–141.
    1. Kachroo A, Orlando LR, Grandy DK, Chen JF, Young AB, Schwarzschild MA. Interactions between metabotropic glutamate 5 and adenosine A2A receptors in normal and parkinsonian mice. J. Neurosci. 2005;25:10414–10419.
    1. Kaster MP, Rosa AO, Rosso MM, Goulart EC, Santos AR, Rodrigues AL. Adenosine administration produces an antidepressant-like effect in mice: evidence for the involvement of A1 and A2A receptors. Neurosci. Lett. 2004;355:21–24.
    1. Keil G.J 2nd, DeLander GE. Spinally-mediated antinociception is induced in mice by an adenosine kinase-, but not by an adenosine deaminase, inhibitor. Life Sci. 1992;51:171–176.
    1. Kessey K, Mogul DJ. NMDA-Independent LTP by adenosine A2 receptor-mediated postsynaptic AMPA potentiation in hippocampus. J. Neurophysiol. 1997;78:1965–1972.
    1. Klishin A, Tsintsadze T, Lozovaya N, Krishtal O. Latent N-methyl-D-aspartate receptors in the recurrent excitatory pathway between hippocampal CA1 pyramidal neurons: Ca(2+)- dependent activation by blocking A1 adenosine receptors. Proc. Natl. Acad. Sci. USA. 1995;92:12431–12435.
    1. Kouznetsova M, Kelley B, Shen M, Thayer SA. Desensitization of cannabinoid-mediated presynaptic inhibition of neurotransmission between rat hippocampal neurons in culture. Mol. Pharmacol. 2002;61:477–485.
    1. Kozisek ME, Middlemas D, Bylund DB. Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies. Pharmacol. Ther. 2008;117:30–51.
    1. Lambert NA, Teyler TJ. Adenosine depresses excitatory but not fast inhibitory synaptic transmission in area CA1 of the rat hippocampus. Neurosci. Lett. 1991;122:50–52.
    1. Larson PS. Deep brain stimulation for psychiatric disorders. Neurotherapeutics. 2008;5:50–58.
    1. Le Crom S, Prou D, Vernier P. Autocrine activation of adenosine A1 receptors blocks D1A but not D1B dopamine receptor desensitization. J. Neurochem. 2002;82:1549–1552.
    1. Lee FS, Chao MV. Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc. Natl. Acad. Sci. USA. 2001;98:3555–3560.
    1. Li H, Henry JL. Adenosine receptor blockade reveals N-methyl-D-aspartate receptor- and voltage-sensitive dendritic spikes in rat hippocampal CA1 pyramidal cells in vitro. Neuroscience. 2000;100:21–31.
    1. Li T, Steinbeck JA, Lusardi T, Koch P, Lan JQ, Wilz A, Segschneider M, Simon RP, Brüstle O, Boison D. Suppression of kindling epileptogenesis by adenosine releasing stem cell-derived brain implants. Brain. 2007;130:1276–88.
    1. Li Y, Luikart BW, Birnbaum S, Chen J, Kwon CH. Kernie SG Bassel-Duby R Parada LF TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron. 2008;59:399–412.
    1. Limberger N, Späth L, Starke K. Presynaptic α2-adrenoceptor opioid kappa-receptor and adenosine A1-receptor interaction on noradrenaline release in rabbit brain cortex. Naunyn-Schmiedebergs Arch. Pharmacol. 1988;338:53–61.
    1. Lopes LV, Cunha RA, Ribeiro JA. Cross talk between A(1) and A(2A) adenosine receptors in the hippocampus and cortex of young adult and old rats. J. Neurophysiol. 1999;82:3196–3203.
    1. Love S, Plaha P, Patel NK, Hotton GR, Brooks DJ, Gill SS. Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nat. Med. 2005;11:703–704.
    1. Macek TA, Schaffhauser H, Conn PJ. Protein kinase C and A3 adenosine receptor activation inhibit presynaptic metabotropic glutamate receptor (mGluR) function and uncouple mGluRs from GTP-binding proteins. J. Neurosci. 1998;18:6138–6146.
    1. McAllister AK, Katz LC, Lo DC. Neurotrophins and synaptic plasticity. Annu. Ver. Neurosci. 1999;22:295–318.
    1. Mojsilovic-Petrovic J, Jeong GB, Crocker A, Arneja A, David S, Russell DS, Kalb RG. Protecting motor neurons from toxic insult by antagonism of adenosine A2a and Trk receptors. J. Neurosci. 2006;26:9250–9263.
    1. Morelli M, Di Paolo T, Wardas J, Calon F, Xiao D, Schwarzschild MA. Role of adenosine A2A receptors in parkinsonian motor impairment and l-DOPA-induced motor complications. Prog. Neurobiol. 2007;83:293–309.
    1. Mori Y, Higuchi M, Masuyama N, Gotoh Y. Adenosine A2A receptor facilitates calcium-dependent protein secretion through the activation of protein kinase A and phosphatidylinositol-3 kinase in PC12 cells. Cell Struct. Funct. 2004;29:101–110.
    1. Nikbakht MR, Stone TW. Suppression of presynaptic responses to adenosine by activation of NMDA receptors. Eur. J. Pharmacol. 2001;427:13–25.
    1. Nishi A, Liu F, Matsuyama S, Hamada M, Higashi H, Nairn AC, Greengard P. Metabotropic mGlu5 receptors regulate adenosine A2A receptor signaling. Proc. Natl. Acad. Sci. USA. 2003;100:1322–1327.
    1. Ogata T, Nakamura Y, Schubert P. Potentiated cAMP rise in metabotropically stimulated rat cultured astrocytes by a Ca2+-related A1/A2 adenosine receptor cooperation. Eur. J. Neurosci. 1996;8:1124–1131.
    1. Ogata T, Nakamura Y, Tsuji K, Shibata T, Kataoka K, Schubert P. Adenosine enhances intracellular Ca2+ mobilization in conjunction with metabotropic glutamate receptor activation by t-ACPD in cultured hippocampal astrocytes. Neurosci. Lett. 1994;170:5–8.
    1. O'Kane EM, Stone TW. Interactions between adenosine A1 and A2 receptor-mediated responses in the rat hippocampus in vitro. Eur. J. Pharmacol. 1998;362:17–25.
    1. O'Neill C, Nolan BJ, Macari A, O'Boyle KM, O'Connor JJ. Adenosine A1 receptor-mediated inhibition of dopamine release from rat striatal slices is modulated by D1 dopamine receptors. Eur. J. Neurosci. 2007;26:3421–428.
    1. Ortinau S, Laube B, Zimmermann H. ATP inhibits NMDA receptors after heterologous expression and in cultured hippocampal neurons and attenuates NMDA-mediated neurotoxicity. J. Neurosci. 2003;23:4996–5003.
    1. Patel NK, Bunnage M, Plaha P, Svendsen CN, Heywood P, Gill SS. Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann. Neurol. 2005;57:298–302.
    1. Pazzagli M, Pedata F, Pepeu G. Effect of K+ depolarization, tetrodotoxin, and NMDA receptor inhibition on extracellular adenosine levels in rat striatum. Eur. J. Pharmacol. 1993;234:61–65.
    1. Pinto-Duarte A, Coelho JE, Cunha RA, Ribeiro JA, Sebastião AM. Adenosine A2A receptors control the extracellular levels of adenosine through modulation of nucleoside transporters activity in the rat hippocampus. J. Neurochem. 2005;93:595–604.
    1. Pintor A, Pèzzola A, Reggio R, Quarta D, Popoli P. The mGlu5 receptor agonist CHPG stimulates striatal glutamate release: possible involvement of A2A receptors. Neuroreport. 2000;11:3611–3614.
    1. Popoli P, Minghetti L, Tebano MT, Pintor A, Domenici MR, Massotti M. Adenosine A2A receptor antagonism and neuroprotection: mechanisms, lights, and shadows. Crit. Rev. Neurobiol. 2004;16:99–106.
    1. Pousinha PA, Diogenes MJ, Ribeiro JA, Sebastião AM. Triggering of BDNF facilitatory action on neuromuscular transmission by adenosine A2A receptors. Neurosci. Lett. 2006;404:143–147.
    1. Qian J, Colmers WF, Saggau P. Inhibition of synaptic transmission by neuropeptide Y in rat hippocampal area CA1: modulation of presynaptic Ca2+ entry. J. Neurosci. 1997;17:8169–8177.
    1. Rajagopal R, Chen ZY, Lee FS, Chao MV. Transactivation of Trk neurotrophin receptors by G-protein-coupled receptor ligands occurs on intracellular membranes. J. Neurosci. 2004;24:6650–6658.
    1. Rebola N, Lujan R, Cunha RA, Mulle C. Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron. 2008;57:121–134.
    1. Rebola N, Sebastião AM, de Mendonca A, Oliveira CR, Ribeiro JA, Cunha RA. Enhanced adenosine A2A receptor facilitation of synaptic transmission in the hippocampus of aged rats. J. Neurophysiol. 2003;90:1295–303.
    1. Ribeiro JA, Sebastião AM. On the role, inactivation and origin of endogenous adenosine at the frog neuromuscular junction. J. Physiol. 1987;384:571–85.
    1. Ribeiro JA, Sebastião AM, de Mendonça A. Adenosine receptors in the nervous system: pathophysiological implications. Prog. Neurobiol. 2002;68:377–392.
    1. Ribeiro JA, Walker J. Action of adenosine triphosphate on endplate potentials recorded from muscle fibres of the rat-diaphragm and frog sartorius. Br. J. Pharmacol. 1973;49:724–725.
    1. Ribeiro JA, Walker J. The effects of adenosine triphosphate and adenosine diphosphate on transmission at the rat and frog neuromuscular junctions. Br. J. Pharmacol. 1975;54:213–8.
    1. Rodrigues RJ, Alfaro TM, Rebola N, Oliveira CR, Cunha RA. Co-localization and functional interaction between adenosine A(2A) and metabotropic group 5 receptors in glutamatergic nerve terminals of the rat striatum. J. Neurochem. 2005;92:433–441.
    1. Rossi S, De Chiara V, Musella A, Mataluni G, Sacchetti L, Siracusano A, Bernardi G, Usiello A, Centonze D. Caffeine drinking potentiates cannabinoid transmission in the striatum: Interaction with stress effects. Neuropharmacology. 2009;56:590–7.
    1. Sandner-Kiesling A, Li X, Eisenach JC. Morphine-induced spinal release of adenosine is reduced in neuropathic rats. Anesthesiology. 2001;95:1455–1459.
    1. Sawynok J. Adenosine and ATP receptors. Handb. Exp. Pharmacol. 2007;177:309–328.
    1. Scharfman HE, Hen R. Is more neurogenesis always better? Science. 2007;315:336–338.
    1. Schiffmann S N, Libert F, Vassart G, Vanderhaeghen J -J. Distribution of adenosine A2 receptor mRNA in the human brain. Neurosci. Lett. 1991;130:177 –181.
    1. Schipke CG, Kettenmann H. Astrocyte responses to neuronal activity. Glia. 2004;47:226–32.
    1. Schulte-Herbrüggen O, Braun A, Rochlitzer S, Jockers-Scherübl MC, Hellweg R. Neurotrophic factors--a tool for therapeutic strategies in neurological, neuropsychiatric and neuroimmunological diseases? Curr. Med. Chem. 2007;14:2318–2329.
    1. Sebastiao AM, Ribeiro JA. Fine-tuning neuromodulation by adenosine. Trends Pharmacol. Sci. 2000;21:341–346.
    1. Sebastião AM, Ribeiro JA. Handbook of Experimental Pharmacology. Elsevier; 2009. Adenosine Receptors and the Central Nervous System. (in the press)
    1. Sebastião AM. Activation of synaptic NMDA receptors by action potential-dependent release of transmitter during hypoxia impairs recovery of synaptic transmission on reoxygenation. J. Neurosci. 2001;21:8564–8571.
    1. Sebastião AM, Macedo MP, Ribeiro JA. Tonic activation of A(2A) adenosine receptors unmasks, and of A(1) receptors prevents, a facilitatory action of calcitonin gene-related peptide in the rat hippocampus. Br. J. Pharmacol. 2000;129:374–380.
    1. Sebastião AM, Ribeiro JA. Interactions between adenosine and phorbol esters or lithium at the frog neuromuscular junction. Br. J. Pharmacol. 1990;100:55–62.
    1. Sebastião AM, Ribeiro JA. Evidence for the presence of excitatory A2 adenosine receptors in the rat hippocampus. Neurosci. Lett. 1992;138:41–44.
    1. Sebastião AM, Ribeiro JA. Adenosine A2 receptor-mediated excitatory actions on the nervous system. Prog. Neurobiol. 1996;48:167–189.
    1. Selley DE, Cassidy MP, Martin BR, Sim-Selley LJ. Long-term administration of Delta9-tetrahydrocannabinol desensitizes CB1-, adenosine A1-, and GABAB-mediated inhibition of adenylyl cyclase in mouse cerebellum. Mol. Pharmacol. 2004;66:1275–1284.
    1. Shahraki A, Stone TW. Interactions between adenosine and metabotropic glutamate receptors in the rat hippocampal slice. Br. J. Pharmacol. 2003;138:1059–1068.
    1. Silhol M, Bonnichon V, Rage F, Tapia-Arancibia L. Age-related changes in brain-derived neurotrophic factor and tyrosine kinase receptor isoforms in the hippocampus and hypothalamus in male rats. Neuroscience. 2005;132:613–624.
    1. Silinsky EM. On the association between transmitter secretion and the release of adenine nucleotides from mammalian motor nerve terminals. J. Physiol. 1975;247:145–162.
    1. Simonato M, Tongiorgi E, Kokaia M. Angels and demons: neurotrophic factors and epilepsy. Trends Pharmacol. Sci. 2006;27:631–638.
    1. Soria G, Castañé A, Berrendero F, Ledent C, Parmentier M, Maldonado R, Valverde O. Adenosine A2A receptors are involved in physical dependence and place conditioning induced by THC. Eur. J. Neurosci. 2004;20:2203–2213.
    1. Stevens B, Ishibashi T, Chen JF, Fields RD. Adenosine: an activity-dependent axonal signal regulating MAP kinase and proliferation in developing Schwann cells. Neuron Glia Biol. 2004;1:23–34.
    1. Stevens B, Porta S, Haak LL, Gallo V, Fields RD. Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron. 2002;36:855–68.
    1. Strand AD, Baquet ZC, Aragaki AK, Holmans P, Yang L, Cleren C, Beal MF, Jones L, Kooperberg C, Olson JM, Jones KR. Expression profiling of Huntington's disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. J. Neurosci. 2007;27:11758–11768.
    1. Suzuki T, Namba K, Tsuga H, Nakata H. Regulation of pharmacology by hetero-oligomerization between A1 adenosine receptor and P2Y2 receptor. Biochem. Biophys. Res. Commun. 2006;351:559–565.
    1. Tebano MT, Martire A, Potenza RL, Grò C, Pepponi R, Armida M, Domenici MR, Schwarzschild MA, Chen JF, Popoli P. Adenosine A2A receptors are required for normal BDNF levels and BDNF-induced potentiation of synaptic transmission in the mouse hippocampus. J. Neurochem. 2008;104:279–286.
    1. Tebano MT, Pintor A, Frank C, Domenici MR, Martire A, Pepponi R, Potenza RL, Grieco R, Popoli P. Adenosine A2A receptor blockade differentially influences excitotoxic mechanisms at pre- and postsynaptic sites in the rat striatum. J. Neurosci. Res. 2004;77:100–107.
    1. Thevananther S, Rivera A, Rivkees SA. A1 adenosine receptor activation inhibits neurite process formation by Rho kinase-mediated pathways. Neuroreport. 2001;12:3057–3063.
    1. Tom NJ, Roberts PJ. Group 1 mGlu receptors elevate [Ca2+] in rat cultured cortical type 2 astrocytes: [Ca2+] synergy with adenosine A1 receptors. Neuropharmacology. 1999;38:1511–1517.
    1. Tonazzini I, Trincavelli ML, Storm-Mathisen J, Martini C, Bergersen LH. Co-localization and functional cross-talk between A1 and P2Y1 purine receptors in rat hippocampus. Eur. J. Neurosci. 2007;26:890–902.
    1. Vaz S, Cristóvão-Ferreira S, Ribeiro JA, Sebastiao AM. Brain-derived neurotrophic factor inhibits GABA uptake by the rat hippocampal nerve terminals. Brain Res. 2008;1219:19–25.
    1. White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH, Barnes AA, Emson P, Foord SM, Marshall FH. Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature. 1998;396:679–82.
    1. Wieraszko A, Goldsmith G, Seyfried TN. Stimulation-dependent release of adenosine triphosphate from hippocampal slices. Brain Res. 1989;485:244–250.
    1. Wiese S, Jablonka S, Holtmann B, Orel N, Rajagopal R, Chao MV, Sendtner M. Adenosine receptor A2A-R contributes to motoneuron survival by transactivating the tyrosine kinase receptor TrkB. Proc. Natl. Acad. Sci. USA. 2007;104:17210–17215.
    1. Wilz A, Pritchard EM, Li T Lan J Q, Kaplan DL, Boison D. Silk polymer-based adenosine release: therapeutic potential for epilepsy. Biomaterials. 2008;29:3609–3616.
    1. Winder DG, Conn PJ. Activation of metabotropic glutamate receptors increases cAMP accumulation in hippocampus by potentiating responses to endogenous adenosine. J. Neurosci. 1993;13:38–44.
    1. Wirkner K, Assmann H, Köles L, Gerevich Z, Franke H, Nörenberg W, Boehm R, Illes P. Inhibition by adenosine A2A receptors of NMDA but not AMPA currents in striatal neurons. Br. J. Pharmacol. 2000;130:259–269.
    1. Wirkner K, Gerevich Z, Krause T, Günther A, Köles L, Schneider D, Nörenberg W, Illes P. Adenosine A2A receptor-induced inhibition of NMDA and GABAA receptor-mediated synaptic currents in a subpopulation of rat striatal neurons. Neuropharmacology. 2004;46:994–1007.
    1. Worley PF, Baraban JM, McCarren M, Snyder SH, Alger BE. Cholinergic phosphatidylinositol modulation of inhibitory G protein-linked neurotransmitter actions: electrophysiological studies in rat hippocampus. Proc. Natl. Acad. Sci. USA. 1987;84:3467–3471.
    1. Yamagata K, Hakata K, Maeda A, Mochizuki C, Matsufuji H, Chino M, Yamori Y. Adenosine induces expression of glial cell line-derived neurotrophic factor (GDNF) in primary rat astrocytes. Neurosci. Res. 2007;59:467–474.
    1. Yao L, Fan P, Jiang Z, Mailliard WS, Gordon AS, Diamond I. Addicting drugs utilize a synergistic molecular mechanism in common requiring adenosine and Gi-beta gamma dimers. Proc. Natl. Acad. Sci. USA. 2003;100:14379–14384.
    1. Yao L, McFarland K, Fan P, Jiang Z, Ueda T, Diamond I. Adenosine A2a blockade prevents synergy between muopiate and cannabinoid CB1 receptors and eliminates heroin-seeking behavior in addicted rats. Proc. Natl. Acad. Sci. USA. 2006;103:7877–7882.
    1. Yoon K-W, Rothman SM. Adenosine inhibits excitatory but not inhibitory synaptic transmission in the hippocampus. J. Neurosci. 1991;11:1375–1380.
    1. Yoshioka K, Hosoda R, Kuroda Y, Nakata H. Hetero-oligomerization of adenosine A1 receptors with P2Y1 receptors in rat brains. FEBS Lett. 2002;531:299–303.
    1. Zeraati M, Mirnajafi-Zadeh J, Fathollahi Y, Namvar S, Rezvani ME. Adenosine A1 and A2A receptors of hippocampal CA1 region have opposite effects on piriform cortex kindled seizures in rats. Seizure. 2006;15:41–48.
    1. Zhang C, Schmidt JT. Adenosine A1 and class II metabotropic glutamate receptors mediate shared presynaptic inhibition of retinotectal transmission. J. Neurophysiol. 1999;82:2947–2955.
    1. Zimmermann H. Ectonucleotidases in the nervous system. Novartis Found. Symp. 2006;276:113–128.
    1. Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, MacDonald ME, Friedlander RM, Silani V, Hayden MR, Timmusk T, Sipione S, Cattaneo E. Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science. 2001;293:493–498.

Source: PubMed

3
Subscribe