Effect of Switching From Statin Monotherapy to Ezetimibe/Simvastatin Combination Therapy Compared With Other Intensified Lipid-Lowering Strategies on Lipoprotein Subclasses in Diabetic Patients With Symptomatic Cardiovascular Disease

Ngoc-Anh Le, Joanne E Tomassini, Andrew M Tershakovec, David R Neff, Peter W F Wilson, Ngoc-Anh Le, Joanne E Tomassini, Andrew M Tershakovec, David R Neff, Peter W F Wilson

Abstract

Background: Patients with diabetes mellitus and cardiovascular disease may not achieve adequate low-density lipoprotein cholesterol (LDL-C) lowering on statin monotherapy, attributed partly to atherogenic dyslipidemia. More intensive LDL-C-lowering therapy can be considered for these patients. A previous randomized, controlled study demonstrated greater LDL-C lowering in diabetic patients with symptomatic cardiovascular disease who switched from simvastatin 20 mg (S20) or atorvastatin 10 mg (A10) to combination ezetimibe/simvastatin 10/20 mg (ES10/20) therapy, compared with statin dose-doubling (to S40 or A20) or switching to rosuvastatin 10 mg (R10). The effect of these regimens on novel biomarkers of atherogenic dyslipidemia (low- and high-density lipoprotein particle number and lipoprotein-associated phospholipase A2 [Lp-PLA2]) was assessed.

Methods and results: Treatment effects on low- and high-density lipoprotein particle number (by NMR) and Lp-PLA2 (by ELISA) were evaluated using plasma samples available from 358 subjects in the study. Switching to ES10/20 reduced low-density lipoprotein-particle number numerically more than did statin dose-doubling and was comparable with R10 (-133.3, -94.4, and -56.3 nmol/L, respectively; P>0.05). Increases in high-density lipoprotein particle number were significantly greater with switches to ES10/20 versus statin dose-doubling (1.5 and -0.5 μmol/L; P<0.05) and comparable with R10 (0.7 μmol/L; P>0.05). Percentages of patients attaining low-density lipoprotein particle number levels <990 nmol/L were 62.4% for ES10/20, 54.1% for statin dose-doubling, and 57.0% for R10. Switching to ES10/20 reduced Lp-PLA2 activity significantly more than did statin dose-doubling (-28.0 versus -3.8 nmol/min per mL, P<0.05) and was comparable with R10 (-28.0 versus -18.6 nmol/min per mL; P>0.05); effects on Lp-PLA2 concentration were modest.

Conclusions: In diabetic patients with dyslipidemia, switching from statins to combination ES10/20 therapy generally improved lipoprotein subclass profile and Lp-PLA2 activity more than did statin dose-doubling and was comparable with R10, consistent with its lipid effects.

Clinical trial registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00862251.

Keywords: NMR spectroscopy; diabetes mellitus; ezetimibe; lipoprotein particle number; lipoprotein subclasses; lipoprotein‐associated phospholipase A2; rosuvastatin; simvastatin.

© 2015 The Authors. [Ngoc‐Anh Le and Peter W. F. Wilson] and Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA. All rights reserved. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

Figures

Figure 1
Figure 1
Net changes from baseline in (A) CHOL, LDL‐C, and hsCRP and in (B) HDL‐C, TG, apoA‐I, and apoB for the more‐intensive therapies. Apo indicates apolipoprotein; ES, ezetimibe/simvastatin; HDL‐C, high‐density lipoprotein cholesterol; hsCRP, high‐sensitivity C reactive protein; LDL‐C, low‐density lipoprotein cholesterol; R, rosuvastatin; CHOL, total cholesterol; TG, triglycerides. See Table 1 for actual values and standard deviations.
Figure 2
Figure 2
Effect of more‐intensive therapy on LDL‐P. A, Reductions in LDL‐P from baseline were significant with switching to 2× statin (P<0.05), ES 10/20 (P<0.001), and R10 (P<0.001). There was a significant association between the percent changes in total LDL‐P and the percent changes in the concentration of small LDL particles with ES 10/20 (B), 2× statin (C), and with R10 (D). 2× statin indicates doubling the statin dose to simvastatin 40 mg or atorvastatin 20 mg; ES10/20, switch to ezetimibe/simvastatin 10/20 mg; LDL‐P, low‐density lipoprotein particle number; R10, switch to rosuvastatin 10 mg.
Figure 3
Figure 3
Effect of more‐intensive therapy on HDL‐P. A, Net changes (SD) from baseline in HDL‐P concentrations (μmol/L) were statistically significant only for ES 10/20 (P<0.001) and nonsignificant (P>0.05) for doubling the statin dose (2× statin) and R10. Significant associations were observed between HDL‐P and large HDL‐P with ES 10/20 in (B), 2× statin in (C), and R10 in (D). 2× statin indicates doubling the statin dose to simvastatin 40 mg or atorvastatin 20 mg; ES10/20, switch to ezetimibe/simvastatin 10/20 mg; HDL‐P, high‐density lipoprotein particle number; R10, switch to rosuvastatin 10 mg; SD, standard deviation.
Figure 4
Figure 4
Changes in Lp‐PLA2 specific activity with the 3 more‐intensive cholesterol‐reduction regimens. E/S indicates ezetimibe/simvastatin; Lp‐PLA2 lipoprotein‐associated phospholipase A2; R, rosuvastatin.
Figure 5
Figure 5
Relationship between on‐treatment levels of total plasma apoB and LDL‐P concentration based on all samples for participants stabilized on low‐dose statin (S20 or A10) as well as more‐intensive cholesterol reduction (2× statin, ES 10/20, and R10). 2× statin indicates doubling the statin dose to simvastatin 40 mg or atorvastatin 20 mg; A, atorvastatin; Apo, apolipoprotein; E/S, ezetimibe/simvastatin; LDL‐P, low‐density lipoprotein particle number; R, rosuvastatin; S, simvastatin.
Figure 6
Figure 6
Effect of more‐intensive cholesterol reducing regimens (ES 10/20, 2× statin, and R10) on the percent changes for various measures of LDL. (A) LDL‐C versus total plasma apoB, (B) LDL‐C versus LDL‐P, and (C) total plasma apoB versus LDL‐P. 2× statin indicates doubling the statin dose to simvastatin 40 mg or atorvastatin 20 mg; E/S, ezetimibe/simvastatin; LDL‐P, low‐density lipoprotein particle number; R, rosuvastatin.
Figure 7
Figure 7
Percent of individuals who reached (A) the 20th percentile target levels for LDL‐C, LDL‐P, and non–HDL‐C or (B) the 5th percentile target levels based on the Multi‐Ethnic Study of Atherosclerosis (MESA) cohort. Baseline corresponds to either simvastatin 20 mg or atorvastatin 10 mg. 2× statin indicates doubling the statin dose to simvastatin 40 mg or atorvastatin 20 mg; E/S, ezetimibe/simvastatin; LDL‐C, low‐density lipoprotein cholesterol; LDL‐P, low‐density lipoprotein particle number; non–HDL‐C, non–high‐density lipoprotein cholesterol R, rosuvastatin.

References

    1. Brunzell JD, Davidson M, Furberg CD, Goldberg RB, Howard BV, Stein JH, Witztum JL. Lipoprotein management in patients with cardiometabolic risk: consensus statement from the American Diabetes Association and the American College of Cardiology Foundation. Diabetes Care. 2008;31:811–822.
    1. Dunn FL. Hyperlipidemia in diabetes mellitus. Diabetes Metab Rev. 1990;6:47–61.
    1. Feher MD, Caslake M, Foxton J, Cox A, Packard CJ. Atherogenic lipoprotein phenotype in type 2 diabetes: reversal with micronised fenofibrate. Diabetes Metab Res Rev. 1999;15:395–399.
    1. Gregg EW, Gu Q, Cheng YJ, Narayan KM, Cowie CC. Mortality trends in men and women with diabetes, 1971 to 2000. Ann Intern Med. 2007;147:149–155.
    1. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339:229–234.
    1. Krauss RM. Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care. 2004;27:1496–1504.
    1. Catapano AL, Reiner Z, De Backer G, Graham I, Taskinen MR, Wiklund O, Agewall S, Alegria E, Chapman M, Durrington P, Erdine S, Halcox J, Hobbs R, Kjekshus J, Filardi PP, Riccardi G, Storey RF, Wood D. ESC/EAS Guidelines for the management of dyslipidaemias The task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Atherosclerosis. 2011;217:3–46.
    1. Foody JM, Sajjan SG, Hu XH, Ramey DR, Neff DR, Tershakovec AM, Tomassini JE, Wentworth C, Tunceli K. Loss of early gains in low‐density lipoprotein cholesterol goal attainment among high‐risk patients. J Clin Lipidol. 2010;4:126–132.
    1. Rublee DA, Burke JP. LDL‐C goal attainment in patients who remain on atorvastatin or switch to equivalent or non‐equivalent doses of simvastatin: a retrospective matched cohort study in clinical practice. Postgrad Med. 2010;122:16–24.
    1. Santos RD, Waters DD, Tarasenko L, Messig M, Jukema JW, Chiang CW, Ferrieres J, Foody JM. A comparison of non‐HDL and LDL cholesterol goal attainment in a large, multinational patient population: the Lipid Treatment Assessment Project 2. Atherosclerosis. 2012;224:150–153.
    1. Waters DD, Brotons C, Chiang CW, Ferrieres J, Foody J, Jukema JW, Santos RD, Verdejo J, Messig M, McPherson R, Seung KB, Tarasenko L. Lipid treatment assessment project 2: a multinational survey to evaluate the proportion of patients achieving low‐density lipoprotein cholesterol goals. Circulation. 2009;120:28–34.
    1. Anderson TJ, Gregoire J, Hegele RA, Couture P, Mancini GB, McPherson R, Francis GA, Poirier P, Lau DC, Grover S, Genest J Jr, Carpentier AC, Dufour R, Gupta M, Ward R, Leiter LA, Lonn E, Ng DS, Pearson GJ, Yates GM, Stone JA, Ur E. 2012 Update of the Canadian Cardiovascular Society guidelines for the diagnosis and treatment of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol. 2013;29:151–167.
    1. Grundy SM. Low‐density lipoprotein, non‐high‐density lipoprotein, and apolipoprotein B as targets of lipid‐lowering therapy. Circulation. 2002;106:2526–2529.
    1. International Atherosclerosis Society . An International Atherosclerosis Society Position Paper: global recommendations for the management of dyslipidemia‐full report. J.Clin.Lipidol. 2014;8:29–60.
    1. Jellinger PS, Smith DA, Mehta AE, Ganda O, Handelsman Y, Rodbard HW, Shepherd MD, Seibel JA, Kreisberg R, Goldberg R. American Association of Clinical Endocrinologists’ guidelines for management of dyslipidemia and prevention of atherosclerosis. Endocr Pract. 2012;18(suppl 1):1–78.
    1. Stone NJ, Robinson J, Lichtenstein AH, Merz CN, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd‐Jones DM, McBride P, Schwartz JS, Shero ST, Smith SC Jr, Watson K, Wilson PW. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;29(25 Suppl 2):S1–S45.
    1. Bays HE, Neff D, Tomassini JE, Tershakovec AM. Ezetimibe: cholesterol lowering and beyond. Expert Rev Cardiovasc Ther. 2008;6:447–470.
    1. Catapano AL, Toth PP, Tomassini JE, Tershakovec AM. The efficacy and safety of ezetimibe co‐administered with statin therapy in various patient groups. Clin Lipidol. 2013;8:13–41.
    1. Morrone D, Weintraub WS, Toth PP, Hanson ME, Lowe RS, Lin J, Shah AK, Tershakovec AM. Lipid‐altering efficacy of ezetimibe plus statin and statin monotherapy and identification of factors associated with treatment response: a pooled analysis of over 21,000 subjects from 27 clinical trials. Atherosclerosis. 2012;223:251–261.
    1. Toth PP, Catapano A, Tomassini JE, Tershakovec AM. Update on the efficacy and safety of combination ezetimibe plus statin therapy. Clin Lipidol. 2010;5:655–684.
    1. Blazing MA, Giugliano RP, Cannon CP, Musliner TA, Tershakovec AM, White JA, Reist C, McCagg A, Braunwald E, Califf RM. Evaluating cardiovascular event reduction with ezetimibe as an adjunct to simvastatin in 18,144 patients after acute coronary syndromes: final baseline characteristics of the IMPROVE‐IT study population. Am Heart J. 2014;168:205–212.
    1. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, Darius H, Lewis BS, Ophuis TO, Jukema JW, De Ferrari GM, Ruzyllo W, De Lucca P, Im K, Bohula EA, Reist C, Wiviott SD, Tershakovec AM, Musliner TA, Braunwald E, Califf RM; on behalf of the IMPROVE‐IT investigators . Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372:2387–2397.
    1. Blazing MA, Guigliano R, Cannon CP, Musliner TA, Tershakovec AM, White JA, Reist C, McCagg A, Braunwald E, Califf RM. IMProved reduction of outcomes: vytorin efficacy international trial on‐treatment analysis. Available at: . Accessed October 13, 2015.
    1. Chehade JM, Gladysz M, Mooradian AD. Dyslipidemia in type 2 diabetes: prevalence, pathophysiology, and management. Drugs. 2013;73:327–339.
    1. Davidson MH, Ballantyne CM, Jacobson TA, Bittner VA, Braun LT, Brown AS, Brown WV, Cromwell WC, Goldberg RB, McKenney JM, Remaley AT, Sniderman AD, Toth PP, Tsimikas S, Ziajka PE, Maki KC, Dicklin MR. Clinical utility of inflammatory markers and advanced lipoprotein testing: advice from an expert panel of lipid specialists. J Clin Lipidol. 2011;5:338–367.
    1. Mangalmurti SS, Davidson MH. The incremental value of lipids and inflammatory biomarkers in determining residual cardiovascular risk. Curr Atheroscler Rep. 2011;13:373–380.
    1. Otvos JD, Mora S, Shalaurova I, Greenland P, Mackey RH, Goff DC Jr. Clinical implications of discordance between low‐density lipoprotein cholesterol and particle number. J Clin Lipidol. 2011;5:105–113.
    1. Cromwell WC, Otvos JD. Heterogeneity of low‐density lipoprotein particle number in patients with type 2 diabetes mellitus and low‐density lipoprotein cholesterol <100 mg/dl. Am J Cardiol. 2006;98:1599–1602.
    1. deGoma EM, Rader DJ. High‐density lipoprotein particle number: a better measure to quantify high‐density lipoprotein? J Am Coll Cardiol. 2012;60:517–520.
    1. Mackey RH, Greenland P, Goff DC Jr, Lloyd‐Jones D, Sibley CT, Mora S. High‐density lipoprotein cholesterol and particle concentrations, carotid atherosclerosis, and coronary events: MESA (multi‐ethnic study of atherosclerosis). J Am Coll Cardiol. 2012;60:508–516.
    1. Rosenson RS, Otvos JD, Hsia J. Effects of rosuvastatin and atorvastatin on LDL and HDL particle concentrations in patients with metabolic syndrome: a randomized, double‐blind, controlled study. Diabetes Care. 2009;32:1087–1091.
    1. van der Steeg WA, Holme I, Boekholdt SM, Larsen ML, Lindahl C, Stroes ES, Tikkanen MJ, Wareham NJ, Faergeman O, Olsson AG, Pedersen TR, Khaw KT, Kastelein JJ. High‐density lipoprotein cholesterol, high‐density lipoprotein particle size, and apolipoprotein A‐I: significance for cardiovascular risk: the IDEAL and EPIC‐Norfolk studies. J Am Coll Cardiol. 2008;51:634–642.
    1. Rosen JB, Jimenez JG, Pirags V, Vides H, Hanson ME, Massaad R, McPeters G, Brudi P, Triscari J. A comparison of efficacy and safety of an ezetimibe/simvastatin combination compared with other intensified lipid‐lowering treatment strategies in diabetic patients with symptomatic cardiovascular disease. Diab Vasc Dis Res. 2013;10:277–286.
    1. Otvos JD. Measurement of lipoprotein subclass profiles by NMR spectroscopy In: Rifai N, Warnick GR, and Dominiczak MH, eds. Handbook of Lipoprotein Testing. Washington DC: AACC Press; 2000:609–623.
    1. Ballantyne CM, Hoogeveen RC, Bang H, Coresh J, Folsom AR, Heiss G, Sharrett AR. Lipoprotein‐associated phospholipase A2, high‐sensitivity C‐reactive protein, and risk for incident coronary heart disease in middle‐aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Circulation. 2004;109:837–842.
    1. Corson MA, Jones PH, Davidson MH. Review of the evidence for the clinical utility of lipoprotein‐associated phospholipase A2 as a cardiovascular risk marker. Am J Cardiol. 2008;101:41F–50F.
    1. Garza CA, Montori VM, McConnell JP, Somers VK, Kullo IJ, Lopez‐Jimenez F. Association between lipoprotein‐associated phospholipase A2 and cardiovascular disease: a systematic review. Mayo Clin Proc. 2007;82:159–165.
    1. Malave H, Castro M, Burkle J, Voros S, Dayspring T, Honigberg R, Pourfarzib R. Evaluation of low‐density lipoprotein particle number distribution in patients with type 2 diabetes mellitus with low‐density lipoprotein cholesterol <50 mg/dl and non‐high‐density lipoprotein cholesterol <80 mg/dl. Am J Cardiol. 2012;110:662–665.
    1. Barrios V, Amabile N, Paganelli F, Chen JW, Allen C, Johnson‐Levonas AO, Massaad R, Vandormael K. Lipid‐altering efficacy of switching from atorvastatin 10 mg/day to ezetimibe/simvastatin 10/20 mg/day compared with doubling the dose of atorvastatin in hypercholesterolaemic patients with atherosclerosis or coronary heart disease. Int J Clin Pract. 2005;59:1377–1386.
    1. Constance C, Westphal S, Chung N, Lund M, McCrary SC, Johnson‐Levonas AO, Massaad R, Allen C. Efficacy of ezetimibe/simvastatin 10/20 and 10/40 mg compared with atorvastatin 20 mg in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2007;9:575–584.
    1. Hing Ling PK, Civeira F, Dan AG, Hanson ME, Massaad R, De Tilleghem CB, Milardo C, Triscari J. Ezetimibe/simvastatin 10/40 mg versus atorvastatin 40 mg in high cardiovascular risk patients with primary hypercholesterolemia: a randomized, double‐blind, active‐controlled, multicenter study. Lipids Health Dis. 2012;11:18.
    1. Bays HE, Averna M, Majul C, Muller‐Wieland D, De Pellegrin A, Giezek H, Lee R, Lowe RS, Brudi P, Triscari J, Farnier M. Efficacy and safety of ezetimibe added to atorvastatin versus atorvastatin uptitration or switching to rosuvastatin in patients with primary hypercholesterolemia. Am J Cardiol. 2013;112:1885–1895.
    1. Farnier M, Averna M, Missault L, Vaverkova H, Viigimaa M, Massaad R, Vandormael K, Johnson‐Levonas AO, Brudi P. Lipid‐altering efficacy of ezetimibe/simvastatin 10/20 mg compared with rosuvastatin 10 mg in high‐risk hypercholesterolaemic patients inadequately controlled with prior statin monotherapy: the IN‐CROSS study. Int J Clin Pract. 2009;63:547–559.
    1. Sniderman AD. Differential response of cholesterol and particle measures of atherogenic lipoproteins to LDL‐lowering therapy: implications for clinical practice. J Clin Lipidol. 2008;2:36–42.
    1. Gerber PA, Thalhammer C, Schmied C, Spring S, Amann‐Vesti B, Spinas GA, Berneis K. Small, dense LDL particles predict changes in intima media thickness and insulin resistance in men with type 2 diabetes and prediabetes: a prospective cohort study. PLoS One. 2013;8:e72763.
    1. Nishikura T, Koba S, Yokota Y, Hirano T, Tsunoda F, Shoji M, Hamazaki Y, Suzuki H, Itoh Y, Katagiri T, Kobayashi Y. Elevated small dense low‐density lipoprotein cholesterol as a predictor for future cardiovascular events in patients with stable coronary artery disease. J Atheroscler Thromb. 2014;21:755–767.
    1. Hoogeveen RC, Gaubatz JW, Sun W, Dodge RC, Crosby JR, Jiang J, Couper D, Virani SS, Kathiresan S, Boerwinkle E, Ballantyne CM. Small dense low‐density lipoprotein‐cholesterol concentrations predict risk for coronary heart disease: the Atherosclerosis Risk In Communities (ARIC) study. Arterioscler Thromb Vasc Biol. 2014;34:1069–1077.
    1. Lamarche B, Tchernof A, Moorjani S, Cantin B, Dagenais GR, Lupien PJ, Despres JP. Small, dense low‐density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Quebec Cardiovascular Study. Circulation. 1997;95:69–75.
    1. Morris B, McLain KH, Malave HA, Underberg JA, Le N, Shapiro MD, Winegar DA, Pourfarzib R. Relationship between plasma apoliprotein B concentration and LDL particle number. Res Rep Clin Cardiol. 2014;5:237–242.
    1. Sniderman AD, Lamarche B, Contois JH, de Graaf J. Discordance analysis and the Gordian knot of LDL and non‐HDL cholesterol versus apoB. Curr Opin Lipidol. 2014;25:461–467.
    1. Cole TG, Contois JH, Csako G, McConnell JP, Remaley AT, Devaraj S, Hoefner DM, Mallory T, Sethi AA, Warnick GR. Association of apolipoprotein B and nuclear magnetic resonance spectroscopy‐derived LDL particle number with outcomes in 25 clinical studies: assessment by the AACC Lipoprotein and Vascular Diseases Division Working Group on Best Practices. Clin Chem. 2013;59:752–770.
    1. Mora S, Szklo M, Otvos JD, Greenland P, Psaty BM, Goff DC Jr, O'Leary DH, Saad MF, Tsai MY, Sharrett AR. LDL particle subclasses, LDL particle size, and carotid atherosclerosis in the Multi‐Ethnic Study of Atherosclerosis (MESA). Atherosclerosis. 2007;192:211–217.
    1. Le NA, Jin R, Tomassini JE, Tershakovec AM, Neff DR, Wilson PW. Changes in lipoprotein particle number with ezetimibe/simvastatin coadministered with extended‐release niacin in hyperlipidemic patients. J Am Heart Assoc. 2013;2:e000037 doi: .
    1. Jafri H, Alsheikh‐Ali AA, Mooney P, Kimmelstiel CD, Karas RH, Kuvin JT. Extended‐release niacin reduces LDL particle number without changing total LDL cholesterol in patients with stable CAD. J Clin Lipidol. 2009;3:45–50.
    1. Camont L, Chapman MJ, Kontush A. Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol Med. 2011;17:594–603.
    1. Kontush A, Chapman MJ. Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities. Curr Opin Lipidol. 2010;21:312–318.
    1. Rosenson RS, Davidson MH, Le NA, Burkle J, Pourfarzib R. Underappreciated opportunities for high‐density lipoprotein particles in risk stratification and potential targets of therapy. Cardiovasc Drugs Ther. 2015;29:41–50.
    1. Ballantyne CM, Hoogeveen RC, Raya JL, Cain VA, Palmer MK, Karlson BW. Efficacy, safety and effect on biomarkers related to cholesterol and lipoprotein metabolism of rosuvastatin 10 or 20 mg plus ezetimibe 10 mg vs. simvastatin 40 or 80 mg plus ezetimibe 10 mg in high‐risk patients: results of the GRAVITY randomized study. Atherosclerosis. 2014;232:86–93.
    1. Moutzouri E, Liberopoulos EN, Tellis CC, Milionis HJ, Tselepis AD, Elisaf MS. Comparison of the effect of simvastatin versus simvastatin/ezetimibe versus rosuvastatin on markers of inflammation and oxidative stress in subjects with hypercholesterolemia. Atherosclerosis. 2013;231:8–14.
    1. Saougos VG, Tambaki AP, Kalogirou M, Kostapanos M, Gazi IF, Wolfert RL, Elisaf M, Tselepis AD. Differential effect of hypolipidemic drugs on lipoprotein‐associated phospholipase A2. Arterioscler Thromb Vasc Biol. 2007;27:2236–2243.
    1. Zhang B, Fan P, Shimoji E, Itabe H, Miura S, Uehara Y, Matsunaga A, Saku K. Modulating effects of cholesterol feeding and simvastatin treatment on platelet‐activating factor acetylhydrolase activity and lysophosphatidylcholine concentration. Atherosclerosis. 2006;186:291–301.

Source: PubMed

3
Subscribe