Lipoprotein Profiles in Class III Obese Caucasian and African American Women with Nonalcoholic Fatty Liver Disease

Anna E Garcia, Nader Kasim, Robyn A Tamboli, Raul S Gonzalez, Joseph Antoun, Emily A Eckert, Pamela A Marks-Shulman, Julia Dunn, Julia Wattacheril, Taylor Wallen, Naji N Abumrad, Charles Robb Flynn, Anna E Garcia, Nader Kasim, Robyn A Tamboli, Raul S Gonzalez, Joseph Antoun, Emily A Eckert, Pamela A Marks-Shulman, Julia Dunn, Julia Wattacheril, Taylor Wallen, Naji N Abumrad, Charles Robb Flynn

Abstract

Triglyceride content in the liver is regulated by the uptake, production and elimination of lipoproteins, and derangements in these processes contribute to nonalcoholic fatty liver disease (NAFLD). Previous studies show a direct relationship between intrahepatic fat and production of apolipoprotein B100 (apoB100) containing particles, VLDL and LDL, but little consensus exists regarding changes in lipoprotein production in the development of simple steatosis (SS) versus nonalcoholic steatohepatitis (NASH). Further, ethnic variations in lipoproteins among SS and NASH are unknown as is how such variations might contribute to the differential prevalence of disease among Caucasians versus African Americans. In this study, we assessed plasma lipoprotein profiles by nuclear magnetic resonance (NMR) spectroscopy in 70 non-diabetic class III obese females recruited from the surgical weight loss clinic. Of these, 51 females were stratified by biopsy-staged NAFLD severity (histologically normal, SS, or NASH). NASH females displayed increased circulating triglycerides and increased VLDL particle number and size relative to those with histologically normal livers, while total and large LDL concentration decreased in SS versus NASH and correlated with increased insulin resistance (via HOMA2-IR). When Caucasian women were examined alone (n = 41), VLDL and triglycerides increased between normal and SS, while total LDL and apoB100 decreased between SS and NASH along with increased insulin resistance. Compared to Caucasians with SS, African American women with SS displayed reduced triglycerides, VLDL, and small LDL and a more favorable small to large HDL ratio despite having increased BMI and HOMA2-IR. These findings suggest that ApoB100 and lipoprotein subclass particle number and size can delineate steatosis from NASH in obese Caucasian females, but should be interpreted with caution in other ethnicities as African Americans with SS display relatively improved lipoprotein profiles. This may reflect variation in the relationship between dyslipidemia and NAFLD progression across gender and ethnicity.

Trial registration: ClinicalTrials.gov NCT00790309 NCT00802204 NCT00884494 NCT00983463.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Schematic illustrating lipoproteins particles under…
Fig 1. Schematic illustrating lipoproteins particles under investigation in this study.
Fig 2. Ethnic Lipoparticle Comparisons.
Fig 2. Ethnic Lipoparticle Comparisons.
African American women with simple steatosis had less atherogenic lipoprotein profiles relative than Caucasian women with simple steatosis. A) African Americans with simple steatosis (SS) were heavier (*P<0.05) and more insulin resistant B) as measured by homeostatic model assessment index 2 (HOMA2-IR, *P<0.05), yet displayed lower triglycerides (***P<0.001, not shown) and C) lower alanine aminotransferase (ALT, *P<0.05) than Caucasian SS. D) African Americans with SS displayed lower total very-low-density lipoprotein (VLDL) and VLDL sub-fractions (**P<0.01 for all, except small VLDL particle concentration, *P<0.05), E) decreased total and small low-density lipoprotein (LDL; *P<0.05 and **P<0.01, respectively), and F) improved high-density lipoprotein (HDL) profiles (increased large HDL, p = 0.002, and lower small LDL, P = 0.04) relative to Caucasian SS (E-F). Values are mean ± SEM. Data were analyzed by one-way ANOVA, followed by Mann-Whitney t Tests.

References

    1. Fon Tacer K, Rozman D. Nonalcoholic Fatty liver disease: focus on lipoprotein and lipid deregulation. J Lipids. 2011;2011:783976 Epub 2011/07/21. 10.1155/2011/783976
    1. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115(5):1343–51. Epub 2005/05/03. 10.1172/JCI23621
    1. Anstee QM, Targher G, Day CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol. 2013;10(6):330–44. Epub 2013/03/20. 10.1038/nrgastro.2013.41 .
    1. Ginsberg HN, Zhang YL, Hernandez-Ono A. Metabolic syndrome: focus on dyslipidemia. Obesity (Silver Spring). 2006;14 Suppl 1:41S–9S. Epub 2006/04/29. 10.1038/oby.2006.281 .
    1. Cohen DE, Fisher EA. Lipoprotein metabolism, dyslipidemia, and nonalcoholic fatty liver disease. Semin Liver Dis. 2013;33(4):380–8. Epub 2013/11/14. 10.1055/s-0033-1358519
    1. Brunt EM. Nonalcoholic steatohepatitis: definition and pathology. Semin Liver Dis. 2001;21(1):3–16. Epub 2001/04/12. .
    1. Ruhl CE, Everhart JE. Epidemiology of nonalcoholic fatty liver. Clin Liver Dis. 2004;8(3):501–19, vii. Epub 2004/08/28. 10.1016/j.cld.2004.04.008 .
    1. Bellentani S, Marino M. Epidemiology and natural history of non-alcoholic fatty liver disease (NAFLD). Ann Hepatol. 2009;8 Suppl 1:S4–8. Epub 2009/06/25. .
    1. Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004;40(6):1387–95. Epub 2004/11/27. 10.1002/hep.20466 .
    1. Adiels M, Olofsson SO, Taskinen MR, Boren J. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol. 2008;28(7):1225–36. Epub 2008/06/21. 10.1161/atvbaha.107.160192 .
    1. Osei K. Metabolic syndrome in blacks: are the criteria right? Curr Diab Rep. 2010;10(3):199–208. 10.1007/s11892-010-0116-4 .
    1. Chan DC, Watts GF, Gan S, Wong AT, Ooi EM, Barrett PH. Nonalcoholic fatty liver disease as the transducer of hepatic oversecretion of very-low-density lipoprotein-apolipoprotein B-100 in obesity. Arteriosclerosis, thrombosis, and vascular biology. 2010;30(5):1043–50. Epub 2010/02/13. 10.1161/ATVBAHA.109.202275 .
    1. Magkos F, Fabbrini E, Mohammed BS, Patterson BW, Klein S. Increased whole-body adiposity without a concomitant increase in liver fat is not associated with augmented metabolic dysfunction. Obesity (Silver Spring). 2010;18(8):1510–5. 10.1038/oby.2010.90
    1. Fabbrini E, Mohammed BS, Magkos F, Korenblat KM, Patterson BW, Klein S. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology. 2008;134(2):424–31. Epub 2008/02/05. 10.1053/j.gastro.2007.11.038
    1. Charlton M, Sreekumar R, Rasmussen D, Lindor K, Nair KS. Apolipoprotein synthesis in nonalcoholic steatohepatitis. Hepatology. 2002;35(4):898–904. Epub 2002/03/27. 10.1053/jhep.2002.32527 .
    1. Fujita K, Nozaki Y, Wada K, Yoneda M, Fujimoto Y, Fujitake M, et al. Dysfunctional very-low-density lipoprotein synthesis and release is a key factor in nonalcoholic steatohepatitis pathogenesis. Hepatology. 2009;50(3):772–80. Epub 2009/08/04. 10.1002/hep.23094 .
    1. Toledo FG, Sniderman AD, Kelley DE. Influence of hepatic steatosis (fatty liver) on severity and composition of dyslipidemia in type 2 diabetes. Diabetes Care. 2006;29(8):1845–50. Epub 2006/07/29. 10.2337/dc06-0455 .
    1. DeFilippis AP, Blaha MJ, Martin SS, Reed RM, Jones SR, Nasir K, et al. Nonalcoholic fatty liver disease and serum lipoproteins: the Multi-Ethnic Study of Atherosclerosis. Atherosclerosis. 2013;227(2):429–36. Epub 2013/02/20. 10.1016/j.atherosclerosis.2013.01.022 .
    1. El-Badry AM, Breitenstein S, Jochum W, Washington K, Paradis V, Rubbia-Brandt L, et al. Assessment of hepatic steatosis by expert pathologists: the end of a gold standard. Ann Surg. 2009;250(5):691–7. Epub 2009/10/07. 10.1097/SLA.0b013e3181bcd6dd .
    1. Lorenzo C, Hanley AJ, Rewers MJ, Haffner SM. The association of alanine aminotransferase within the normal and mildly elevated range with lipoproteins and apolipoproteins: the Insulin Resistance Atherosclerosis Study. Diabetologia. 2013;56(4):746–57. Epub 2013/01/25. 10.1007/s00125-012-2826-4
    1. Ghamar-Chehreh ME, Amini M, Khedmat H, Moayed Alavian S, Daraei F, Mohtashami R, et al. Elevated alanine aminotransferase activity is not associated with dyslipidemias, but related to insulin resistance and higher disease grades in non-diabetic non-alcoholic fatty liver disease. Asian Pac J Trop Biomed. 2012;2(9):702–6. Epub 2013/04/10. 10.1016/S2221-1691(12)60213-5
    1. Oh SY, Cho YK, Kang MS, Yoo TW, Park JH, Kim HJ, et al. The association between increased alanine aminotransferase activity and metabolic factors in nonalcoholic fatty liver disease. Metabolism. 2006;55(12):1604–9. Epub 2006/12/05. 10.1016/j.metabol.2006.07.021 .
    1. Geloneze B, Vasques AC, Stabe CF, Pareja JC, Rosado LE, Queiroz EC, et al. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS). Arq Bras Endocrinol Metabol. 2009;53(2):281–7. Epub 2009/05/26. .
    1. Otvos JD. Measurement of lipoprotein subclass profiles by nuclear magnetic resonance spectroscopy. Clin Lab. 2002;48(3–4):171–80. Epub 2002/04/06. .
    1. Jeyarajah EJ, Cromwell WC, Otvos JD. Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. Clin Lab Med. 2006;26(4):847–70. Epub 2006/11/18. 10.1016/j.cll.2006.07.006 .
    1. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1(7285):785–9. Epub 1963/04/13. .
    1. McGarry JD. What if Minkowski had been ageusic? An alternative angle on diabetes. Science. 1992;258(5083):766–70. Epub 1992/10/30. .
    1. Goff DC Jr., D'Agostino RB Jr., Haffner SM, Otvos JD. Insulin resistance and adiposity influence lipoprotein size and subclass concentrations. Results from the Insulin Resistance Atherosclerosis Study. Metabolism. 2005;54(2):264–70. Epub 2005/02/04. 10.1016/j.metabol.2004.09.002 .
    1. Garvey WT, Kwon S, Zheng D, Shaughnessy S, Wallace P, Hutto A, et al. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes. 2003;52(2):453–62. Epub 2003/01/24. .
    1. Shalaurova I, Connelly MA, Garvey WT, Otvos JD. Lipoprotein Insulin Resistance Index: A Lipoprotein Particle-Derived Measure of Insulin Resistance. Metab Syndr Relat Disord. 2014. Epub 2014/06/25. 10.1089/met.2014.0050 .
    1. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology. 2012;142(7):1592–609. Epub 2012/06/05. 10.1053/j.gastro.2012.04.001 .
    1. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–21. Epub 2005/05/26. 10.1002/hep.20701 .
    1. Maximos M, Bril F, Portillo Sanchez P, Lomonaco R, Orsak B, Biernacki D, et al. The role of liver fat and insulin resistance as determinants of plasma aminotransferase elevation in nonalcoholic fatty liver disease. Hepatology. 2015;61(1):153–60. Epub 2014/08/26. 10.1002/hep.27395 .
    1. Otvos JD, Mora S, Shalaurova I, Greenland P, Mackey RH, Goff DC Jr. Clinical implications of discordance between low-density lipoprotein cholesterol and particle number. J Clin Lipidol. 2011;5(2):105–13. Epub 2011/03/12. 10.1016/j.jacl.2011.02.001
    1. Mackey RH, Greenland P, Goff DC Jr., Lloyd-Jones D, Sibley CT, Mora S. High-density lipoprotein cholesterol and particle concentrations, carotid atherosclerosis, and coronary events: MESA (multi-ethnic study of atherosclerosis). J Am Coll Cardiol. 2012;60(6):508–16. Epub 2012/07/17. 10.1016/j.jacc.2012.03.060
    1. Mora S, Otvos JD, Rosenson RS, Pradhan A, Buring JE, Ridker PM. Lipoprotein particle size and concentration by nuclear magnetic resonance and incident type 2 diabetes in women. Diabetes. 2010;59(5):1153–60. Epub 2010/02/27. 10.2337/db09-1114
    1. Targher G, Byrne CD. Diagnosis and management of nonalcoholic fatty liver disease and its hemostatic/thrombotic and vascular complications. Semin Thromb Hemost. 2013;39(2):214–28. Epub 2013/02/12. 10.1055/s-0033-1334866 .
    1. Ellington AA, Kullo IJ. Atherogenic lipoprotein subprofiling. Advances in clinical chemistry. 2008;46:295–317. Epub 2008/11/14. .
    1. Shelness GS, Ledford AS. Evolution and mechanism of apolipoprotein B-containing lipoprotein assembly. Curr Opin Lipidol. 2005;16(3):325–32. Epub 2005/05/14. .
    1. Verges B. Abnormal hepatic apolipoprotein B metabolism in type 2 diabetes. Atherosclerosis. 2010;211(2):353–60. Epub 2010/03/02. 10.1016/j.atherosclerosis.2010.01.028 .
    1. Obika M, Noguchi H. Diagnosis and evaluation of nonalcoholic fatty liver disease. Exp Diabetes Res. 2012;2012:145754 Epub 2011/11/24. 10.1155/2012/145754
    1. Morling JR, Fallowfield JA, Guha IN, Nee LD, Glancy S, Williamson RM, et al. Using non-invasive biomarkers to identify hepatic fibrosis in people with type 2 diabetes mellitus: the Edinburgh type 2 diabetes study. J Hepatol. 2014;60(2):384–91. Epub 2014/02/12. 10.1016/j.jhep.2013.10.017 .
    1. Mannisto VT, Simonen M, Soininen P, Tiainen M, Kangas AJ, Kaminska D, et al. Lipoprotein subclass metabolism in nonalcoholic steatohepatitis. J Lipid Res. 2014;55(12):2676–84. 10.1194/jlr.P054387
    1. Sumner AE. The relationship of body fat to metabolic disease: influence of sex and ethnicity. Gender medicine. 2008;5(4):361–71. 10.1016/j.genm.2008.11.003
    1. Musso G, Cassader M, De Michieli F, Rosina F, Orlandi F, Gambino R. Nonalcoholic steatohepatitis versus steatosis: adipose tissue insulin resistance and dysfunctional response to fat ingestion predict liver injury and altered glucose and lipoprotein metabolism. Hepatology. 2012;56(3):933–42. Epub 2012/06/12. 10.1002/hep.25739 .
    1. Siddiqui MS, Fuchs M, Idowu M, Luketic VA, Boyett S, Sargeant C, et al. Severity of Nonalcoholic Fatty Liver Disease and Progression to Cirrhosis Associate With Atherogenic Lipoprotein Profile. Clin Gastroenterol Hepatol. 2014. 10.1016/j.cgh.2014.10.008 .
    1. Pan JJ, Fallon MB. Gender and racial differences in nonalcoholic fatty liver disease. World J Hepatol. 2014;6(5):274–83. Epub 2014/05/29. 10.4254/wjh.v6.i5.274
    1. Yu SS, Castillo DC, Courville AB, Sumner AE. The triglyceride paradox in people of African descent. Metab Syndr Relat Disord. 2012;10(2):77–82. Epub 2012/01/10. 10.1089/met.2011.0108
    1. Kallwitz ER, Guzman G, TenCate V, Vitello J, Layden-Almer J, Berkes J, et al. The histologic spectrum of liver disease in African-American, non-Hispanic white, and Hispanic obesity surgery patients. Am J Gastroenterol. 2009;104(1):64–9. Epub 2008/12/23. 10.1038/ajg.2008.12 .
    1. Frazier-Wood AC, Manichaikul A, Aslibekyan S, Borecki IB, Goff DC, Hopkins PN, et al. Genetic variants associated with VLDL, LDL and HDL particle size differ with race/ethnicity. Hum Genet. 2013;132(4):405–13. Epub 2012/12/25. 10.1007/s00439-012-1256-1
    1. Wee CC, Huskey KW, Bolcic-Jankovic D, Colten ME, Davis RB, Hamel M. Sex, race, and consideration of bariatric surgery among primary care patients with moderate to severe obesity. J Gen Intern Med. 2014;29(1):68–75. Epub 2013/09/21. 10.1007/s11606-013-2603-1
    1. Lynch CS, Chang JC, Ford AF, Ibrahim SA. Obese African-American women's perspectives on weight loss and bariatric surgery. J Gen Intern Med. 2007;22(7):908–14. Epub 2007/04/21. 10.1007/s11606-007-0218-0
    1. Lazo M, Hernaez R, Eberhardt MS, Bonekamp S, Kamel I, Guallar E, et al. Prevalence of nonalcoholic fatty liver disease in the United States: the Third National Health and Nutrition Examination Survey, 1988–1994. Am J Epidemiol. 2013;178(1):38–45. Epub 2013/05/25. 10.1093/aje/kws448

Source: PubMed

3
Abonner