Clinical activity of carfilzomib correlates with inhibition of multiple proteasome subunits: application of a novel pharmacodynamic assay

Susan J Lee, Konstantin Levitsky, Francesco Parlati, Mark K Bennett, Shirin Arastu-Kapur, Lois Kellerman, Tina F Woo, Alvin F Wong, Kyriakos P Papadopoulos, Ruben Niesvizky, Ashraf Z Badros, Ravi Vij, Sundar Jagannath, David Siegel, Michael Wang, Gregory J Ahmann, Christopher J Kirk, Susan J Lee, Konstantin Levitsky, Francesco Parlati, Mark K Bennett, Shirin Arastu-Kapur, Lois Kellerman, Tina F Woo, Alvin F Wong, Kyriakos P Papadopoulos, Ruben Niesvizky, Ashraf Z Badros, Ravi Vij, Sundar Jagannath, David Siegel, Michael Wang, Gregory J Ahmann, Christopher J Kirk

Abstract

While proteasome inhibition is a validated therapeutic approach for multiple myeloma (MM), inhibition of individual constitutive proteasome (c20S) and immunoproteasome (i20S) subunits has not been fully explored owing to a lack of effective tools. We utilized the novel proteasome constitutive/immunoproteasome subunit enzyme-linked immunosorbent (ProCISE) assay to quantify proteasome subunit occupancy in samples from five phase I/II and II trials before and after treatment with the proteasome inhibitor carfilzomib. Following the first carfilzomib dose (15-56 mg/m(2) ), dose-dependent inhibition of c20S and i20S chymotrypsin-like active sites was observed [whole blood: ≥67%; peripheral blood mononuclear cells (PBMCs): ≥75%]. A similar inhibition profile was observed in bone marrow-derived CD138(+) tumour cells. Carfilzomib-induced proteasome inhibition was durable, with minimal recovery in PBMCs after 24 h but near-complete recovery between cycles. Importantly, the ProCISE assay can be used to quantify occupancy of individual c20S and i20S subunits. We observed a relationship between MM patient response (n = 29), carfilzomib dose and occupancy of multiple i20S subunits, where greater occupancy was associated with an increased likelihood of achieving a clinical response at higher doses. ProCISE represents a new tool for measuring proteasome inhibitor activity in clinical trials and relating drug action to patient outcomes.

Keywords: molecular analysis; multiple myeloma; myeloma therapy; pharmacology; trials.

© 2016 The Authors. British Journal of Haematology published by John Wiley & Sons Ltd.

Figures

Figure 1
Figure 1
Carfilzomib administration results in potent inhibition of multiple proteasome subunits. (A) ProCISE assay schematic. PABP is added to purified 20S proteasomes (activated with 0∙03% SDS‐AB) or cell lysates and incubated for 2 h. Denaturation with guanidine and capture on beads is then done simultaneously for 1 h followed by five washes in PBS + 1% BSA + 0∙05% Tween. Primary antibodies for specific proteasome active site subunits are then added overnight, followed by another five washes. A secondary HRP antibody is then added for 2 h, followed by five washes. A chemiluminescent substrate is then added for 5–10 min, and luminescence is determined. (B) Proteasome subunit levels were measured by ProCISE in 62 whole blood and 54 PBMC samples from MM patients and 27 whole blood and 24 PBMC samples from ST patients. CT‐L activity was measured in the same samples using the LLVY‐AMC substrate. Data are presented as box and whisker plots with subunit concentration (ProCISE) or specific activity (LLVY‐AMC). Mean specific activity [AMC/protein (μM/μg)] and subunit concentrations [subunit/protein (ng/μg)] are represented by a horizontal line, and error bars represent minimum and maximum values. (C) Whole blood and PBMC samples taken 1 h after the first administration of carfilzomib in MM and ST patients (doses: 15–45 mg/m2) were analysed for proteasome subunit activity by LLVY‐AMC and occupancy by ProCISE. Values were normalized to predose values, and data are presented as mean (±SEM) relative activity or occupancy. The dotted line represents the LLOQ for whole blood. (D) MM patients were treated with carfilzomib 15 or 20 mg/m2, dexamethasone 40 mg and lenalidomide 10, 15, or 25 mg on day 1. Whole blood and PBMC were isolated predose and 1 h after the first dose of carfilzomib dose was administered. Samples were analysed for proteasome activity and subunit occupancy, as described in panel A. Values are normalized to predose values, and data are presented as mean (±SEM) specific activity or occupancy (= 2–8 per cohort). LLVY‐AMC data are reproduced from Badros et al (2013) with permission from Nature Publishing Group. (E) MM patients with varying degrees of renal function were treated with 15 mg/m2 of carfilzomib on day 1. Whole blood and PBMC were isolated predose 1 h after carfilzomib dose administration. Samples were analysed for proteasome activity and subunit occupancy as described in panel B. Values are normalized to predose values, and data are presented as mean (±SEM) relative activity or occupancy (= 2–7 per cohort). 1°, primary; 2°, secondary; Ab, antibody; AMC, aminomethylcoumarin; BSA, bovine serum albumin; CFZ, carfilzomib; CT‐L, chymotrypsin‐like; D, day; HRP, horseradish peroxidase; LLOQ, lower limit of quantitation; LLVY, Leu‐Leu‐Val‐Tyr‐7‐amino‐4‐methylcoumarin; LMP, low‐molecular mass polypeptide; MECL, multicatalytic endopeptidase complex‐like; MM, multiple myeloma; PABP, proteasome active site‐binding probe; PBMC, peripheral blood mononuclear cell; PBS, phosphate buffer solution; SDS‐AB, sodium dodecyl sulfate in assay buffer; SEM, standard error of the mean; ST, solid tumour.
Figure 2
Figure 2
Repeat administration of carfilzomib results in sustained proteasome inhibition. (A) Patients received carfilzomib at 15, 20, 36 or 45 mg/m2 on days 1, 2, 8, D9, 15 and 16 of a 28‐day cycle. Whole blood and PBMC samples were taken prior to and 1 h after administration on days 1, 2 and 8 of cycle 1 and day 1 of cycle 2. Samples were analysed for proteasome activity and subunit occupancy as described in Fig 1 and were normalized to cycle 1, day 1 predose values. Data are presented as mean (±SEM) relative specific activity or occupancy. (B) Bone marrow samples from MM patients were taken during baseline screening and/or on cycle 1, day 2, 1 to 4 h after the second dose of carfilzomib. CD138+ cells and samples were analysed for proteasome activity and subunit occupancy. Data are presented as mean (±SEM) relative activity or subunit concentration. *< 0∙001; **< 0∙01; ***< 0∙05 by a t‐test. C, cycle; CT‐L, chymotrypsin‐like; D, day; AMC, aminomethylcoumarin; LMP, low‐molecular mass polypeptide; MECL, multicatalytic endopeptidase complex‐like; MM, multiple myeloma; PBMC, peripheral blood mononuclear cell; SEM, standard error of the mean.
Figure 3
Figure 3
Immunoproteasome subunit inhibition is correlated with activity in multiple myeloma. (A) Proteasome inhibition in PBMC samples was measured as described in Fig 1. Patients were stratified according to carfilzomib dose: either 20/56 mg/m2 from PX‐171‐007 or 15 and 15/20 mg/m2 from PX‐171‐005. Values (relative to cycle 1, day 1 predose) are presented as mean (±SEM) relative subunit concentration or specific activity. The shaded area represents the time points in which the dose was stepped up to 56 mg/m2 for PX‐171‐007 patients or 20 mg/m2 for some PX‐171‐005 patients. *< 0∙05; **< 0∙01; ***< 0∙001 by a t‐test. (B) Data from panel A at cycle 1, day 8 1‐h time point. #< 0∙05; ##< 0∙001; ###< 0∙01; by a t‐test. C, cycle; CT‐L, chymotrypsin‐like; D, day; LMP, low‐molecular mass polypeptide; MECL, multicatalytic endopeptidase complex‐like; PBMC, peripheral blood mononuclear cell; SEM, standard error of the mean.

References

    1. Arastu‐Kapur, S. , Anderl, J.L. , Kraus, M. , Parlati, F. , Shenk, K.D. , Lee, S.J. , Muchamuel, T. , Bennett, M.K. , Driessen, C. , Ball, A.J. & Kirk, C.J. (2011) Nonproteasomal targets of the proteasome inhibitors bortezomib and carfilzomib: a link to clinical adverse events. Clinical Cancer Research, 17, 2734–2743.
    1. Badros, A.Z. , Vij, R. , Martin, T. , Zonder, J.A. , Kunkel, L. , Wang, Z. , Lee, S. , Wong, A.F. & Niesvizky, R. (2013) Carfilzomib in multiple myeloma patients with renal impairment: pharmacokinetics and safety. Leukemia, 27, 1707–1714.
    1. Bennett, M.K. & Kirk, C.J. (2008) Development of proteasome inhibitors in oncology and autoimmune diseases. Current Opinion in Drug Discovery and Development, 11, 616–625.
    1. Bennett, M.K. , Buchholz, T.J. , Demo, S.D. , Laidig, G.J. , Lewis, E.R. & Smyth, M.S. (2006) Compound for enzyme inhibition (US Patent 2006/0088471 A1), April 27, 2006. . Accessed January 16, 2015
    1. Britton, M. , Lucas, M.M. , Downey, S.L. , Screen, M. , Pletnev, A.A. , Verdoes, M. , Tokhunts, R.A. , Amir, O. , Goddard, A.L. , Pelphrey, P.M. , Wright, D.L. , Overkleeft, H.S. & Kisselev, A.F. (2009) Selective inhibitor of proteasome's caspase‐like sites sensitizes cells to specific inhibition of chymotrypsin‐like sites. Chemistry and Biology, 16, 1278–1289.
    1. Chauhan, D. , Catley, L. , Li, G. , Podar, K. , Hideshima, T. , Velankar, M. , Mitsiades, C. , Mitsiades, N. , Yasui, H. , Letai, A. , Ovaa, H. , Berkers, C. , Nicholson, B.l , Chao, T.‐H. , Neuteboom, S.T.C. , Richardson, P. , Palladino, M.A. & Anderson, K.C. (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib. Cancer Cell, 8, 407–419.
    1. Ciechanover, A. (2012) Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin‐proteasome system and onto human diseases and drug targeting. Biochimica et Biophysica Acta, 1824, 3–13.
    1. Coux, O. , Tanaka, K. & Goldberg, A.L. (1996) Structure and functions of the 20S and 26S proteasomes. Annual Review of Biochemistry, 65, 801–847.
    1. Demo, S.D. , Kirk, C.J. , Aujay, M.A. , Buchholz, T.J. , Dajee, M. , Ho, M.N. , Jiang, J. , Laidig, G.J. , Lewis, E.R. , Parlati, F. , Shenk, K.D. , Smyth, M.S. , Sun, C.M. , Vallone, M.K. , Woo, T.M. , Molineaux, C.J. & Bennett, M.K. (2007) Antitumor activity of PR‐171, a novel irreversible inhibitor of the proteasome. Cancer Research, 67, 6383–6391.
    1. Dick, L.R. & Fleming, P.E. (2010) Building on bortezomib: second‐generation proteasome inhibitors as anti‐cancer therapy. Drug Discovery Today, 15, 243–249.
    1. Fisher, R.I. , Bernstein, S.H. , Kahl, B.S. , Djulbegovic, B. , Robertson, M.J. , de Vos, S. , Epner, E. , Krishnan, A. , Leonard, J.P. , Lonial, S. , Stadtmauer, E.A. , O'Connor, O.A. , Shi, H. , Boral, A.L. & Goy, A. (2006) Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. Journal of Clinical Oncology, 24, 4867–4874.
    1. Glynne, R. , Powis, S.H. , Beck, S. , Kelly, A. , Kerr, L.A. & Trowsdale, J. (1991) A proteasome‐related gene between the two ABC transporter loci in the class II region of the human MHC. Nature, 353, 357–360.
    1. Groettrup, M. , Kirk, C.J. & Basler, M. (2010) Proteasomes in immune cells: more than peptide producers? Nature Reviews Immunology, 10, 73–78.
    1. Hellmann, A. , Rule, S. , Walewski, J. , Shpilberg, O. , Feng, H. , van de Velde, H. , Patel, H. , Skee, D.M. , Girgis, S. & Louw, V.J. (2011) Effect of cytochrome P450 3A4 inducers on the pharmacokinetic, pharmacodynamic and safety profiles of bortezomib in patients with multiple myeloma or non‐Hodgkin's lymphoma. Clinical Pharmacokinetics, 50, 781–791.
    1. Jagannath, S. , Barlogie, B. , Berenson, J.R. , Singhal, S. , Alexanian, R. , Srkalovic, G. , Orlowski, R.Z. , Richardson, P.G. , Anderson, J.A. , Nix, D. , Esseltine, D.L. & Anderson, K.C. (2005) Bortezomib in recurrent and/or refractory multiple myeloma. Initial clinical experience in patients with impaired renal function. Cancer, 103, 1195–1200.
    1. Jain, S. , Diefenbach, C. , Zain, J. & O'Connor, O.A. (2011) Emerging role of carfilzomib in treatment of relapsed and refractory lymphoid neoplasms and multiple myeloma. Core Evidence, 6, 43–57.
    1. Kraus, M. , Rückrich, T. , Reich, M. , Gogel, J. , Beck, A. , Kammer, W. , Berkers, C.R. , Burg, D. , Overkleeft, H. , Ovaa, H. & Driessen, C. (2007) Activity patterns of proteasome subunits reflect bortezomib sensitivity of hematologic malignancies and are variable in primary human leukemia cells. Leukemia, 21, 84–92.
    1. Kuhn, D.J. , Chen, Q. , Voorhees, P.M. , Strader, J.S. , Shenk, K.D. , Sun, C.M. , Demo, S.D. , Bennett, M.K. , van Leeuwen, F.W.B. , Chanan‐Khan, A.A. & Orlowski, R.Z. (2007) Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin‐proteasome pathway, against preclinical models of multiple myeloma. Blood, 110, 3281–3290.
    1. Kuhn, D.J. , Hunsucker, S.A. , Chen, Q. , Voorhees, P.M. , Orlowski, M. & Orlowski, R.Z. (2009) Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood, 113, 4667–4676.
    1. Kuhn, D.J. , Orlowski, R.Z. & Bjorklund, C.C. (2011) Second generation proteasome inhibitors: carfilzomib and immunoproteasome‐specific inhibitors (IPSIs). Current Cancer Drug Targets, 11, 285–295.
    1. Kummar, S. , Chen, H.X. , Wright, J. , Holbeck, S. , Millin, M.D. , Tomaszewski, J. , Zweibel, J. , Collins, J. & Doroshow, J.H. (2010) Utilizing targeted cancer therapeutic agents in combination: novel approaches and urgent requirements. Nature Reviews Drug Discovery, 9, 843–856.
    1. Lightcap, E.S. , McCormack, T.A. , Pien, C.S. , Chau, V. , Adams, J. & Elliott, P.J. (2000) Proteasome inhibition measurements: clinical application. Clinical Chemistry, 46, 673–683.
    1. Martinez, C.K. & Monaco, J.J. (1991) Homology of proteasome subunits to a major histocompatibility complex‐linked LMP gene. Nature 353, 664–667.
    1. Mirabella, A.C. , Pletnev, A.A. , Downey, S.L. , Florea, B.I. , Shabaneh, T.B. , Britton, M. , Verdoes, M. , Filippov, D.V. , Overkleeft, H.S. & Kisselev, A.F. (2011) Specific cell‐permeable inhibitor of proteasome trypsin‐like sites selectively sensitizes myeloma cells to bortezomib and carfilzomib. Chemistry and Biology, 18, 608–618.
    1. Moreau, P. , Coiteux, V. , Hulin, C. , Leleu, X. , van de Velde, H. , Acharya, M. & Harousseau, J.‐L. (2008) Prospective comparison of subcutaneous versus intravenous administration of bortezomib in patients with multiple myeloma. Haematologica, 93, 1908–1911.
    1. Muchamuel, T. , Basler, M. , Aujay, M.A. , Suzuki, E. , Kalim, K.W. , Lauer, C. , Sylvain, C. , Ring, E.R. , Shields, J. , Jiang, J. , Shwonek, Pl , Parlati, F. , Demo, S.D. , Bennett, M.K. , Kirk, C.J. & Groettrup, M. (2009) A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nature Medicine, 15, 781–787.
    1. Nandi, D. , Jiang, H. & Monaco, J.J. (1996) Identification of MECL‐1 (LMP‐10) as the third IFN‐gamma‐inducible proteasome subunit. Journal of Immunology, 156, 2361–2364.
    1. Niesvizky, R. , Martin, T.G. III , Bensinger, W.I. , Alsina, M. , Siegel, D.S. , Kunkel, L.A. , Wong, A.F. , Lee, S. , Orlowski, R.Z. & Wang, M. (2013) Phase Ib dose‐escalation study (PX‐171‐006) of carfilzomib, lenalidomide, and low‐dose dexamethasone in relapsed or progressive multiple myeloma. Clinical Cancer Research, 19, 2248–2256.
    1. O'Connor, O.A. , Stewart, A.K. , Vallone, M. , Molineaux, C.J. , Kunkel, L.A. , Gerecitano, J.F. & Orlowski, R.Z. (2009) A phase 1 dose escalation study of the safety and pharmacokinetics of the novel proteasome inhibitor carfilzomib (PR‐171) in patients with hematologic malignancies. Clinical Cancer Research, 15, 7085–7091.
    1. Orlowski, R.Z. , Stinchcombe, T.E. , Mitchell, B.S. , Shea, T.C. , Baldwin, A.S. , Stahl, S. , Adams, J. , Esseltine, D.‐L. , Elliott, P.J. , Pien, C.S. , Guerciolini, R. , Anderson, J.K. , Depcik‐Smith, N.D. , Bhagat, R. , Lehman, M.J. , Novick, S.C. , O'Connor, O.A. & Soignet, S.L. (2002) Phase I trial of the proteasome inhibitor PS‐341 in patients with refractory hematologic malignancies. Journal of Clinical Oncology, 20, 4420–4427.
    1. Papadopoulos, K.P. , Burris, H.A. III , Gordon, M. , Lee, P. , Sausville, E.A. , Rosen, P.J. , Patnaik, A. , Cutler, R.E., Jr. , Wang, Z. , Lee, S. , Jones, S.F. & Infante, J.R. (2013) A phase I/II study of carfilzomib 2‐10‐min infusion in patients with advanced solid tumors. Cancer Chemotherapy and Pharmacology, 72, 861–868.
    1. Papadopoulos, K.P. , Siegel, D.S. , Vesole, D.H. , Lee, P. , Rosen, S.T. , Zojwalla, N. , Holahan, J.R. , Lee, S. , Wang, Z. & Badros, A. (2015) Phase I study of a 30‐minute infusion of carfilzomib as single agent or in combination with low‐dose dexamethasone in patients with relapsed and/or refractory multiple myeloma. Journal of Clinical Oncology, 33, 732–739.
    1. Papandreou, C.N. , Daliani, D.D. , Nix, D. , Yang, H. , Madden, T. , Wang, X. , Pien, C.S. , Millikan, R.E. , Tu, S.M. , Pagliaro, L. , Kim, J. , Adams, J. , Elliott, P. , Esseltine, D. , Petrusich, A. , Dieringer, P. , Perez, C. & Logothetis, C.J. (2004) Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen‐independent prostate cancer. Journal of Clinical Oncology, 22, 108–121.
    1. Parlati, F. , Lee, S.J. , Aujay, M. , Suzuki, E. , Levitsky, K. , Lorens, J.B. , Micklem, D.R. , Ruurs, P. , Sylvain, C. , Lu, Y. , Shenk, K.D. & Bennett, M.K. (2009) Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin‐like activity of the proteasome. Blood, 114, 3439–3447.
    1. Richardson, P.G. , Sonneveld, P. , Schuster, M.W. , Irwin, D. , Stadtmauer, E.A. , Facon, T. , Harousseau, J.L. , Ben‐Yehuda, D. , Lonial, S. , Goldschmidt, H. , Reece, D. , San‐Miguel, J.F. , Bladé, J. , Boccadoro, M. , Cavenagh, J. , Dalton, W.S. , Boral, A.L. , Esseltine, D.L. , Porter, J.B. , Schenkein, D. & Anderson, K.C. ; for the Assessment of Proteasome Inhibition for Extending Remissions (APEX) Investigators (2005) Bortezomib or high‐dose dexamethasone for relapsed multiple myeloma. New England Journal of Medicine, 352, 2487–2498.
    1. San‐Miguel, J.F. , Richardson, P.G. , Sonneveld, P. , Schuster, M.W. , Irwin, D. , Stadtmauer, E.A. , Facon, T. , Harousseau, J.L. , Ben‐Yehuda, D. , Lonial, S. , Goldschmidt, H. , Reece, D. , Blade, J. , Boccadoro, M. , Cavenagh, J.D. , Neuwirth, R. , Boral, A.L. , Esseltine, D.L. & Anderson, K.C. (2008) Efficacy and safety of bortezomib in patients with renal impairment: results from the APEX phase 3 study. Leukemia, 22, 842–849.
    1. Siegel, D.S. , Martin, T. , Wang, M. , Vij, R. , Jakubowiak, A.J. , Lonial, S. , Trudel, S. , Kukreti, V. , Bahlis, N. , Alsina, M. , Chanan‐Khan, A. , Buadi, F. , Reu, F.J. , Somlo, G. , Zonder, J. , Song, K. , Stewart, A.K. , Stadtmauer, E. , Kunkel, L. , Wear, S. , Wong, A.F. , Orlowski, R.Z. & Jagannath, S. (2012) A phase 2 study of single‐agent carfilzomib (PX‐171‐003‐A1) in patients with relapsed and refractory multiple myeloma. Blood, 120, 2817–2825.
    1. Siegel, D. , Martin, T. , Nooka, A. , Harvey, R.D. , Vij, R. , Niesvizky, R. , Badros, A.Z. , Jagannath, S. , McCulloch, L. , Rajangam, K. & Lonial, S. (2013) Integrated safety profile of single‐agent carfilzomib: experience from 526 patients enrolled in 4 phase 2 clinical studies. Haematologica, 98, 1753–1761.
    1. Smyth, M.S. & Laidig, G.J. (2006) Compounds for enzyme inhibition (US 2006/0030533 A1), February 9, 2006. . Accessed January 16, 2015.
    1. Squifflet, P. , Michiels, S. , Siegel, D.S. , Vij, R. , Ro, S. & Buyse, M.E. (2011) Multivariate modelling reveals evidence of a dose‐response relationship in phase 2 studies of single‐agent carfilzomib [abstract]. Blood, 118, Abstract1877.
    1. Vij, R. , Siegel, D.S. , Jagannath, S. , Jakubowiak, A.J. , Stewart, A.K. , McDonagh, K. , Bahlis, N. , Belch, A. , Kunkel, L.A. , Wear, S. , Wong, A.F. , Orlowski, R.Z. & Wang, W. (2012a) An open‐label, single‐arm, phase 2 study of single‐agent carfilzomib in patients with relapsed and/or refractory multiple myeloma who have been previously treated with bortezomib. British Journal of Haematology, 158, 739–748.
    1. Vij, R. , Wang, M. , Kaufman, J.L. , Lonial, S. , Jakubowiak, A.J. , Stewart, A.K. , Kukreti, V. , Jagannath, S. , McDonagh, K.T. , Alsina, M. , Bahlis, N.J. , Reu, F.J. , Gabrail, N.Y. , Belch, A. , Matous, J.V. , Lee, P. , Rosen, P. , Sebag, M. , Vesole, D.H. , Kunkel, L.A. , Wear, S.M. , Wong, A.F. , Orlowski, R.Z. & Siegel, D.S. (2012b) An open‐label, single‐arm, phase 2 (PX‐171‐004) study of single‐agent carfilzomib in bortezomib‐naive patients with relapsed and/or refractory multiple myeloma. Blood, 119, 5661–5670.
    1. Wehenkel, M. , Ban, J.O. , Ho, Y.K. , Carmony, K.C. , Hong, J.T. & Kim, K.B. (2012) A selective inhibitor of the immunoproteasome subunit LMP2 induces apoptosis in PC‐3 cells and suppresses tumour growth in nude mice. British Journal of Cancer, 107, 53–62.
    1. Wilk, S. & Orlowski, M. (1983) Evidence that pituitary cation‐sensitive neutral endopeptidase is a multicatalytic protease complex. Journal of Neurochemistry, 40, 842–849.
    1. Yang, J. , Wang, Z. , Fang, Y. , Jiang, J. , Zhao, F. , Wong, H. , Bennett, M.K. , Molineaux, C.J. & Kirk, C.J. (2011) Pharmacokinetics, pharmacodynamics, metabolism, distribution and excretion of carfilzomib in rats. Drug Metabolism and Disposition, 39, 1873–1882.
    1. Yap, T.A. , Sandhu, S.K. , Workman, P. & de Bono, J.S. (2010) Envisioning the future of early anticancer drug development. Nature Reviews Cancer, 10, 514–523.

Source: PubMed

3
Subscribe