Low-Intensity Continuous Ultrasound for the Symptomatic Treatment of Upper Shoulder and Neck Pain: A Randomized, Double-Blind Placebo-Controlled Clinical Trial

Stephanie Petterson, Kevin Plancher, Dominic Klyve, David Draper, Ralph Ortiz, Stephanie Petterson, Kevin Plancher, Dominic Klyve, David Draper, Ralph Ortiz

Abstract

Purpose: Low-intensity continuous ultrasound (LICUS) is an emerging high-dosimetry ultrasound-based therapy for accelerated tissue healing and the treatment of myofascial pain. In this study, LICUS treatment is clinically evaluated for chronic upper neck and shoulder pain in a randomized, multi-site, double-blind, placebo-controlled study.

Patients and methods: CONSORT guidelines were followed in conducting and reporting the clinical trial. Thirty-three participants with upper trapezius myofascial pain were randomized for treatment with active (n=25) or placebo (n=8) devices. Investigators and subjects were blinded to treatment groups. Participants self-reported pain daily, rating from 0-10 on the numeric rating scale. If pain rating was more significant than or equal to 3, the LICUS (3MHz, 0.132W/cm2, 1.3W, 4 hours) was self-applied for total energy dosimetry of 18,720 Joules per treatment. During the 4-week study, daily pain rating was recorded. If LICUS treatment was delivered, pain before, during, and after treatment were recorded as well as the global rate of change (GROC). Independent t-tests were used to assess change from baseline and differences between treatment groups. ClinicalTrials.gov: NCT02135094.

Results: There was a 100% completion rate for participants enrolled in the study and no significant differences between the groups regarding demographic variables or baseline outcome measures. Participants treated with active therapy observed a significant mean pain reduction from baseline of 2.61 points for active (p<0.001), compared to 1.58 points decrease from baseline for placebo (p=0.087), resulting in a 1.03 points significant decrease in the active group over placebo (p=0.003). The total GROC was significantly higher in the active group at 2.84 points compared to the placebo group at 0.46 points (p<0.001).

Conclusion: Low-intensity continuous ultrasound treatment significantly reduced pain in patients with upper trapezius myofascial pain of the neck and shoulder. LICUS treatment showed a clinically meaningful improvement in the GROC scores for patients. The results from this clinical trial indicate that the LICUS treatment of 18,720 Joules can effectively be used to treat clinical pain related to upper trapezius myofascial pain. Further research could investigate varying dosimetry to improve efficacy and/or reduce the dose.

Keywords: NSAIDs; chronic musculoskeletal pain; myofascial trigger points; non-invasive therapy; non-steroidal anti-inflammatory drugs; soft tissue healing; sustained acoustic medicine.

Conflict of interest statement

The authors report no conflicts of interest in this work.

© 2020 Petterson et al.

Figures

Figure 1
Figure 1
The study schematic. Patients were enrolled and evaluated for baseline pain scores on day one of the studies. Two- and four-week follow-ups were included to evaluate compliance.
Figure 2
Figure 2
Wearable long duration ultrasound device (SAM®, ZetrOZ Systems LLC, Trumbull, CT) bilateral placement. If patients were experiencing bilateral trigger points, a transducer was placed on each side over the trigger point. If the patient experienced unilateral trigger points, only one transducer was used. The transducer was placed over the most painful trigger point if the patient was experiencing multiple trigger points on one side.

References

    1. Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2163–2196. doi:10.1016/S0140-6736(12)61729-2
    1. Chiarotto A, Clijsen R, Fernandez-de-Las-Penas C, Barbero M. Prevalence of myofascial trigger points in spinal disorders: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2016;97(2):316–337. doi:10.1016/j.apmr.2015.09.021
    1. Katz JN. Lumbar disc disorders and low-back pain: socioeconomic factors and consequences. J Bone Joint Surg Am. 2006;88(Suppl 2):21–24. doi:10.2106/JBJS.E.01273
    1. Park PW, Dryer RD, Hegeman-Dingle R, et al. Cost burden of chronic pain patients in a large integrated delivery system in the United States. Pain Pract. 2016;16(8):1001–1011. doi:10.1111/papr.12357
    1. Rasu RS, Vouthy K, Crowl AN, et al. Cost of pain medication to treat adult patients with nonmalignant chronic pain in the United States. J Manag Care Spec Pharm. 2014;20(9):921–928. doi:10.18553/jmcp.2014.20.9.921
    1. Gaskin DJ, Richard P. The economic costs of pain in the United States. J Pain. 2012;13(8):715–724. doi:10.1016/j.jpain.2012.03.009
    1. Simons DG, Mense S. Diagnose und Therapie myofaszialer Triggerpunkte. Der Schmerz. 2003;17(6):419–424. doi:10.1007/s00482-003-0253-7
    1. Shah JP, Thaker N, Heimur J, Aredo JV, Sikdar S, Gerber L. Myofascial trigger points then and now: a historical and scientific perspective. PMR. 2015;7(7):746–761. doi:10.1016/j.pmrj.2015.01.024
    1. Shah JP, Danoff JV, Desai MJ, et al. Biochemicals associated with pain and inflammation are elevated in sites near to and remote from active myofascial trigger points. Arch Phys Med Rehabil. 2008;89(1):16–23. doi:10.1016/j.apmr.2007.10.018
    1. Niddam DM, Chan RC, Lee SH, Yeh TC, Hsieh JC. Central modulation of pain evoked from myofascial trigger point. Clin J Pain. 2007;23(5):440–448. doi:10.1097/AJP.0b013e318058accb
    1. Bron C, Dommerholt JD. Etiology of myofascial trigger points. Curr Pain Headache Rep. 2012;16(5):439–444. doi:10.1007/s11916-012-0289-4
    1. Gerwin RD. Diagnosis of myofascial pain syndrome. Phys Med Rehabil Clin N Am. 2014;25(2):341–355. doi:10.1016/j.pmr.2014.01.011
    1. Kannan P. Management of myofascial pain of upper trapezius: a three group comparison study. Glob J Health Sci. 2012;4(5):46–52. doi:10.5539/gjhs.v4n5p46
    1. Gatterman MI, McDowell BL. Management of muscle injury and myofascial pain syndromes. Whiplash Mosby. 2012;27.
    1. Al-Shenqiti AM, Oldham JA. The use of low reactive level laser therapy in the treatment of myofascial trigger points: an updated critical review. Lasers Med Sci. Conference: S25.
    1. Yildirim MA, Ones K, Goksenoglu G. Effectiveness of ultrasound therapy on myofascial pain syndrome of the upper trapezius: randomized, single-blind, placebo-controlled study. Arch Rheumatol. 2018;33(4):418–423. doi:10.5606/ArchRheumatol.2018.6538
    1. Ilter L, Dilek B, Batmaz I, et al. Efficacy of pulsed and continuous therapeutic ultrasound in myofascial pain syndrome: a randomized controlled study. Am J Phys Med Rehabil. 2015;94(7):547–554. doi:10.1097/PHM.0000000000000210
    1. Ay S, Dogan SK, Evcik D, Baser OC. Comparison the efficacy of phonophoresis and ultrasound therapy in myofascial pain syndrome. Rheumatol Int. 2011;31(9):1203–1208. doi:10.1007/s00296-010-1419-0
    1. Lewis GK Jr., Langer MD, Henderson CR Jr., Ortiz R. Design and evaluation of a wearable self-applied therapeutic ultrasound device for chronic myofascial pain. Ultrasound Med Biol. 2013;39(8):1429–1439. doi:10.1016/j.ultrasmedbio.2013.03.007
    1. Ebadi S, Ansari NN, Naghdi S, et al. The effect of continuous ultrasound on chronic non-specific low back pain: a single blind placebo-controlled randomized trial. BMC Musculoskelet Disord. 2012;13(1):192. doi:10.1186/1471-2474-13-192
    1. Durmus D, Durmaz Y, Canturk F. Effects of therapeutic ultrasound and electrical stimulation program on pain, trunk muscle strength, disability, walking performance, quality of life, and depression in patients with low back pain: a randomized-controlled trial. Rheumatol Int. 2010;30(7):901–910. doi:10.1007/s00296-009-1072-7
    1. Best TM, Moore B, Jarit P, Moorman CT, Lewis GK. Sustained acoustic medicine: wearable, long duration ultrasonic therapy for the treatment of tendinopathy. Phys Sportsmed. 2015;43(4):366–374. doi:10.1080/00913847.2015.1095617
    1. Lewis G, Hernandez L, Lewis GK Sr, Ortiz R. Wearable long duration ultrasound therapy pilot study in rotator cuff tendinopathy. Proc Meet Acoust. 2013;19:075103.
    1. Langer MD, Lewis GK Jr. Sustained acoustic medicine: a novel long duration approach to biomodulation utilizing low intensity therapeutic ultrasound. Proc SPIE Int Soc Opt Eng. 2015;9467.
    1. Draper DO, Klyve D, Ortiz R, Best TM. Effect of low-intensity long-duration ultrasound on the symptomatic relief of knee osteoarthritis: a randomized, placebo-controlled double-blind study. J Orthop Surg Res. 2018;13(1):257. doi:10.1186/s13018-018-0965-0
    1. Langer MD, Levine V, Taggart R, Lewis GK, Hernandez L, Ortiz R. Pilot clinical studies of long duration, low intensity therapeutic ultrasound for osteoarthritis. Proc IEEE Annu Northeast Bioeng Conf. 2014;2014:1–2.
    1. Noori SA, Rasheed A, Aiyer R, et al. Therapeutic ultrasound for pain management in chronic low back pain and chronic neck pain: a systematic review. Pain Med. 2019. doi:10.1093/pm/pny287
    1. Wu Y, Zhu S, Lv Z, et al. Effects of therapeutic ultrasound for knee osteoarthritis: a systematic review and meta-analysis. Clin Rehabil. 2019;33(12):1863–1875. doi:10.1177/0269215519866494
    1. Daniels S, Santiago G, Cuchna J, Van Lunen B. The effects of low-intensity therapeutic ultrasound on measurable outcomes: a critically appraised topic. J Sport Rehabil. 2018;27(4):390–395. doi:10.1123/jsr.2016-0099
    1. Higgins A, Glover M, Yang Y, Bayliss S, Meads C, Lord J. EXOGEN ultrasound bone healing system for long bone fractures with non-union or delayed healing: a NICE medical technology guidance. Appl Health Econ Health Policy. 2014;12(5):477–484. doi:10.1007/s40258-014-0117-6
    1. Best TM, Wilk KE, Moorman CT, Draper DO. Low intensity ultrasound for promoting soft tissue healing: a systematic review of the literature and medical technology. Intern Med Rev (Wash D C). 2016;2(11).
    1. Karnes JL, Burton HW. Continuous therapeutic ultrasound accelerates repair of contraction-induced skeletal muscle damage in rats. Arch Phys Med Rehabil. 2002;83(1):1–4. doi:10.1053/apmr.2002.26254
    1. Rigby JH, Taggart RM, Stratton KL, Lewis GK Jr., Draper DO. Intramuscular heating characteristics of multihour low-intensity therapeutic ultrasound. J Athl Train. 2015;50(11):1158–1164. doi:10.4085/1062-6050-50.11.03
    1. Draper DO, Castel JC, Castel D. Rate of temperature increase in human muscle during 1 MHz and 3 MHz continuous ultrasound. J Orthop Sports Phys Ther. 1995;22(4):142–150. doi:10.2519/jospt.1995.22.4.142
    1. Hauck M, Noronha Martins C, Borges Moraes M, et al. Comparison of the effects of 1MHz and 3MHz therapeutic ultrasound on endothelium-dependent vasodilation of humans: a randomised clinical trial. Physiotherapy. 2019;105(1):120–125. doi:10.1016/j.physio.2017.08.010
    1. Reed BV, Ashikaga T, Fleming BC, Zimny NJ. Effects of ultrasound and stretch on knee ligament extensibility. J Orthop Sports Phys Ther. 2000;30(6):341–347. doi:10.2519/jospt.2000.30.6.341
    1. Acevedo B, Millis DL, Levine D, Guevara JL. Effect of therapeutic ultrasound on calcaneal tendon heating and extensibility in dogs. Front Vet Sci. 2019;6:185. doi:10.3389/fvets.2019.00185
    1. Kramer JF. Effect of therapeutic ultrasound intensity on subcutaneous tissue temperature and ulnar nerve conduction velocity. Am J Phys Med. 1985;64(1):1–9.
    1. da Silva Junior EM, Mesquita-Ferrari RA, Franca CM, Andreo L, Bussadori SK, Fernandes KPS. Modulating effect of low intensity pulsed ultrasound on the phenotype of inflammatory cells. Biomed Pharmacother. 2017;96:1147–1153. doi:10.1016/j.biopha.2017.11.108
    1. Schulz KF, Altman DG, Moher D, Fergusson D. CONSORT 2010 changes and testing blindness in RCTs. Lancet. 2010;375(9721):1144–1146. doi:10.1016/S0140-6736(10)60413-8
    1. World Medical A. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–2194. doi:10.1001/jama.2013.281053
    1. Kim DH, Yoon KB, Park S, et al. Comparison of NSAID patch given as monotherapy and NSAID patch in combination with transcutaneous electric nerve stimulation, a heating pad, or topical capsaicin in the treatment of patients with myofascial pain syndrome of the upper trapezius: a pilot study. Pain Med. 2014;15(12):2128–2138. doi:10.1111/pme.12611
    1. Gomes C, Dibai-Filho AV, Politti F, Gonzalez TO, Biasotto-Gonzalez DA. Combined use of diadynamic currents and manual therapy on myofascial trigger points in patients with shoulder impingement syndrome: a randomized controlled trial. J Manipulative Physiol Ther. 2018;41(6):475–482. doi:10.1016/j.jmpt.2017.10.017
    1. Salaffi F, Stancati A, Silvestri CA, Ciapetti A, Grassi W. Minimal clinically important changes in chronic musculoskeletal pain intensity measured on a numerical rating scale. Eur J Pain. 2004;8(4):283–291. doi:10.1016/j.ejpain.2003.09.004
    1. Kamper SJ, Maher CG, Mackay G. Global rating of change scales: a review of strengths and weaknesses and considerations for design. J Man Manip Ther. 2009;17(3):163–170. doi:10.1179/jmt.2009.17.3.163
    1. Bade M, Cobo-Estevez M, Neeley D, Pandya J, Gunderson T, Cook C. Effects of manual therapy and exercise targeting the hips in patients with low-back pain-a randomized controlled trial. J Eval Clin Pract. 2017;23(4):734–740. doi:10.1111/jep.12705
    1. Ibrahim AA, Akindele MO, Bello B, Kaka B. Translation, cross-cultural adaptation, and psychometric properties of the hausa versions of the numerical pain rating scale and global rating of change scale in a low-literate population with chronic low back pain. Spine (Phila Pa 1976). 2020;45(8):E439–E447. doi:10.1097/BRS.0000000000003306
    1. Masaracchio M, Kirker K, Collins CK, Hanney W, Liu X. An intervention-based clinical reasoning framework to guide the management of thoracic pain in a dancer: a case report. Int J Sports Phys Ther. 2016;11(7):1135–1149.
    1. Bobos P, Ziebart C, Furtado R, Lu Z, MacDermid JC. Psychometric properties of the global rating of change scales in patients with low back pain, upper and lower extremity disorders. A systematic review with meta-analysis. J Orthop. 2020;21:40–48. doi:10.1016/j.jor.2020.01.047
    1. Harper B, Steinbeck L, Aron A. Fascial manipulation vs. standard physical therapy practice for low back pain diagnoses: a pragmatic study. J Bodyw Mov Ther. 2019;23(1):115–121. doi:10.1016/j.jbmt.2018.10.007
    1. Chazard E, Ficheur G, Beuscart JB, Preda C. How to compare the length of stay of two samples of inpatients? A simulation study to compare type I and type II errors of 12 statistical tests. Value Health. 2017;20(7):992–998. doi:10.1016/j.jval.2017.02.009
    1. Lydersen S. Statistical review: frequently given comments. Ann Rheum Dis. 2015;74(2):323–325. doi:10.1136/annrheumdis-2014-206186
    1. Livingston EH, Cassidy L. Statistical power and estimation of the number of required subjects for a study based on the t-test: a surgeon’s primer. J Surg Res. 2005;126(2):149–159. doi:10.1016/j.jss.2004.12.013
    1. Langer MD, Byrne HK, Henry T, Lewis G, Mattern C. The effect of low intensity wearable ultrasound on blood lactate and muscle performance after high intensity resistance exercise. J Exerc Physiol. 2017;20:14.
    1. Morishita K, Karasuno H, Yokoi Y, et al. Effects of therapeutic ultrasound on intramuscular blood circulation and oxygen dynamics. J Jpn Phys Ther Assoc. 2014;17(1):1–7. doi:10.1298/jjpta.Vol17_001
    1. Fabrizio PA, Schmidt JA, Clemente FR, Lankiewicz LA, Levine ZA. Acute effects of therapeutic ultrasound delivered at varying parameters on the blood flow velocity in a muscular distribution artery. J Orthop Sports Phys Ther. 1996;24(5):294–302. doi:10.2519/jospt.1996.24.5.294
    1. Warden SJ, Metcalf BR, Kiss ZS, et al. Low-intensity pulsed ultrasound for chronic patellar tendinopathy: a randomized, double-blind, placebo-controlled trial. Rheumatology (Oxford). 2008;47(4):467–471. doi:10.1093/rheumatology/kem384
    1. Ahmed HA, Ali OI, ElLaithy MH. Continuous versus pulsed ultrasound on myofascial pain syndrome: randomized single blind controlled trial. International. J Ther Rehabil Res. 2017;17(6):2.
    1. Van Der Heijden GJ, Leffers P, Wolters PJ, et al. No effect of bipolar interferential electrotherapy and pulsed ultrasound for soft tissue shoulder disorders: a randomised controlled trial. Ann Rheum Dis. 1999;58(9):530–540. doi:10.1136/ard.58.9.530
    1. Draper DO. Facts and misfits in ultrasound therapy: steps to improve your treatment outcomes. Eur J Phys Rehabil Med. 2014;50(2):209–216.
    1. Buchmann J, Neustadt B, Buchmann-Barthel K, et al. Objective measurement of tissue tension in myofascial trigger point areas before and during the administration of anesthesia with complete blocking of neuromuscular transmission. Clin J Pain. 2014;30(3):191–198. doi:10.1097/AJP.0b013e3182971866
    1. Gerber LH, Shah J, Rosenberger W, et al. Dry needling alters trigger points in the upper trapezius muscle and reduces pain in subjects with chronic myofascial pain. PMR. 2015;7(7):711–718. doi:10.1016/j.pmrj.2015.01.020
    1. Brady S, McEvoy J, Dommerholt J, Doody C. Adverse events following trigger point dry needling: a prospective survey of chartered physiotherapists. J Man Manip Ther. 2014;22(3):134–140. doi:10.1179/2042618613Y.0000000044
    1. Fernandez-Carnero J, Gilarranz-de-Frutos L, Leon-Hernandez JV, et al. Effectiveness of different deep dry needling dosages in the treatment of patients with cervical myofascial pain: a pilot RCT. Am J Phys Med Rehabil. 2017;96(10):726–733. doi:10.1097/PHM.0000000000000733

Source: PubMed

3
Subscribe