Glycosphingolipid Levels in Urine Extracellular Vesicles Enhance Prediction of Therapeutic Response in Lupus Nephritis

Brian Troyer, Jessalyn Rodgers, Bethany J Wolf, James C Oates, Richard R Drake, Tamara K Nowling, Brian Troyer, Jessalyn Rodgers, Bethany J Wolf, James C Oates, Richard R Drake, Tamara K Nowling

Abstract

The development of nephritis increases the risk of morbidity and mortality in systemic lupus erythematosus (SLE) patients. While standard induction therapies, such as mycophenolate mofetil (MMF) induce clinical remission (i.e., complete response) in approximately 50% of SLE patients with nephritis, many patients fail to respond. Therapeutic response is often not assessed until 6-12 months after beginning treatment. Those patients that fail to respond to treatment continue to accumulate organ damage, thus, there is a critical need to predict which patients will fail therapy before beginning treatment, allowing physicians to optimize therapy. Our previous studies demonstrated elevated urine, but not serum, glycosphingolipids (GSLs) in SLE patients with nephritis compared to SLE patients without nephritis, suggesting the urine GSLs were derived from the kidney. In this study, we measured the GSLs hexosylceramide and lactosylceramide in extracellular vesicles isolated from longitudinal urine samples of LN patients that were treated with MMF for 12 months. GSL levels were significantly elevated in the baseline samples (prior to treatment) of non-responders compared to complete responders. While a few other proteins measured in the whole urine were higher in non-responders at baseline, only GSLs demonstrated a significant ability to discriminate treatment response in lupus nephritis patients.

Keywords: biomarker; extracellular vesicle; glycosphingolipid; lupus nephritis.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in study design; in collection, analyses, or interpretation of data; in writing the manuscript; or in the decision to publish the results.

Figures

Figure 1
Figure 1
Total HexCers and LacCers are significantly higher in baseline urine EVs of patients that did not respond to therapy. EVs were isolated from urine samples of LN patients that met the clinical criteria of a non-responder (NR) or a complete responder (CR) after 12 months of treatment with MMF. Total of all chain lengths of HexCers (A) and LacCers (B) were quantified in EVs from urine collected prior to treatment (baseline) and at 3 months (3 Mos) and 12 months (12 Mos) post-treatment. HexCers and LacCers were normalized to urine creatinine (UCr) levels measured in the urine samples from which the EVs were isolated. p-values were calculated as described in the Methods and adjusted for multiple comparisons using Bonferonni correction. Adjusted p-values are provided on the graph.
Figure 2
Figure 2
Gelsolin is significantly higher in baseline urine of patients that did not respond to therapy. Gelsolin was quantified in urine EVs (A) and whole urine (B) for all available LN patients (see Figure S1). (C) Galectin-3 binding protein was measured in whole urine of the same patients. All measures were normalized to UCr. p-values were calculated as described in the Methods and Bonferonni adjusted p-values are provided.

References

    1. Wallace D.J. Dubois’ Lupus Erythematosus and Related Syndromes. 9th ed. Elsevier; St. Louis, MO, USA: 2018.
    1. Rovin B.H., Teng Y.K.O., Ginzler E.M., Arriens C., Caster D.J., Romero-Diaz J., Gibson K., Kaplan J., Lisk L., Navarra S., et al. Efficacy and safety of voclosporin versus placebo for lupus nephritis (AURORA 1): A double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2021;397:2070–2080. doi: 10.1016/S0140-6736(21)00578-X.
    1. Furie R., Rovin B.H., Houssiau F., Malvar A., Teng Y.O., Contreras G., Amoura Z., Yu X., Mok C.-C., Santiago M.B., et al. Two-Year, Randomized, Controlled Trial of Belimumab in Lupus Nephritis. N. Engl. J. Med. 2020;383:1117–1128. doi: 10.1056/NEJMoa2001180.
    1. Parikh S.V., Almaani S., Brodsky S., Rovin B.H. Update on Lupus Nephritis: Core Curriculum 2020. Am. J. Kidney Dis. 2020;76:265–281. doi: 10.1053/j.ajkd.2019.10.017.
    1. Arazi A., Rao D.A., Berthier C.C., Davidson A., Liu Y., Hoover P.J., Chicoine A., Eisenhaure T.M., Jonsson A.H., Li S., et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 2019;20:902–914. doi: 10.1038/s41590-019-0398-x.
    1. Parikh S.V., Malvar A., Song H., Alberton V., Lococo B., Vance J., Zhang J., Yu L., Birmingham D., Rovin B.H. Molecular imaging of the kidney in lupus nephritis to characterize response to treatment. Transl. Res. 2016;182:1–13. doi: 10.1016/j.trsl.2016.10.010.
    1. Nicolaou O., Kousios A., Hadjisavvas A., Lauwerys B., Sokratous K., Kyriacou K. Biomarkers of systemic lupus erythematosus identified using mass spectrometry-based proteomics: A systematic review. J. Cell. Mol. Med. 2016;21:993–1012. doi: 10.1111/jcmm.13031.
    1. Aragón C.C., Tafúr R.-A., Suárez-Avellaneda A., Martínez T., Salas A.D.L., Tobón G.J. Urinary biomarkers in lupus nephritis. J. Transl. Autoimmun. 2020;3:100042. doi: 10.1016/j.jtauto.2020.100042.
    1. Radin M., Miraglia P., Barinotti A., Fenoglio R., Roccatello D., Sciascia S. Prognostic and Diagnostic Values of Novel Serum and Urine Biomarkers in Lupus Nephritis: A Systematic Review. Am. J. Nephrol. 2021;52:559–571. doi: 10.1159/000517852.
    1. Vanarsa K., Soomro S., Zhang T., Strachan B., Pedroza C., Nidhi M., Cicalese P., Gidley C., Dasari S., Mohan S., et al. Quantitative planar array screen of 1000 proteins uncovers novel urinary protein biomarkers of lupus nephritis. Ann. Rheum. Dis. 2020;79:1349–1361. doi: 10.1136/annrheumdis-2019-216312.
    1. Vitorino R., Ferreira R., Guedes S., Amado F., Thongboonkerd V. What can urinary exosomes tell us? Cell. Mol. Life Sci. 2021;78:3265–3283. doi: 10.1007/s00018-020-03739-w.
    1. Nowling T.K., Mather A.R., Thiyagarajan T., Hernández-Corbacho M.J., Powers T.W., Jones E.E., Snider A.J., Oates J.C., Drake R.R., Siskind L.J. Renal Glycosphingolipid Metabolism Is Dysfunctional in Lupus Nephritis. J. Am. Soc. Nephrol. 2014;26:1402–1413. doi: 10.1681/ASN.2014050508.
    1. Sundararaj K., Rodgers J.I., Marimuthu S., Siskind L.J., Bruner E., Nowling T.K. Neuraminidase activity mediates IL-6 production by activated lupus-prone mesangial cells. Am. J. Physiol. Ren. Physiol. 2018;314:F630–F642. doi: 10.1152/ajprenal.00421.2017.
    1. Lingwood C.A. Glycosphingolipid Functions. Cold Spring Harb. Perspect. Biol. 2011;3:a004788. doi: 10.1101/cshperspect.a004788.
    1. Mather A.R., Siskind L.J. Glycosphingolipids and kidney disease. Adv. Exp. Med. Biol. 2011;721:121–138. doi: 10.1007/978-1-4614-0650-1_8.
    1. Dupre T.V., Siskind L.J. The role of sphingolipids in acute kidney injury. Adv. Biol. Regul. 2018;70:31–39. doi: 10.1016/j.jbior.2018.11.003.
    1. Nielsen C.T., Østergaard O., Rekvig O.P., Sturfelt G., Jacobsen S., Heegaard N.H.H. Galectin-3 binding protein links circulating microparticles with electron dense glomerular deposits in lupus nephritis. Lupus. 2015;24:1150–1160. doi: 10.1177/0961203315580146.
    1. Rodgers J., Sundararaj K., Bruner E., Wolf B., Nowling T.K. The role of neuraminidase 1 (NEU1) in cytokine release by primary mouse mesangial cells and disease outcomes in murine lupus nephritis. Autoimmunity. 2021;54:163–175. doi: 10.1080/08916934.2021.1897978.
    1. Zhao Y., Wei W., Liu M.-L. Extracellular vesicles and lupus nephritis—New insights into pathophysiology and clinical implications. J. Autoimmun. 2020;115 doi: 10.1016/j.jaut.2020.102540.
    1. Luís M.S.F., Bultink I.E.M., Silva J.A.P.D., E Voskuyl A., Inês L.S. Early predictors of renal outcome in patients with proliferative lupus nephritis: A 36-month cohort study. Rheumatology. 2021;60:5134–5141. doi: 10.1093/rheumatology/keab126.
    1. Helget L.N., Dillon D.J., Wolf B., Parks L.P., Self S.E., Bruner E.T., Oates E.E., Oates J.C. Development of a lupus nephritis suboptimal response prediction tool using renal histopathological and clinical laboratory variables at the time of diagnosis. Lupus Sci. Med. 2021;8:e000489. doi: 10.1136/lupus-2021-000489.
    1. Hu Y., Li H., Li W.H., Meng H.X., Fan Y.Z., Li W.J., Ji Y.T., Zhao H., Zhang L., Jin X.M., et al. The value of decreased plasma gelsolin levels in patients with systemic lupus erythematosus and rheumatoid arthritis in diagnosis and disease activity evaluation. Lupus. 2013;22:1455–1461. doi: 10.1177/0961203313507985.
    1. Parra S., Heras M., Herrero P., Amigó N., Garcés E., Girona J., Correig X., Canela N., Castro A. Gelsolin: A new biomarker of disease activity in SLE patients associated with HDL-c. Rheumatology. 2020;59:650–661. doi: 10.1093/rheumatology/kez293.
    1. Rovin B.H., Van Vollenhoven R.F., Aranow C., Wagner C., Gordon R., Zhuang Y., Belkowski S., Hsu B. A Multicenter, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Treatment with Sirukumab (CNTO 136) in Patients with Active Lupus Nephritis. Arthritis Rheumatol. 2016;68:2174–2183. doi: 10.1002/art.39722.
    1. Han C., Zhang L., Zhu X., Tang J., Jin X. Plasma gelsolin levels are decreased and correlate with fibrosis in IgA nephropathy. Exp. Biol. Med. 2013;238:1318–1327. doi: 10.1177/1535370213503256.
    1. Idborg H., Eketjäll S., Pettersson S., Gustafsson J.T., Zickert A., Kvarnström M., Oke V., Jakobsson P.-J., Gunnarsson I., Svenungsson E. TNF-α and plasma albumin as biomarkers of disease activity in systemic lupus erythematosus. Lupus Sci. Med. 2018;5:e000260. doi: 10.1136/lupus-2018-000260.
    1. Fava A., Buyon J., Mohan C., Zhang T., Belmont H., Izmirly P., Clancy R., Trujillo J.M., Fine D., Zhang Y., et al. Integrated urine proteomics and renal single-cell genomics identify an IFN-γ response gradient in lupus nephritis. JCI Insight. 2020;5 doi: 10.1172/jci.insight.138345.
    1. Rovin B.H., Furie R., Latinis K., Looney R.J., Fervenza F.C., Sanchez-Guerrero J., Maciuca R., Zhang D., Garg J.P., Brunetta P., et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: The lupus nephritis assessment with rituximab study. Arthritis Care Res. 2012;64:1215–1226. doi: 10.1002/art.34359.
    1. Furie R., Nicholls K., Cheng T., Houssiau F., Burgos-Vargas R., Chen S., Hillson J.L., Meadows-Shropshire S., Kinaszczuk M., Merrill J.T. Efficacy and Safety of Abatacept in Lupus Nephritis: A Twelve-Month, Randomized, Double-Blind Study. Arthritis Rheumatol. 2013;66:379–389. doi: 10.1002/art.38260.
    1. Harrell F.E., Jr., Lee K.L., Califf R.M., Pryor D.B., Rosati R.A. Regression modelling strategies for improved prognostic prediction. Stat. Med. 1984;3:143–152. doi: 10.1002/sim.4780030207.
    1. LeDell E., Petersen M., van der Laan M. Computationally efficient confidence intervals for cross-validated area under the ROC curve estimates. Electron. J. Stat. 2015;9:1583–1607. doi: 10.1214/15-EJS1035.

Source: PubMed

3
Subscribe