Perfusion Parameters in Near-Infrared Fluorescence Imaging with Indocyanine Green: A Systematic Review of the Literature

Lauren N Goncalves, Pim van den Hoven, Jan van Schaik, Laura Leeuwenburgh, Cas H F Hendricks, Pieter S Verduijn, Koen E A van der Bogt, Carla S P van Rijswijk, Abbey Schepers, Alexander L Vahrmeijer, Jaap F Hamming, Joost R van der Vorst, Lauren N Goncalves, Pim van den Hoven, Jan van Schaik, Laura Leeuwenburgh, Cas H F Hendricks, Pieter S Verduijn, Koen E A van der Bogt, Carla S P van Rijswijk, Abbey Schepers, Alexander L Vahrmeijer, Jaap F Hamming, Joost R van der Vorst

Abstract

(1) Background: Near-infrared fluorescence imaging is a technique capable of assessing tissue perfusion and has been adopted in various fields including plastic surgery, vascular surgery, coronary arterial disease, and gastrointestinal surgery. While the usefulness of this technique has been broadly explored, there is a large variety in the calculation of perfusion parameters. In this systematic review, we aim to provide a detailed overview of current perfusion parameters, and determine the perfusion parameters with the most potential for application in near-infrared fluorescence imaging. (2) Methods: A comprehensive search of the literature was performed in Pubmed, Embase, Medline, and Cochrane Review. We included all clinical studies referencing near-infrared perfusion parameters. (3) Results: A total of 1511 articles were found, of which, 113 were suitable for review, with a final selection of 59 articles. Near-infrared fluorescence imaging parameters are heterogeneous in their correlation to perfusion. Time-related parameters appear superior to absolute intensity parameters in a clinical setting. (4) Conclusions: This literature review demonstrates the variety of parameters selected for the quantification of perfusion in near-infrared fluorescence imaging.

Keywords: indocyanine green; near infrared fluorescence; perfusion imaging.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Preferred reporting items for systematic review and meta-analysis protocols flow chart for the selection of included studies.
Figure 2
Figure 2
Schematic representation I of the perfusion parameters in Table 1.
Figure 3
Figure 3
Schematic Representation II of the perfusion parameters in Table 1.

References

    1. Cornelissen A.J.M., Van Mulken T.J.M., Graupner C., Qiu S.S., Keuter X.H.A., Van Der Hulst R.R.W.J., Schols R.M. Near-infrared fluorescence image-guidance in plastic surgery: A systematic review. Eur. J. Plast. Surg. 2018;41:269–278. doi: 10.1007/s00238-018-1404-5.
    1. Hoven P.V.D., Ooms S., van Manen L., van der Bogt K.E., van Schaik J., Hamming J.F., Vahrmeijer A.L., van der Vorst J.R., Mieog J.S.D. A systematic review of the use of near-infrared fluorescence imaging in patients with peripheral artery disease. J. Vasc. Surg. 2019;70:286–297.e1. doi: 10.1016/j.jvs.2018.11.023.
    1. Singh S.K., Desai N.D., Chikazawa G., Tsuneyoshi H., Vincent J., Zagorski B.M., Pen V., Moussa F., Cohen G.N., Christakis G.T., et al. The Graft Imaging to Improve Patency (GRIIP) clinical trial results. J. Thorac. Cardiovasc. Surg. 2010;139:294–301.e1. doi: 10.1016/j.jtcvs.2009.09.048.
    1. Mangano A., Masrur M.A., Bustos R., Chen L.L., Fernandes E., Giulianotti P.C. Near-Infrared Indocyanine Green-Enhanced Fluorescence and Minimally Invasive Colorectal Surgery: Review of the Literature. Surg. Technol. Int. 2018;33:77–83.
    1. Whiting P.F., Rutjes A.W., Westwood M.E., Mallett S., Deeks J.J., Reitsma J.B., Leeflang M.M., Sterne J.A., Bossuyt P.M.M., The QUADAS-2 Group QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. Intern. Med. 2011;155:529–536. doi: 10.7326/0003-4819-155-8-201110180-00009.
    1. Abdelwahab M., Kandathil C.K., Most S.P., Spataro E.A. Utility of Indocyanine Green Angiography to Identify Clinical Factors Associated With Perfusion of Paramedian Forehead Flaps During Nasal Reconstruction Surgery. JAMA Facial Plast. Surg. 2019;21:206–212. doi: 10.1001/jamafacial.2018.1829.
    1. Abdelwahab M., Spataro E.A., Kandathil C.K., Most S.P. Neovascularization Perfusion of Melolabial Flaps Using Intraoperative Indocyanine Green Angiography. JAMA Facial Plast. Surg. 2019;21:230–236. doi: 10.1001/jamafacial.2018.1874.
    1. Braun J.D., Trinidad-Hernandez M., Perry D., Armstrong D.G., Mills J.L. Early quantitative evaluation of indocyanine green angiography in patients with critical limb ischemia. J. Vasc. Surg. 2013;57:1213–1218. doi: 10.1016/j.jvs.2012.10.113.
    1. Gerken A.L.H., Nowak K., Meyer A., Weiss C., Krüger B., Nawroth N., Karampinis I., Heller K., Apel H., Reissfelder C., et al. Quantitative Assessment of Intraoperative Laser Fluorescence Angiography with Indocyanine Green Predicts Early Graft Function after Kidney Transplantation. Ann. Surg. 2020;Publish Ah:30. doi: 10.1097/sla.0000000000004529.
    1. Girard N., Delomenie M., Malhaire C., Sebbag D., Roulot A., Sabaila A., Couturaud B., Feron J.-G., Reyal F. Innovative DIEP flap perfusion evaluation tool: Qualitative and quantitative analysis of indocyanine green-based fluorescence angiography with the SPY-Q proprietary software. PLoS ONE. 2019;14:e0217698. doi: 10.1371/journal.pone.0217698.
    1. Mironov O., Zener R., Eisenberg N., Tan K., Roche-Nagle G. Real-Time Quantitative Measurements of Foot Perfusion in Patients With Critical Limb Ischemia. Vasc. Endovasc. Surg. 2019;53:310–315. doi: 10.1177/1538574419833223.
    1. Regus S., Klingler F., Lang W., Meyer A., Almasi-Sperling V., May M., Wust W., Rother U. Pilot study using intraopera-tive fluorescence angiography during arteriovenous hemodialysis access surgery. J. Vasc. Access. 2019;20:175–183. doi: 10.1177/1129729818791989.
    1. Rother U., Müller-Mohnssen H., Lang W., Ludolph I., Arkudas A., Horch R.E., Regus S., Meyer A. Wound closure by means of free flap and arteriovenous loop: Development of flap autonomy in the long-term follow-up. Int. Wound J. 2020;17:107–116. doi: 10.1111/iwj.13239.
    1. Rother U., Amann K., Adler W., Nawroth N., Karampinis I., Keese M., Manap S., Regus S., Meyer A., Porubsky S., et al. Quantitative assessment of microperfusion by indocyanine green angiography in kidney transplantation resembles chronic morphological changes in kidney specimens. Microcirculation. 2019;26:e12529. doi: 10.1111/micc.12529.
    1. Rother U., Lang W., Horch R.E., Ludolph I., Meyer A., Gefeller O., Regus S. Pilot Assessment of the Angiosome Concept by Intra-operative Fluorescence Angiography After Tibial Bypass Surgery. Eur. J. Vasc. Endovasc. Surg. 2018;55:215–221. doi: 10.1016/j.ejvs.2017.11.024.
    1. Rother U., Lang W., Horch R.E., Ludolph I., Meyer A., Regus S. Microcirculation Evaluated by Intraoperative Fluores-cence Angiography after Tibial Bypass Surgery. Ann. Vasc. Surg. 2017;40:190–197. doi: 10.1016/j.avsg.2016.07.084.
    1. Yang C.-E., Chung S.W., Lee D.W., Lew D.H., Song S.Y. Evaluation of the Relationship Between Flap Tension and Tissue Perfusion in Implant-Based Breast Reconstruction Using Laser-Assisted Indocyanine Green Angiography. Ann. Surg. Oncol. 2018;25:2235–2240. doi: 10.1245/s10434-018-6527-1.
    1. Colvard B., Itoga N.K., Hitchner E., Sun Q., Long B., Lee G., Chandra V., Zhou W. SPY technology as an adjunctive measure for lower extremity perfusion. J. Vasc. Surg. 2016;64:195–201. doi: 10.1016/j.jvs.2016.01.039.
    1. Ritschl L.M., Georg R., Kolk A., Kesting M.R., Wolff K.-D., Mücke T., Fichter A.M. Effect of Segment Length and Number of Osteotomy Sites on Cancellous Bone Perfusion in Free Fibula Flaps. J. Reconstr. Microsurg. 2019;35:108–116. doi: 10.1055/s-0038-1667364.
    1. Kang Y., Lee J., Kwon K., Choi C. Application of novel dynamic optical imaging for evaluation of peripheral tissue perfusion. Int. J. Cardiol. 2010;145:e99–e101. doi: 10.1016/j.ijcard.2008.12.166.
    1. Hajhosseini B., Chiou G.J., Virk S.S., Chandra V., Moshrefi S., Meyer S., Kamperman K.J., Gurtner G.C. Hyperbaric Oxygen Therapy in Management of Diabetic Foot Ulcers: Indocyanine Green Angiography May Be Used as a Biomarker to Analyze Perfusion and Predict Response to Treatment. Plast. Reconstr. Surg. 2021;147:209–214. doi: 10.1097/PRS.0000000000007482.
    1. Han M.D., Miloro M., Markiewicz M.R. Laser-Assisted Indocyanine Green Imaging for Assessment of Perioperative Maxillary Perfusion During Le Fort I Osteotomy: A Pilot Study. J. Oral Maxillofac. Surg. 2018;76:2630–2637. doi: 10.1016/j.joms.2018.05.027.
    1. Hitier M., Cracowski J.-L., Hamou C., Righini C., Bettega G. Indocyanine green fluorescence angiography for free flap monitoring: A pilot study. J. Cranio-Maxillofac. Surg. 2016;44:1833–1841. doi: 10.1016/j.jcms.2016.09.001.
    1. Lang B.H.-H., Wong C.K., Hung H.T., Wong K.P., Mak K.L., Au K.B. Indocyanine green fluorescence angiography for quantitative evaluation of in situ parathyroid gland perfusion and function after total thyroidectomy. Surgery. 2017;161:87–95. doi: 10.1016/j.surg.2016.03.037.
    1. Son G.M., Kwon M.S., Kim Y., Kim J., Kim S.H., Lee J.W. Quantitative analysis of colon perfusion pattern using indocyanine green (ICG) angiography in laparoscopic colorectal surgery. Surg. Endosc. 2019;33:1640–1649. doi: 10.1007/s00464-018-6439-y.
    1. Amagai H., Miyauchi H., Muto Y., Uesato M., Ohira G., Imanishi S., Maruyama T., Tochigi T., Okada K., Maruyama M., et al. Clinical utility of transanal indocyanine green near-infrared fluorescence imaging for evaluation of colorectal anastomotic perfusion. Surg. Endosc. 2020;34:5283–5293. doi: 10.1007/s00464-019-07315-7.
    1. Goertz L., Hof M., Timmer M., Schulte A.P., Kabbasch C., Krischek B., Stavrinou P., Reiner M., Goldbrunner R., Brinker G. Application of Intraoperative FLOW 800 Indocyanine Green Videoangiography Color-Coded Maps for Microsurgical Clipping of Intracranial Aneurysms. World Neurosurg. 2019;131:e192–e200. doi: 10.1016/j.wneu.2019.07.113.
    1. Hayami S., Matsuda K., Iwamoto H., Ueno M., Kawai M., Hirono S., Okada K., Miyazawa M., Tamura K., Mitani Y., et al. Visualization and quantification of anastomotic perfusion in colorectal surgery using near-infrared fluorescence. Tech. Coloproctology. 2019;23:973–980. doi: 10.1007/s10151-019-02089-5.
    1. Igari K., Kudo T., Toyofuku T., Jibiki M., Inoue Y., Kawano T. Quantitative Evaluation of the Outcomes of Revascularization Procedures for Peripheral Arterial Disease Using Indocyanine Green Angiography. Eur. J. Vasc. Endovasc. Surg. 2013;46:460–465. doi: 10.1016/j.ejvs.2013.07.016.
    1. Igari K., Kudo T., Uchiyama H., Toyofuku T., Inoue Y. Indocyanine Green Angiography for the Diagnosis of Peripheral Arterial Disease with Isolated Infrapopliteal Lesions. Ann. Vasc. Surg. 2014;28:1479–1484. doi: 10.1016/j.avsg.2014.03.024.
    1. Ishige F., Nabeya Y., Hoshino I., Takayama W., Chiba S., Arimitsu H., Iwatate Y., Yanagibashi H. Quantitative Assessment of the Blood Perfusion of the Gastric Conduit by Indocyanine Green Imaging. J. Surg. Res. 2019;234:303–310. doi: 10.1016/j.jss.2018.08.056.
    1. Kamiya K., Unno N., Miyazaki S., Sano M., Kikuchi H., Hiramatsu Y., Ohta M., Yamatodani T., Mineta H., Konno H. Quantitative assessment of the free jejunal graft perfusion. J. Surg. Res. 2015;194:394–399. doi: 10.1016/j.jss.2014.10.049.
    1. Kamp M.A., Sarikaya-Seiwert S., Petridis A.K., Beez T., Cornelius J.-F., Steiger H.-J., Turowski B., Slotty P.J. Intraoperative Indocyanine Green–Based Cortical Perfusion Assessment in Patients Suffering from Severe Traumatic Brain Injury. World Neurosurg. 2017;101:431–443. doi: 10.1016/j.wneu.2017.01.054.
    1. Kamp M.A., Slotty P., Turowski B., Etminan N., Steiger H.J., Hanggi D., Stummer W. Microscope-integrated quantitative analysis of intraoperative indocyanine green fluorescence angiography for blood flow assessment: First experience in 30 patients. Neurosurgery. 2012;70:65–73; discussion 64–73. doi: 10.1227/NEU.0b013e31822f7d7c.
    1. Kobayashi S., Ishikawa T., Tanabe J., Moroi J., Suzuki A. Quantitative cerebral perfusion assessment using microscope-integrated analysis of intraoperative indocyanine green fluorescence angiography versus positron emission tomography in superficial temporal artery to middle cerebral artery anastomosis. Surg. Neurol. Int. 2014;5:135. doi: 10.4103/2152-7806.140705.
    1. Maxwell A.K., Deleyiannis F.W.-B. Utility of Indocyanine Green Angiography in Arterial Selection during Free Flap Harvest in Patients with Severe Peripheral Vascular Disease. Plast. Reconstr. Surg. Glob. Open. 2016;4:e1097. doi: 10.1097/GOX.0000000000001097.
    1. Miyazaki H., Igari K., Kudo T., Iwai T., Wada Y., Takahashi Y., Inoue Y., Asamura S. Significance of the Lateral Thoracic Artery in Pectoralis Major Musculocutaneous Flap Reconstruction. Ann. Plast. Surg. 2017;79:498–504. doi: 10.1097/SAP.0000000000001123.
    1. Nakamura M., Igari K., Toyofuku T., Kudo T., Inoue Y., Uetake H. The evaluation of contralateral foot circulation after unilateral revascularization procedures using indocyanine green angiography. Sci. Rep. 2017;7:16171. doi: 10.1038/s41598-017-16527-7.
    1. Nishizawa M., Igari K., Kudo T., Toyofuku T., Inoue Y., Uetake H. A Comparison of the Regional Circulation in the Feet between Dialysis and Non-Dialysis Patients using Indocyanine Green Angiography. Scand. J. Surg. 2016;106:249–254. doi: 10.1177/1457496916666412.
    1. Patel H.M., Bulsara S.S., Banerjee S., Sahu T., Sheorain V.K., Grover T., Parakh R. Indocyanine Green Angiography to Prognosticate Healing of Foot Ulcer in Critical Limb Ischemia: A Novel Technique. Ann. Vasc. Surg. 2018;51:86–94. doi: 10.1016/j.avsg.2018.02.021.
    1. Rennert R.C., Strickland B.A., Ravina K., Bakhsheshian J., Russin J.J. Assessment of Hemodynamic Changes and Hyperperfusion Risk After Extracranial-to-Intracranial Bypass Surgery Using Intraoperative Indocyanine Green–Based Flow Analysis. World Neurosurg. 2018;114:352–360. doi: 10.1016/j.wneu.2018.03.189.
    1. Schneider P., Piper S., Schmitz C.H., Schreiter N.F., Volkwein N., Lüdemann L., Malzahn U., Poellinger A. Fast 3D Near-Infrared Breast Imaging Using Indocyanine Green for Detection and Characterization of Breast Lesions. RöFo Fortschr. Geb. Röntgenstrahlen Bildgeb. Verfahr. 2011;183:956–963. doi: 10.1055/s-0031-1281726.
    1. Seinturier C., Blaise S., Tiffet T., Provencher C.B., Cracowski J.L., Pernod G., Carpentier P. Fluorescence angiography compared to toe blood pressure in the evaluation of severe limb ischemia. Vasa. 2020;49:230–234. doi: 10.1024/0301-1526/a000853.
    1. Settembre N., Kauhanen P., Albäck A., Spillerova K., Venermo M. Quality Control of the Foot Revascularization Using Indocyanine Green Fluorescence Imaging. World J. Surg. 2017;41:1919–1926. doi: 10.1007/s00268-017-3950-6.
    1. Shi W., Qiao G., Sun Z., Shang A., Wu C., Xu B. Quantitative assessment of hemodynamic changes during spinal dural arteriovenous fistula surgery. J. Clin. Neurosci. 2015;22:1155–1159. doi: 10.1016/j.jocn.2015.01.024.
    1. Okazaki M., Yano T., Miyashita H., Homma T., Tomita M., Tanaka K. Quantitative Evaluation of Blood Perfusion to Nerves Included in the Anterolateral Thigh Flap using Indocyanine Green Fluorescence Angiography: A Different Contrast Pattern between the Vastus Lateralis Motor Nerve and Femoral Cutaneous Nerve. J. Reconstr. Microsurg. 2014;31:163–170. doi: 10.1055/s-0034-1390382.
    1. Wada T., Kawada K., Takahashi R., Yoshitomi M., Hida K., Hasegawa S., Sakai Y. ICG fluorescence imaging for quantitative evaluation of colonic perfusion in laparoscopic colorectal surgery. Surg. Endosc. 2017;31:4184–4193. doi: 10.1007/s00464-017-5475-3.
    1. Ye X., Liu X.-J., Ma L., Liu L.-T., Wang W.-L., Wang S., Cao Y., Zhang N., Wang R., Zhao J.-Z., et al. Clinical values of intraoperative indocyanine green fluorescence video angiography with Flow 800 software in cerebrovascular surgery. Chin. Med. J. 2013;126:4232–4237.
    1. Zhang X., Ni W., Feng R., Li Y., Lei Y., Xia D., Gao P., Yang S., Gu Y. Evaluation of Hemodynamic Change by Indocyanine Green-FLOW 800 Videoangiography Mapping: Prediction of Hyperperfusion Syndrome in Patients with Moyamoya Disease. Oxidative Med. Cell. Longev. 2020;2020 doi: 10.1155/2020/8561609.
    1. Zimmermann A., Roenneberg C., Reeps C., Wendorff H., Holzbach T., Eckstein H.-H. The determination of tissue perfusion and collateralization in peripheral arterial disease with indocyanine green fluorescence angiography. Clin. Hemorheol. Microcirc. 2012;50:157–166. doi: 10.3233/CH-2011-1408.
    1. Mothes H., Dinkelaker T., Donicke T., Friedel R., Hofmann G.O., Bach O. Outcome Prediction in Microsurgery by Quantitative Evaluation of Perfusion Using ICG Fluorescence Angiography. J. Hand Surg. (European Vol.) 2009;34:238–246. doi: 10.1177/1753193408090399.
    1. Betz C., Zhorzel S., Schachenmayr H., Stepp H., Havel M., Siedek V., Leunig A., Matthias C., Hopper C., Harréus U. Endoscopic measurements of free-flap perfusion in the head and neck region using red-excited Indocyanine Green: Preliminary results. J. Plast. Reconstr. Aesthetic Surg. 2009;62:1602–1608. doi: 10.1016/j.bjps.2008.07.042.
    1. Betz C.S., Zhorzel S., Schachenmayr H., Stepp H., Matthias C., Hopper C., Harréus U. Endoscopic assessment of free flap perfusion in the upper aerodigestive tract using indocyanine green: A pilot study. J. Plast. Reconstr. Aesthetic Surg. 2013;66:667–674. doi: 10.1016/j.bjps.2012.12.034.
    1. Aiba T., Uehara K., Ogura A., Tanaka A., Yonekawa Y., Hattori N., Nakayama G., Kodera Y., Ebata T., Nagino M. The significance of the time to arterial perfusion in intraoperative ICG angiography during colorectal surgery. Surg. Endosc. 2021:1–9. doi: 10.1007/s00464-020-08185-0.
    1. Kang Y., Lee J., An Y., Jeon J., Choi C. Segmental analysis of indocyanine green pharmacokinetics for the reliable diagnosis of functional vascular insufficiency. J. Biomed. Opt. 2011;16:030504. doi: 10.1117/1.3556718.
    1. D’Urso A., Agnus V., Barberio M., Seeliger B., Marchegiani F., Charles A.-L., Geny B., Marescaux J., Mutter D., Diana M. Computer-assisted quantification and visualization of bowel perfusion using fluorescence-based enhanced reality in left-sided colonic resections. Surg. Endosc. 2020:1–11. doi: 10.1007/s00464-020-07922-9.
    1. Gorai K., Inoue K., Saegusa N., Shimamoto R., Takeishi M., Okazaki M., Nakagawa M. Prediction of Skin Necrosis after Mastectomy for Breast Cancer Using Indocyanine Green Angiography Imaging. Plast. Reconstr. Surg. Glob. Open. 2017;5:e1321. doi: 10.1097/GOX.0000000000001321.
    1. Prinz V., Hecht N., Kato N., Vajkoczy P. FLOW 800 Allows Visualization of Hemodynamic Changes After Extracranial-to-Intracranial Bypass Surgery but Not Assessment of Quantitative Perfusion or Flow. Oper. Neurosurg. 2013;10:231–239. doi: 10.1227/NEU.0000000000000277.
    1. Rennert R.C., Strickland B.A., Ravina K., Brandel M.G., Bakhsheshian J., Fredrickson V., Carey J., Russin J.J. Assessment of ischemic risk following intracranial-to-intracranial and extracranial-to-intracranial bypass for complex aneurysms using intraoperative Indocyanine Green-based flow analysis. J. Clin. Neurosci. 2019;67:191–197. doi: 10.1016/j.jocn.2019.06.036.
    1. Terasaki H., Inoue Y., Sugano N., Jibiki M., Kudo T., Lepäntalo M., Venermo M. A Quantitative Method for Evaluating Local Perfusion Using Indocyanine Green Fluorescence Imaging. Ann. Vasc. Surg. 2013;27:1154–1161. doi: 10.1016/j.avsg.2013.02.011.
    1. Holling M., Brokinkel B., Ewelt C., Fischer B.R., Stummer W. Dynamic ICG Fluorescence Provides Better Intraoperative Understanding of Arteriovenous Fistulae. Oper. Neurosurg. 2013;73:ons93–ons99. doi: 10.1227/NEU.0b013e31828772a4.
    1. Woitzik J., Peña-Tapia P.G., Schneider U.C., Vajkoczy P., Thomé C. Cortical Perfusion Measurement by Indocyanine-Green Videoangiography in Patients Undergoing Hemicraniectomy for Malignant Stroke. Stroke. 2006;37:1549–1551. doi: 10.1161/01.STR.0000221671.94521.51.
    1. Uchino H., Kazumata K., Ito M., Nakayama N., Kuroda S., Houkin K. Intraoperative assessment of cortical perfusion by indocyanine green videoangiography in surgical revascularization for moyamoya disease. Acta Neurochir. 2014;156:1753–1760. doi: 10.1007/s00701-014-2161-2.
    1. Uchino H., Nakamura T., Houkin K., Murata J.-I., Saito H., Kuroda S. Semiquantitative analysis of indocyanine green videoangiography for cortical perfusion assessment in superficial temporal artery to middle cerebral artery anastomosis. Acta Neurochir. 2013;155:599–605. doi: 10.1007/s00701-012-1575-y.
    1. Venermo M., Settembre N., Albäck A., Vikatmaa P., Aho P.-S., Lepäntalo M., Inoue Y., Terasaki H. Pilot Assessment of the Repeatability of Indocyanine Green Fluorescence Imaging and Correlation with Traditional Foot Perfusion Assessments. Eur. J. Vasc. Endovasc. Surg. 2016;52:527–533. doi: 10.1016/j.ejvs.2016.06.018.
    1. Lutken C.D., Achiam M.P., Svendsen M.B., Boni L., Nerup N. Optimizing quantitative fluorescence angiography for vis-ceral perfusion assessment. Surg. Endosc. 2020;34:5223–5233. doi: 10.1007/s00464-020-07821-z.
    1. Nerup N., Andersen H.S., Ambrus R., Strandby R.B., Svendsen M.B.S., Madsen M.H., Svendsen L.B., Achiam M.P. Quantification of fluorescence angiography in a porcine model. Langenbeck’s Arch. Surg. 2016;402:655–662. doi: 10.1007/s00423-016-1531-z.
    1. Rønn J.H., Nerup N., Strandby R.B., Svendsen M.B.S., Ambrus R., Svendsen L.B., Achiam M.P. Laser speckle contrast imaging and quantitative fluorescence angiography for perfusion assessment. Langenbecks Arch. Chir. 2019;404:505–515. doi: 10.1007/s00423-019-01789-8.
    1. Lütken C.D., Achiam M.P., Osterkamp J., Svendsen M.B., Nerup N. Quantification of fluorescence angiography: Toward a reliable intraoperative assessment of tissue perfusion—A narrative review. Langenbecks Arch. Surg. 2020;21:21. doi: 10.1007/s00423-020-01966-0.

Source: PubMed

3
Subscribe