Effect of preoperative CT angiography examination on the clinical outcome of patients with BMI ≥ 25.0 kg/m2 undergoing laparoscopic gastrectomy: study protocol for a multicentre randomized controlled trial

Cheng Meng, Shougen Cao, Xiaodong Liu, Leping Li, Qingsi He, Lijian Xia, Lixin Jiang, Xianqun Chu, Xinjian Wang, Hao Wang, Xizeng Hui, Zuocheng Sun, Shusheng Huang, Quanhong Duan, Daogui Yang, Huanhu Zhang, Yulong Tian, Zequn Li, Yanbing Zhou, Cheng Meng, Shougen Cao, Xiaodong Liu, Leping Li, Qingsi He, Lijian Xia, Lixin Jiang, Xianqun Chu, Xinjian Wang, Hao Wang, Xizeng Hui, Zuocheng Sun, Shusheng Huang, Quanhong Duan, Daogui Yang, Huanhu Zhang, Yulong Tian, Zequn Li, Yanbing Zhou

Abstract

Background: Gastric cancer, which is the fifth most common malignancy and the third most common cause of cancer-related death, is particularly predominant in East Asian countries, such as China, Japan and Korea. It is a serious global health issue that causes a heavy financial burden for the government and family. To our knowledge, there are few reports of multicentre randomized controlled trials on the utilization of CT angiography (CTA) for patients who are histologically diagnosed with gastric cancer before surgery. Therefore, we planned this RCT to verify whether the utilization of CTA can change the short- and long-term clinical outcomes.

Method: The GISSG 20-01 study is a multicentre, prospective, open-label clinical study that emphasises the application of CTA for patients who will undergo laparoscopic gastrectomy to prove its clinical findings. A total of 382 patients who meet the inclusion criteria will be recruited for the study and randomly divided into two groups in a 1:1 ratio: the CTA group (n = 191) and the non-CTA group (n = 191). Both groups will undergo upper abdomen enhanced CT, and the CTA group will also receive CT angiography. The primary endpoint of this trial is the volume of blood loss. The second primary endpoints are the number of retrieved lymph nodes, postoperative recovery course, hospitalization costs, length of hospitalization days, postoperative complications, 3-year OS and 3-year DFS.

Discussion: It is anticipated that the results of this trial will provide high-level evidence and have clinical value for the application of CTA in laparoscopic gastrectomy.

Trial registration: ClinicalTrials.gov , NCT04636099. Registered November 19, 2020.

Keywords: CTA; Clinical outcomes; Gastric cancer; Laparoscopic gastrectomy; Randomized controlled trial; Study protocol.

Conflict of interest statement

The authors declare that there are no conflicts of interest among each other.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Study flowchart. CTA, CT angiography
Fig. 2
Fig. 2
The items of enrolment, interventions and assessments in the flowchart. The symbol of × represent that the program needs to be collected. −1, 2 weeks before operation; 0, perioperation; 1, postoperative adjuvant chemotherapy time; follow-up 2~10 refers to time points that listed in the following: 2, 1 months after surgery; 3, 3 months after surgery; 4, 6 months after surgery; 5, 9 months after surgery; 6, 12 months after surgery; 7, 18 months after surgery; 8, 24 months after surgery; 9, 30 months after surgery; 10, 36 months after surgery

References

    1. Kitano S, Iso Y, Moriyama M, Sugimachi K. Laparoscopy-assisted Billroth I gastrectomy. Surg Laparosc Endosc. 1994;4(2):146–148.
    1. Kim W, Kim HH, Han SU, Kim MC, Hyung WJ, Ryu SW, Cho GS, Kim CY, Yang HK, Park DJ, Song KY, Lee SI, Ryu SY, Lee JH, Lee HJ, Korean Laparo-endoscopic Gastrointestinal Surgery Study (KLASS) Group Decreased morbidity of laparoscopic distal gastrectomy compared with open distal gastrectomy for stage i gastric cancer: short-term outcomes from a multicenter randomized controlled trial (KLASS-01) Ann Surg. 2016;263(1):28–35. doi: 10.1097/SLA.0000000000001346.
    1. Katai H, Mizusawa J, Katayama H, Takagi M, Yoshikawa T, Fukagawa T, Terashima M, Misawa K, Teshima S, Koeda K, Nunobe S, Fukushima N, Yasuda T, Asao Y, Fujiwara Y, Sasako M. Short-term surgical outcomes from a phase III study of laparoscopy-assisted versus open distal gastrectomy with nodal dissection for clinical stage IA/IB gastric cancer: Japan Clinical Oncology Group Study JCOG0912. Gastric Cancer. 2017;20(4):699–708. doi: 10.1007/s10120-016-0646-9.
    1. Yu J, Huang C, Sun Y, Su X, Cao H, Hu J, Wang K, Suo J, Tao K, He X, Wei H, Ying M, Hu W, du X, Hu Y, Liu H, Zheng C, Li P, Xie J, Liu F, Li Z, Zhao G, Yang K, Liu C, Li H, Chen P, Ji J, Li G, for the Chinese Laparoscopic Gastrointestinal Surgery Study (CLASS) Group Effect of laparoscopic vs open distal gastrectomy on 3-year disease-free survival in patients with locally advanced gastric cancer: the CLASS-01 randomized clinical trial. JAMA. 2019;321(20):1983–1992. doi: 10.1001/jama.2019.5359.
    1. Kim HH, Han SU, Kim MC, Kim W, Lee HJ, Ryu SW, Cho GS, Kim CY, Yang HK, Park DJ, Song KY, Lee SI, Ryu SY, Lee JH, Hyung WJ, for the Korean Laparoendoscopic Gastrointestinal Surgery Study (KLASS) Group Effect of laparoscopic distal gastrectomy vs open distal gastrectomy on long-term survival among patients with stage i gastric cancer: the KLASS-01 randomized clinical trial. JAMA Oncol. 2019;5(4):506–513. doi: 10.1001/jamaoncol.2018.6727.
    1. Lee HJ, Hyung WJ, Yang HK, Han SU, Park YK, An JY, Kim W, Kim HI, Kim HH, Ryu SW, Hur H, Kong SH, Cho GS, Kim JJ, Park DJ, Ryu KW, Kim YW, Kim JW, Lee JH, Kim MC, Korean Laparo-endoscopic Gastrointestinal Surgery Study (KLASS) Group Short-term outcomes of a multicenter randomized controlled trial comparing laparoscopic distal gastrectomy with D2 lymphadenectomy to open distal gastrectomy for locally advanced gastric cancer (KLASS-02-RCT) Ann Surg. 2019;270(6):983–991. doi: 10.1097/SLA.0000000000003217.
    1. Liu F, Huang C, Xu Z, Su X, Zhao G, Ye J, Du X, Huang H, Hu J, Li G, et al. Morbidity and mortality of laparoscopic vs open total gastrectomy for clinical stage I gastric cancer: the CLASS02 multicenter randomized clinical trial. JAMA Oncol. 2020;6(10):1590–1597. doi: 10.1001/jamaoncol.2020.3152.
    1. Han SU, Hur H, Lee HJ, Cho GS, Kim MC, Park YK, Kim W, Hyung WJ. Korean Laparoendoscopic Gastrointestinal Surgery Study G: Surgeon quality control and standardization of D2 lymphadenectomy for gastric cancer: a prospective multicenter observational study (KLASS-02-QC) Ann Surg. 2021;273(2):315–324. doi: 10.1097/SLA.0000000000003883.
    1. jp JGCAjkk-ma Japanese gastric cancer treatment guidelines 2018. Gastric Cancer. 2021;24(1):1–21. doi: 10.1007/s10120-020-01042-y.
    1. Waki Y, Kamiya S, Li Y, Hikage M, Tanizawa Y, Bando E, Terashima M. Preserving a replaced left hepatic artery arising from the left gastric artery during laparoscopic distal gastrectomy for gastric cancer. World J Surg. 2021;45(2):543–553. doi: 10.1007/s00268-020-05832-4.
    1. Covey AM, Brody LA, Maluccio MA, Getrajdman GI, Brown KT. Variant hepatic arterial anatomy revisited: digital subtraction angiography performed in 600 patients. Radiology. 2002;224(2):542–547. doi: 10.1148/radiol.2242011283.
    1. Iino I, Sakaguchi T, Kikuchi H, Miyazaki S, Fujita T, Hiramatsu Y, Ohta M, Kamiya K, Ushio T, Takehara Y, Konno H. Usefulness of three-dimensional angiographic analysis of perigastric vessels before laparoscopic gastrectomy. Gastric Cancer. 2013;16(3):355–361. doi: 10.1007/s10120-012-0194-x.
    1. Miyaki A, Imamura K, Kobayashi R, Takami M, Matsumoto J, Takada Y. Preoperative assessment of perigastric vascular anatomy by multidetector computed tomography angiogram for laparoscopy-assisted gastrectomy. Langenbecks Arch Surg. 2012;397(6):945–950. doi: 10.1007/s00423-012-0956-2.
    1. Mu GC, Huang Y, Liu ZM, Chen ZB, Wu XH, Qin XG, Zeng YJ. Relationship between celiac artery variation and number of lymph nodes dissection in gastric cancer surgery. World J Gastrointest Oncol. 2019;11(6):499–508. doi: 10.4251/wjgo.v11.i6.499.
    1. Shen S, Cao S, Jiang H, Liu S, Liu X, Li Z, Liu D, Zhou Y. The short-term outcomes of gastric cancer patients based on a proposal for a novel classification of perigastric arteries. Journal of Gastrointestinal Surgery. 2020;24(11):2471–2481. doi: 10.1007/s11605-019-04427-2.
    1. Dindo D, Demartines N, Clavien P-A. Classification of surgical complications. Annals of Surgery. 2004;240(2):205–213. doi: 10.1097/.
    1. Japanese Gastric Cancer A Japanese classification of gastric carcinoma: 3rd English edition. Gastric Cancer. 2011;14(2):101–112. doi: 10.1007/s10120-011-0041-5.
    1. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): gastric cancer. Version 3.2021. August 29, 2021[J]. 2021.
    1. Muneoka Y, Ohashi M, Kurihara N, Fujisaki J, Makuuchi R, Ida S, Kumagai K, Sano T, Nunobe S. Short- and long-term oncological outcomes of totally laparoscopic gastrectomy versus laparoscopy-assisted gastrectomy for clinical stage I gastric cancer. Gastric Cancer. 2021;24(5):1140–1149. doi: 10.1007/s10120-021-01181-w.
    1. Li ZY, Zhao YL, Qian F, Tang B, Chen J, He T, Luo ZY, Li PA, Shi Y, Yu PW. Long-term oncologic outcomes of robotic versus laparoscopic gastrectomy for locally advanced gastric cancer: a propensity score-matched analysis of 1170 patients. Surg Endosc. 2021;35(12):6903–6912. doi: 10.1007/s00464-020-08198-9.
    1. Lu J, Wu D, Wang H, Zheng C, Li P, Xie J, Wang J, Lin J, Chen Q, Cao L. 114O Assessment of robotic versus laparoscopic distal gastrectomy for gastric cancer: A randomized controlled trial. Ann Oncol. 2020;31:S1287. doi: 10.1016/j.annonc.2020.10.135.
    1. Matsuki M, Tanikake M, Kani H, Tatsugami F, Kanazawa S, Kanamoto T, Inada Y, Yoshikawa S, Narabayashi I, Lee SW, Nomura E, Okuda J, Tanigawa N. Dual-phase 3D CT angiography during a single breath-hold using 16-MDCT: assessment of vascular anatomy before laparoscopic gastrectomy. Am J Roentgenol. 2006;186(4):1079–1085. doi: 10.2214/AJR.04.0733.
    1. Anwar AS, Srikala J, Papalkar AS, Parveez MQ, Sharma A. Study of anatomical variations of hepatic vasculature using multidetector computed tomography angiography. Surg Radiol Anat. 2020;42(12):1449–1457. doi: 10.1007/s00276-020-02532-5.
    1. Natsume T, Shuto K, Yanagawa N, Akai T, Kawahira H, Hayashi H, Matsubara H. The classification of anatomic variations in the perigastric vessels by dual-phase CT to reduce intraoperative bleeding during laparoscopic gastrectomy. Surg Endosc. 2011;25(5):1420–1424. doi: 10.1007/s00464-010-1407-1.
    1. Matsuki M, Kani H, Tatsugami F, Yoshikawa S, Narabayashi I, Lee S-W, Shinohara H, Nomura E, Tanigawa N. Preoperative assessment of vascular anatomy around the stomach by 3D imaging using MDCT before laparoscopy-assisted gastrectomy. Am J Roentgenol. 2004;183(1):145–151. doi: 10.2214/ajr.183.1.1830145.
    1. Winston CB, Lee NA, Jarnagin WR, Teitcher J, DeMatteo RP, Fong Y, Blumgart LH. CT angiography for delineation of celiac and superior mesenteric artery variants in patients undergoing hepatobiliary and pancreatic surgery. Am J Roentgenol. 2007;189(1):W13–W19. doi: 10.2214/AJR.04.1374.
    1. Saylisoy S, Atasoy Ç, Ersöz S, Karayalçin K, Akyar S. Multislice CT angiography in the evaluation of hepatic vascular anatomy in potential right lobe donors. Diagn Interv Radiol. 2005;11(1):51–59.

Source: PubMed

3
Subscribe