Effects of different ischemic preconditioning occlusion pressures on muscle damage induced by eccentric exercise: a study protocol for a randomized controlled placebo clinical trial

Eduardo Pizzo Junior, Allysiê Priscilla de Souza Cavina, Leonardo Kesrouani Lemos, Taíse Mendes Biral, Carlos Marcelo Pastre, Franciele Marques Vanderlei, Eduardo Pizzo Junior, Allysiê Priscilla de Souza Cavina, Leonardo Kesrouani Lemos, Taíse Mendes Biral, Carlos Marcelo Pastre, Franciele Marques Vanderlei

Abstract

Introduction: Due to its greater generation of muscle strength and less metabolic demand, eccentric exercise has been widely used in rehabilitation and for improving physical fitness. However, eccentric exercise can induce muscle damage by providing structural changes and reduced muscle function, so even with the protection caused by the repeated bout effect from eccentric exercise, it is necessary to seek alternatives to reduce this damage caused by stress. Thus, ischemic preconditioning could represent an aid to reduce the damage muscle or increase the protective effect caused by eccentric exercise.

Objectives: To compare the effects of ischemic preconditioning, using different occlusion pressures, on acute and delayed responses to perceptual outcomes, markers of muscle damage, and performance in post-eccentric exercise recovery.

Methods: A randomized controlled placebo clinical trial will be carried out with 80 healthy men aged 18 to 35 years who will be randomly divided into four groups: ischemic preconditioning using total occlusion pressure, ischemic preconditoning with 40% more than total occlusion pressure, placebo (10 mmHg), and control. The ischemic preconditioning protocol will consist of four cycles of ischemia and reperfusion of five minutes each. All groups will perform an eccentric exercise protocol, and assessments will be carried out before, immediately after, and 24, 48, 72, and 96 h after the end of the eccentric exercise to evaluate creatine kinase, blood lactate, perception of recovery using the Likert scale, being sequentially evaluated, pain by the visual analog scale, pain threshold using a pressure algometer, muscle thickness by ultrasound, muscle tone, stiffness and elasticity by myotonometry, vectors of cell integrity through electrical bioimpedance, and maximal voluntary isometric contraction using the isokinetic dynamometer. The trial was registered at ClinicalTrials.gov (NCT04420819).

Discussion: The present study aims to present an alternative technique to reduce muscle damage caused by eccentric exercise, which is easy to apply and low cost. If the benefits are proven, ischemic preconditioning could be used in any clinical practice that aims to minimize the damage caused by exercise, presenting an advance in the prescription of eccentric exercise and directly impacting on the results of post-exercise recovery.

Trial registration: ClinicalTrials.gov NCT04420819 . Registered on 19 May 2020; Last update 24 March 2021.

Keywords: Creatine kinase; Exercise; Ischemic preconditioning; Muscle fatigue; Musculoskeletal pain; Physiological; Randomized controlled trial; Stress.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
Flowchart of the study design. Legend: IPC-TOP (ischemic preconditioning with total occlusion pressure); IPC-40% (ischemic preconditioning with 40% higher pressure is to be applied than the closure pressure); IPC-10 mmHg (preconditioning with 10 mmHg)
Fig. 2
Fig. 2
Study design
Fig. 3
Fig. 3
IPC protocol

References

    1. Walker S, Blazevich AJ, Haff GG, Tufano JJ, Newton RU, Häkkinen K. Greater strength gains after training with accentuated eccentric than traditional isoinertial loads in already strength trained men. Front Physiol. 2016;7(149):1–12.
    1. American College of Sports Medicine American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708. doi: 10.1249/MSS.0b013e3181915670.
    1. Franchi MV, Atherton PJ, Reeves ND, Flück M, Williams J, Mitchell WK, Selby A, Beltran Valls RM, Narici MV. Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiol (Oxf). 2014;210(3):642–654. doi: 10.1111/apha.12225.
    1. Suchomel TJ, Nimphius S, Bellon CR, Stone MH. The importance of muscular strength: training considerations. Sports Med. 2018;48(4):765–785. doi: 10.1007/s40279-018-0862-z.
    1. Douglas J, Pearson S, Ross A, McGuigan M. Chronic adaptations to eccentric training: a systematic review. Sports Med. 2017;47(5):917–941. doi: 10.1007/s40279-016-0628-4.
    1. Komi PV, Kaneko M, Aura O. EMG activity of the leg extensor muscles with special reference to mechanical efficiency in concentric and eccentric exercise. Int J Sports Med. 1987;8(Suppl 1):22–29. doi: 10.1055/s-2008-1025700.
    1. Julian V, Thivel D, Costes F, Touron J, Boirie Y, Pereira B, Perrault H, Duclos M, Richard R. Eccentric training improves body composition by inducing mechanical and metabolic adaptations: a promising approach for overweight and obese individuals. Front Physiol. 2018;9:1013. doi: 10.3389/fphys.2018.01013.
    1. Baroni B, Pinto R, Herzog W, Vaz M. Eccentric resistance training of the knee extensor muscle: training programs and neuromuscular adaptations. Isokinet Exerc Sci. 2015;23(3):183–198. doi: 10.3233/IES-150580.
    1. Rodriguez ECP, Watsford ML, Bower RG, Murphy AJ. The relationship between lower body stiffness and injury incidence in female netballers. Sports Biomech. 2017;16(3):361–373. doi: 10.1080/14763141.2017.1319970.
    1. Bishop PA, Jones E, Woods AK. Recovery from training: a brief review. J Strength Cond. Res. 2008;22(3):1015–1024. doi: 10.1519/JSC.0b013e31816eb518.
    1. Machado AF, Micheletti JK, Lopes JSS, Vanderlei FM, Leal-Junior ECP, Netto Junior J, Pastre CM. Phototherapy on management of creatine kinase activity in general versus localized exercise: a systematic review and meta-analysis. Clin J Sport Med. 2020;30(3):267–274. doi: 10.1097/JSM.0000000000000606.
    1. Machado AF, Ferreira PH, Micheletti JK, Almeida AC, Lemes IR, Vanderlei FM, et al. Can water temperature and immersion time influence the effect of cold water immersion on muscle soreness? A systematic review and meta-analysis. Sports Med. 2016;46(4):503–514. doi: 10.1007/s40279-015-0431-7.
    1. Howatson G, Van Someren KA. The prevention and treatment of exercise induced muscle damage. Sports Med. 2008;38(6):483–503. doi: 10.2165/00007256-200838060-00004.
    1. McHugh MP. Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scand J Med Sci Sports. 2003;13(2):88–97. doi: 10.1034/j.1600-0838.2003.02477.x.
    1. Hyldahl RD, Chen TC, Nosaka K. Mechanisms and Mediators of the Skeletal Muscle Repeated Bout Effect. Exerc Sport Sci Rev. 2017;45(1):24–33. doi: 10.1249/JES.0000000000000095.
    1. Franz A, Behringer M, Nosaka K, Buhren BA, Schrumpf H, Mayer C, Zilkens C, Schumann M. Mechanisms underpinning protection against eccentric exercise-inducedmuscle damage by ischemic preconditioning. Med Hypotheses. 2017;98:21–27. doi: 10.1016/j.mehy.2016.11.008.
    1. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124–1136. doi: 10.1161/01.CIR.74.5.1124.
    1. Slysz JT, Burr JF. Impact of 8 weeks of repeated ischemic preconditioning on running performance. Eur J Appl Physiol. 2019;119(6):1431–1437. doi: 10.1007/s00421-019-04133-6.
    1. Takarada Y, Takazawa H, Ishii N. Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc. 2000;32(12):2035–2039. doi: 10.1097/00005768-200012000-00011.
    1. Patterson SD, Hughes L, Warmington S, Burr J, Scott BR, Owens J, Abe T, Nielsen JL, Libardi CA, Laurentino G, Neto GR, Brandner C, Martin-Hernandez J, Loenneke J. Blood flow restriction exercise: considerations of methodology, application, and safety. Front Physiol. 2019;10:533. doi: 10.3389/fphys.2019.00533.
    1. Beaven CM, Cook CJ, Kilduff L, Drawer S, Gill N. Intermittent lower-limb occlusion enhances recovery after strenuous exercise. Appl Physiol Nutr Metab. 2012;37(6):1132–1139. doi: 10.1139/h2012-101.
    1. Page W, Swan R, Patterson SD. The effect of intermittent lower limb occlusion on recovery following exercise-induced muscle damage: a randomized controlled trial. J Sci Med Sport. 2017;20(8):729–733. doi: 10.1016/j.jsams.2016.11.015.
    1. Wang WZ, Baynosa RC, Zamboni WA. Therapeutic interventions against reperfusion injury in skeletal muscle. J Surg Res. 2011;171(1):175–182. doi: 10.1016/j.jss.2011.07.015.
    1. Franz A, Behringer M, Harmsen JF, Mayer C, Krauspe R, Zilkens C, et al. Ischemic preconditioning blunts muscle damage responses induced by eccentric exercise. Med Sci Sports Exerc. 2018;50(1):109–115. doi: 10.1249/MSS.0000000000001406.
    1. Machado AF, Almeida AC, Micheletti JK, Vanderlei FM, Tribst MF, Netto Junior J, Pastre CM. Dosages of cold-water immersion post exercise on functional and clinical responses: a randomized controlled trial. Scand J Med Sci Sports. 2017;27(11):1356–1363. doi: 10.1111/sms.12734.
    1. Cocking S, Wilson MG, Nichols D, Cable NT, Green DJ, Thijssen DHJ, Jones H. Is there an optimal ischaemic preconditioning dose to improve cycling performance? Int J Sports Physiol Perform. 2018;13(3):274–282. doi: 10.1123/ijspp.2017-0114.
    1. Lindsay A, Petersen C, Ferguson H, Blackwell G, Rickerby S. Lack of a dose response from 7 days of ischemic preconditioning in moderately trained cyclists. Sports Med Int Open. 2018;2(4):E91–E97. doi: 10.1055/a-0639-5035.
    1. Chan AW, Tetzlaff JM, Altman DG, Laupacis A, Gotzsche PC, Krleza-Jeric K, et al. SPIRIT 2013 Statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200–207. doi: 10.7326/0003-4819-158-3-201302050-00583.
    1. Yamato T, Maher C, Saragiotto B, Moseley A, Hoffmann T, Elkins M, Camargo PR. The TIDieR checklist will benefit the physical therapy profession. Braz J Phys Ther. 2016;20(3):191–193. doi: 10.1590/bjpt-rbf.2014.0182.
    1. Yamato TP, Maher CG, Saragiotto BT, Moseley AM, Hoffmann TC, Elkins MR, Brooks D. The TIDieR checklist will benefit the physiotherapy profession. Physiother Can. 2016;68(4):311–312. doi: 10.3138/ptc.68.4.GEE.
    1. Bailey CA, Sato K, Burnett A, Stone MH. Force-production asymmetry in male and female athletes of differing strength levels. Int J Sports Physiol Perform. 2015;10(4):504–508. doi: 10.1123/ijspp.2014-0379.
    1. Bartolomei S, Grillone G, Di Michele R, Cortesi M. A comparison between male and female athletes in relative strength and power performances. J Funct Morphol Kinesiol. 2021;6(1):17. doi: 10.3390/jfmk6010017.
    1. Treweek S, Lockhart P, Pitkethly M, Cook JA, Kjeldstrom M, Johansen M, et al. Methods to improve recruitment to randomised controlled trials: Cochrane systematic review and meta-analysis. BMJ Open. 2013;3(2):e002360. doi: 10.1136/bmjopen-2012-002360.
    1. Dankel SJ, Buckner SL, Counts BR, Jessee MB, Mouser JG, Mattocks KT, et al. The acute muscular response to two distinct blood flow restriction protocols. Physiol. Int. 2017;104(1):64–76. doi: 10.1556/2060.104.2017.1.1.
    1. Hughes L, Jeffries O, Waldron M, Rosenblatt B, Gissane C, Paton B. Influence and reliability of lower-limb arterial occlusion pressure at different body positions. PeerJ. 2018;6:e4697. doi: 10.7717/peerj.4697.
    1. Crenshaw AG, Hargens AR, Gershuni DH, Rydevik B. Wide tourniquet cuffs more effective at lower inflation pressures. Acta Orthop. Scand. 1988;59(4):447–451. doi: 10.3109/17453678809149401.
    1. Lopes TR, Sabino-Carvalho JL, Ferreira THN, Succi JE, Silva AC, Silva BM. Effect of ischemic preconditioning on the recovery of cardiac autonomic control from repeated sprint exercise. Front Physiol. 2018;9:1465. doi: 10.3389/fphys.2018.01465.
    1. Barbosa TC, Machado AC, Braz ID, Fernandez IA, Vianna LC, Nobrega AC, et al. Remote ischemic preconditioning delays fatigue development during handgrip exercise. Scand. J Med Sci. Sports. 2015;25(3):356–364. doi: 10.1111/sms.12229.
    1. Seeger JPH, Timmers S, Ploegmakers DJM, Cable NT, Hopman MTE, Thijssen DHJ. Is delayed ischemic preconditioning as effective on running performance during a 5 km time trial as acute IPC? J Sci Med Sport. 2016;20(2):208–212. doi: 10.1016/j.jsams.2016.03.010.
    1. Hørder M, Jørgensen PJ, Hafkenscheid JC, Carstensen CA, Bachmann C, Bauer K, Neuwald C, Rosalki SB, Foo AY, Vogt W. Creatine kinase determination: a european of creatine kinase determination in serum, plasma and whole blood with the reflotron system. Eur J Clin Chem Clin Biochem. 1991;29(10):691–696.
    1. Bastos FN, Vanderlei LC, Nakamura FY, Bertollo M, Godoy MF, Hoshi RA, et al. Effects of cold water immersion and active recovery on postexercise heart rate variability. Int J Sports Med. 2012;33(11):873–879. doi: 10.1055/s-0032-1301905.
    1. Brancaccio P, Maffulli N, Buonauro R, Limongelli FM. Serum enzyme monitoring in sports medicine. Clin Sports Med. 2008;27(1):1–s18. doi: 10.1016/j.csm.2007.09.005.
    1. Ferreira-Valente MA, Pais-Ribeiro JL, Jensen MP. Validity of four pain intensity rating scales. Pain. 2011;152(10):2399–2404. doi: 10.1016/j.pain.2011.07.005.
    1. Kinser AM, Sands WA, Stone MH. Reliability and validity of a pressure algometer. J Strength Cond Res. 2009;23(1):312–314. doi: 10.1519/JSC.0b013e31818f051c.
    1. Jӧnhagen S, Ackermann P, Saartok T. Forward lunge: a training study of eccentric exercises of the lower limbs. J Strength Cond Res. 2009;23(3):972–978. doi: 10.1519/JSC.0b013e3181a00d98.
    1. Baroni BM, Geremia JM, Rodrigues R, De Azevedo FR, Karamanidis K, Vaz MA. Muscle architecture adaptations to knee extensor eccentric training: rectus femoris vs. vastus lateralis. Muscle Nerve. 2013;48(4):498–506. doi: 10.1002/mus.23785.
    1. Ho CS, Lee MC, Chang CY, Chen WC, Huang WC. Beneficial effects of a negative ion patch on eccentric exercise-induced muscle damage, inflammation, and exercise performance in badminton athletes. Chin J Physiol. 2020;63(1):35–42. doi: 10.4103/CJP.CJP_33_19.
    1. Aird L, Samuel D, Stokes M. Quadriceps muscle tone, elasticity and stiffness in older males: reliability and symmetry using the MyotonPRO. Arch Gerontol Geriatr. 2012;55(2):31–39. doi: 10.1016/j.archger.2012.03.005.
    1. Feng YN, Li YP, Liu CL, Zhang ZJ. Assessing the elastic properties of skeletal muscle and tendon using shearwave ultrasound elastography and MyotonPRO. Sci Rep. 2018;8(1):17064. doi: 10.1038/s41598-018-34719-7.
    1. Nescolarde L, Piccoli A, Román A, Núñez A, Morales R, Tamayo J, Doñate T, Rosell J. Bioelectrical impedance vector analysis in haemodialysis patients: Relation between oedema and mortality. Physiol Meas. 2004;25(5):1271–1280. doi: 10.1088/0967-3334/25/5/016.
    1. Piccoli A, Rossi B, Pillon L, Bucciante G. A new method for monitoring body fluid variation by BIA: The RXc graph. Kidney Int. 1994;46(2):534–539. doi: 10.1038/ki.1994.305.
    1. Norman K, Stobäus N, Pirlich M, Bosy-Westphal A. Bioelectrical phase angle and impedance vector analysis--clinical relevance and applicability of impedance parameters. Clin Nutr. 2012;31(6):854–861. doi: 10.1016/j.clnu.2012.05.008.
    1. Baroni BM, Leal Junior EC, De Marchi T, Lopes AL, Salvador M, Vaz MA. Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur J Appl Physiol. 2010;110(4):789–796. doi: 10.1007/s00421-010-1562-z.
    1. Bailey DM, Erith SJ, Griffin PJ, Dowson A, Brewer DS, Gant N, Williams C. Influence of cold-water immersion on indices of muscle damage following prolonged intermittent shuttle running. J Sports Sci. 2007;25(11):1163–1170. doi: 10.1080/02640410600982659.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2. New York: Routledge; 1988.

Source: PubMed

3
Abonner