Use of an antiviral mouthwash as a barrier measure in the SARS-CoV-2 transmission in adults with asymptomatic to mild COVID-19: a multicentre, randomized, double-blind controlled trial

Florence Carrouel, Martine Valette, Emilie Gadea, Aurélie Esparcieux, Gabriela Illes, Marie Elodie Langlois, Hervé Perrier, Claude Dussart, Paul Tramini, Mélina Ribaud, Maude Bouscambert-Duchamp, Denis Bourgeois, Florence Carrouel, Martine Valette, Emilie Gadea, Aurélie Esparcieux, Gabriela Illes, Marie Elodie Langlois, Hervé Perrier, Claude Dussart, Paul Tramini, Mélina Ribaud, Maude Bouscambert-Duchamp, Denis Bourgeois

Abstract

Objectives: To determine if commercially available mouthwash with β-cyclodextrin and citrox (bioflavonoids) (CDCM) could decrease the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) salivary viral load.

Methods: In this randomized controlled trial, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PCR-positive patients aged 18-85 years with asymptomatic to mild coronavirus disease 2019 (COVID-19) symptoms for <8 days were recruited. A total of 176 eligible patients were randomly assigned (1:1) to CDCM or placebo. Three rinses daily were performed for 7 days. Saliva sampling was performed on day 1 at 09.00 (T1), 13.00 (T2) and 18.00 (T3). On the following 6 days, one sample was taken at 15.00. Quantitative RT-PCR was used to detect SARS-CoV-2.

Results: The intention-to-treat analysis demonstrated that, over the course of 1 day, CDCM was significantly more effective than placebo 4 hours after the first dose (p 0.036), with a median percentage (log10 copies/mL) decrease T1-T2 of -12.58% (IQR -29.55% to -0.16%). The second dose maintained the low median value for the CDCM (3.08 log10 copies/mL; IQR 0-4.19), compared with placebo (3.31 log10 copies/mL; IQR 1.18-4.75). At day 7, there was still a greater median percentage (log10 copies/mL) decrease in salivary viral load over time in the CDCM group (-58.62%; IQR -100% to -34.36%) compared with the placebo group (-50.62%; IQR -100% to -27.66%). These results were confirmed by the per-protocol analysis.

Conclusions: This trial supports the relevance of using CDCM on day 1 (4 hours after the initial dose) to reduce the SARS-CoV-2 viral load in saliva. For long-term effect (7 days), CDMC appears to provide a modest benefit compared with placebo in reducing viral load in saliva.

Keywords: Citrox; Coronavirus disease 2019; Mouthwash; Saliva; Severe acute respiratory syndrome coronavirus 2; Viral load; β-cyclodextrin.

Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.

Figures

Fig. 1
Fig. 1
BBCovid trial profile.
Fig. 2
Fig. 2
Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) salivary load within the mouthwash cohorts at day 1 (intention-to-treat analysis). (a) Evolution for all patients. (b) SARS-CoV-2 viral load difference between T1 and T2 for all patients. (c) Evolution for patients with a SARS-CoV-2 viral load >2.94 log10 copies/mL at day 1 T1. (d) SARS-CoV-2 viral load difference between T1 and T2 for patients with a SARS-CoV-2 viral load >2.94 log10 copies/mL at day 1 T1. (e) Evolution for patients with a SARS-CoV-2 viral load >4.01 log10 copies/mL at day 1 T1. (f) SARS-CoV-2 viral load difference between T1 and T2 for patients with a SARS-CoV-2 viral load >4.01 log10 copies/mL at day 1 T1. (g) Evolution for patients with a SARS-CoV-2 viral load >5.03 log10 copies/mL at day 1 T1. (h) SARS-CoV-2 viral load difference between T1 and T2 for patients with a SARS-CoV-2 viral load >5.03 log10 copies/mL at day 1 T1.
Fig. 3
Fig. 3
Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) salivary load within the mouthwash cohorts from day 1 to day 7 (intention-to-treat analysis). (a) Evolution for all patients. (b) Evolution for patients with a SARS-CoV-2 viral load >2.94 log10 copies/mL at day 1 T1. (c) Evolution for patients with a SARS-CoV-2 viral load >4.01 log10 copies/mL at day 1 T1. (d) Evolution for patients with a SARS-CoV-2 viral load >5.03 log10 copies/mL at day 1 T1.

References

    1. Xu R., Cui B., Duan X., Zhang P., Zhou X., Yuan Q. Saliva: potential diagnostic value and transmission of 2019-nCoV. Int J Oral Sci. 2020;12:1–6.
    1. Baghizadeh Fini M. Oral saliva and COVID-19. Oral Oncol. 2020;108:104821.
    1. To K.K.W., Yip C.C.Y., Lai C.Y.W., Wong C.K.H., Ho D.T.Y., Pang P.K.P. Saliva as a diagnostic specimen for testing respiratory virus by a point-of-care molecular assay: a diagnostic validity study. Clin Microbiol Infect. 2019;25:372–378.
    1. To K.K.-W., Tsang O.T.-Y., Chik-Yan Yip C., Chan K.-H., Wu T.-C., Chan J.M.C. Consistent detection of 2019 novel coronavirus in saliva. Clin Infect Dis. 2020 doi: 10.1093/cid/ciaa149.
    1. Yoon J.G., Yoon J., Song J.Y., Yoon S.Y., Lim C.S., Seong H. Clinical significance of a high SARS-CoV-2 viral load in the saliva. J Korean Med Sci. 2020;35
    1. National Academies of Sciences E. National Academies Press (US); 2020. Rapid expert consultation on the possibility of bioaerosol spread of SARS-CoV-2 for the COVID-19 pandemic (April 1, 2020)
    1. Jayaweera M., Perera H., Gunawardana B., Manatunge J. Transmission of COVID-19 virus by droplets and aerosols: a critical review on the unresolved dichotomy. Environ Res. 2020;188:109819.
    1. Kampf G., Todt D., Pfaender S., Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020;104:246–251.
    1. Carrouel F., Conte M.P., Fisher J., Gonçalves L.S., Dussart C., Llodra J.C. COVID-19: a recommendation to examine the effect of mouthrinses with β-cyclodextrin combined with citrox in preventing infection and progression. J Clin Med. 2020;9 doi: 10.3390/jcm9041126.
    1. Carrouel F., Gonçalves L.S., Conte M.P., Campus G., Fisher J., Fraticelli L. Antiviral activity of reagents in mouth rinses against SARS-CoV-2. J Dent Res. 2021;100:124–132.
    1. O’Donnell V.B., Thomas D., Stanton R., Maillard J.-Y., Murphy R.C., Jones S.A. Potential role of oral rinses targeting the viral lipid envelope in SARS-CoV-2 infection. Function. 2020 doi: 10.1093/function/zqaa002.
    1. Meyers C., Robison R., Milici J., Alam S., Quillen D., Goldenberg D. Lowering the transmission and spread of human coronavirus. J Med Virol. 2021;93:1605–1612.
    1. Herrera D., Serrano J., Roldán S., Sanz M. Is the oral cavity relevant in SARS-CoV-2 pandemic? Clin Oral Investig. 2020 doi: 10.1007/s00784-020-03413-2.
    1. Lalani S., Poh C.L. Flavonoids as antiviral agents for enterovirus A71 (EV-A71) Viruses. 2020;12 doi: 10.3390/v12020184.
    1. Zou M., Liu H., Li J., Yao X., Chen Y., Ke C. Structure-activity relationship of flavonoid bifunctional inhibitors against Zika virus infection. Biochem Pharmacol. 2020;177:113962.
    1. Braga S.S. Cyclodextrins: emerging medicines of the new millennium. Biomolecules. 2019;9 doi: 10.3390/biom9120801.
    1. Li B.Q., Fu T., Dongyan Y., Mikovits J.A., Ruscetti F.W., Wang J.M. Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. Biochem Biophys Res Commun. 2000;276:534–538.
    1. Jones S.T., Cagno V., Janeček M., Ortiz D., Gasilova N., Piret J. Modified cyclodextrins as broad-spectrum antivirals. Sci Adv. 2020;6
    1. Goncharova E.P., Kostyro Y.A., Ivanov A.V., Zenkova M.A. A Novel sulfonated derivative of β-cyclodextrin effectively inhibits influenza A virus infection in vitro and in vivo. Acta Naturae. 2019;11:20–30.
    1. Braga S.S., Barbosa J.S., Santos N.E., El-Saleh F., Paz F.A.A. Cyclodextrins in antiviral therapeutics and vaccines. Pharmaceutics. 2021;13 doi: 10.3390/pharmaceutics13030409.
    1. Carrouel F., Viennot S., Valette M., Cohen J.-M., Dussart C., Bourgeois D. Salivary and nasal detection of the SARS-CoV-2 virus after antiviral mouthrinses (BBCovid): a structured summary of a study protocol for a randomised controlled trial. Trials. 2020;21:906.
    1. Gülsen A. Simple classification of COVID-19 patients. J Lung Pulm Respir Res. 2020;7:62–63.
    1. Pottel J., Armstrong D., Zou L., Fekete A., Huang X.-P., Torosyan H. The activities of drug inactive ingredients on biological targets. Science. 2020;369:403–413.
    1. Johansson M.A., Quandelacy T.M., Kada S., Prasad P.V., Steele M., Brooks J.T. SARS-CoV-2 transmission from people without COVID-19 symptoms. JAMA Netw Open. 2021;4
    1. Pullano G., Di Domenico L., Sabbatini C.E., Valdano E., Turbelin C., Debin M. Underdetection of cases of COVID-19 in France threatens epidemic control. Nature. 2020 doi: 10.1038/s41586-020-03095-6.
    1. He X., Lau E.H.Y., Wu P., Deng X., Wang J., Hao X. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26:672–675.

Source: PubMed

3
Subscribe