Correction of metabolic acidosis improves insulin resistance in chronic kidney disease

Antonio Bellasi, Lucia Di Micco, Domenico Santoro, Stefania Marzocco, Emanuele De Simone, Mario Cozzolino, Luca Di Lullo, Pasquale Guastaferro, Biagio Di Iorio, UBI study investigators, Simona Adesso, Annamaria Bruzzese, Giuseppe Conte, Adamasco Cupisti, Antonella De Blasio, Alfonso Frallicciardi, Rachele Grifa, Rosa Martino, Matteo Piemontese, Maria Luisa Sirico, Giuseppe Struzziero, Raffaele Tortoriello, Fabio Vitale, Antonio Bellasi, Lucia Di Micco, Domenico Santoro, Stefania Marzocco, Emanuele De Simone, Mario Cozzolino, Luca Di Lullo, Pasquale Guastaferro, Biagio Di Iorio, UBI study investigators, Simona Adesso, Annamaria Bruzzese, Giuseppe Conte, Adamasco Cupisti, Antonella De Blasio, Alfonso Frallicciardi, Rachele Grifa, Rosa Martino, Matteo Piemontese, Maria Luisa Sirico, Giuseppe Struzziero, Raffaele Tortoriello, Fabio Vitale

Abstract

Background: Correction of metabolic acidosis (MA) with nutritional therapy or bicarbonate administration is widely used in chronic kidney disease (CKD) patients. However, it is unknown whether these interventions reduce insulin resistance (IR) in diabetic patients with CKD. We sought to evaluate the effect of MA correction on endogenous insulin action in diabetic type 2 (DM2) CKD patients.

Methods: A total of 145 CKD subjects (83 men e 62 women) with DM2 treated with oral antidiabetic drugs were included in the study and followed up to 1 year. All patients were randomly assigned 1:1 to either open-label (A) oral bicarbonate to achieve serum bicarbonate levels of 24-28 mmol/L (treatment group) or (B) no treatment (control group). The Homeostatic model assessment (HOMA) index was used to evaluate IR at study inception and conclusion. Parametric and non-parametric tests as well as linear regression were used.

Results: At baseline no differences in demographic and clinical characteristics between the two groups was observed. Average dose of bicarbonate in the treatment group was 0.7 ± 0.2 mmol/kg. Treated patients showed a better metabolic control as confirmed by lower insulin levels (13.4 ± 5.2 vs 19.9 ± 6.3; for treated and control subjects respectively; p < 0.001), Homa-IR (5.9[5.0-7.0] vs 6.3[5.3-8.2]; p = 0.01) and need for oral antidiabetic drugs. The serum bicarbonate and HOMA-IR relationship was non-linear and the largest HOMA-IR reduction was noted for serum bicarbonate levels between 24 and 28 mmol/l. Adjustment for confounders, suggests that serum bicarbonate rather than treatment drives the effect on HOMA-IR.

Conclusions: Serum bicarbonate is related to IR and the largest HOMA-IR reduction is noted for serum bicarbonate between 24 and 28 mmol/l. Treatment with bicarbonate influences IR. However, changes in serum bicarbonate explains the effect of treatment on HOMA index. Future efforts are required to validate these results in diabetic and non-diabetic CKD patients.

Trial registration: The trial was registered at www.clinicaltrial.gov (Use of Bicarbonate in Chronic Renal Insufficiency (UBI) study - NCT01640119 ).

Keywords: CKD; Diabetes; Homa-test; Metabolic acidosis; Sodium bicarbonate.

Figures

Fig. 1
Fig. 1
The bagplots describe the association between serum bicarbonate and HOMA test in subjects randomized to oral sodium bicarbonate (Treated) or conventional therapy (controls) at study inception and conclusion. Legend: The inner polygon (called bag) contains 50 % of all points. Observations outside the outermost polygon (called fence) are outliers. The observations between the bag and fence are marked by line segments. The asterisk symbol (*) near the center of the graph represents the bivariate median
Fig. 2
Fig. 2
The scatterplots represent the relationship between serum bicarbonate (a) and changes in serum bicarbonate (b) and HOMA index at study completion. Legend: solid green line represents the linear regression line; solid red line represents the smoothed linear regression line

References

    1. Collaborators GBDRF, Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, Brauer M, Burnett R, Casey D, Coates MM, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(10010):2287–323. doi: 10.1016/S0140-6736(15)00128-2.
    1. DALYs GBD, Collaborators H. Murray CJ, Barber RM, Foreman KJ, Abbasoglu Ozgoren A, Abd-Allah F, Abera SF, Aboyans V, Abraham JP, et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. Lancet. 2015;386(10009):2145–91. doi: 10.1016/S0140-6736(15)61340-X.
    1. Simon EE, Hamm LL. A basic approach to CKD. Kidney Int. 2010;77(7):567–9. doi: 10.1038/ki.2009.516.
    1. Teta D. Insulin resistance as a therapeutic target for chronic kidney disease. J Ren Nutr. 2015;25(2):226–9. doi: 10.1053/j.jrn.2014.10.019.
    1. Garibotto G, Sofia A, Russo R, Paoletti E, Bonanni A, Parodi EL, Viazzi F, Verzola D. Insulin sensitivity of muscle protein metabolism is altered in patients with chronic kidney disease and metabolic acidosis. Kidney Int. 2015;88(6):1419–26. doi: 10.1038/ki.2015.247.
    1. Thomas SS, Zhang L, Mitch WE. Molecular mechanisms of insulin resistance in chronic kidney disease. Kidney Int. 2015;88(6):1233–9. doi: 10.1038/ki.2015.305.
    1. Souto G, Donapetry C, Calvino J, Adeva MM. Metabolic acidosis-induced insulin resistance and cardiovascular risk. Metab Syndr Relat Disord. 2011;9(4):247–53. doi: 10.1089/met.2010.0108.
    1. Goraya N, Simoni J, Jo CH, Wesson DE. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate. Kidney Int. 2014;86(5):1031–8. doi: 10.1038/ki.2014.83.
    1. Loniewski I, Wesson DE. Bicarbonate therapy for prevention of chronic kidney disease progression. Kidney Int. 2014;85(3):529–35. doi: 10.1038/ki.2013.401.
    1. Goraya N, Simoni J, Jo CH, Wesson DE. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin J Am Soc Nephrol. 2013;8(3):371–81. doi: 10.2215/CJN.02430312.
    1. Di Iorio B, Aucella F, Conte G, Cupisti A, Santoro D. A prospective, multicenter, randomized, controlled study: the correction of metabolic acidosis with use of bicarbonate in Chronic Renal Insufficiency (UBI) Study. J Nephrol. 2012;25(3):437–40. doi: 10.5301/jn.5000014.
    1. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27(6):1487–95. doi: 10.2337/diacare.27.6.1487.
    1. Emoto M, Nishizawa Y, Maekawa K, Hiura Y, Kanda H, Kawagishi T, Shoji T, Okuno Y, Morii H. Homeostasis model assessment as a clinical index of insulin resistance in type 2 diabetic patients treated with sulfonylureas. Diabetes Care. 1999;22(5):818–22. doi: 10.2337/diacare.22.5.818.
    1. Stumvoll M, Mitrakou A, Pimenta W, Jenssen T, Yki-Jarvinen H, Van Haeften T, Renn W, Gerich J. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care. 2000;23(3):295–301. doi: 10.2337/diacare.23.3.295.
    1. Bonora E, Targher G, Alberiche M, Bonadonna RC, Saggiani F, Zenere MB, Monauni T, Muggeo M. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care. 2000;23(1):57–63. doi: 10.2337/diacare.23.1.57.
    1. Katsuki A, Sumida Y, Gabazza EC, Murashima S, Furuta M, Araki-Sasaki R, Hori Y, Yano Y, Adachi Y. Homeostasis model assessment is a reliable indicator of insulin resistance during follow-up of patients with type 2 diabetes. Diabetes Care. 2001;24(2):362–5. doi: 10.2337/diacare.24.2.362.
    1. de Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol. 2009;20(9):2075–84. doi: 10.1681/ASN.2008111205.
    1. Tessari P, Cecchet D, Cosma A, Puricelli L, Millioni R, Vedovato M, Tiengo A. Insulin resistance of amino acid and protein metabolism in type 2 diabetes. Clin Nutr. 2011;30(3):267–72. doi: 10.1016/j.clnu.2011.02.009.
    1. Louard RJ, Fryburg DA, Gelfand RA, Barrett EJ. Insulin sensitivity of protein and glucose metabolism in human forearm skeletal muscle. J Clin Invest. 1992;90(6):2348–54. doi: 10.1172/JCI116124.
    1. Ballmer PE, McNurlan MA, Hulter HN, Anderson SE, Garlick PJ, Krapf R. Chronic metabolic acidosis decreases albumin synthesis and induces negative nitrogen balance in humans. J Clin Invest. 1995;95(1):39–45. doi: 10.1172/JCI117668.
    1. Adabimohazab R, Garfinkel A, Milam EC, Frosch O, Mangone A, Convit A. Does inflammation mediate the association between obesity and insulin resistance? Inflammation. 2016;39(3):994–1003.
    1. Liao MT, Sung CC, Hung KC, Wu CC, Lo L, Lu KC. Insulin resistance in patients with chronic kidney disease. J Biomed Biotechnol. 2012;2012:691369.
    1. Koppe L, Pelletier CC, Alix PM, Kalbacher E, Fouque D, Soulage CO, Guebre-Egziabher F. Insulin resistance in chronic kidney disease: new lessons from experimental models. Nephrol Dial Transplant. 2014;29(9):1666–74. doi: 10.1093/ndt/gft435.
    1. de Boer IH, Zelnick L, Afkarian M, Ayers E, Curtin L, Himmelfarb J, Ikizler TA, Kahn SE, Kestenbaum B, Utzschneider K. Impaired glucose and insulin homeostasis in moderate-severe CKD. J Am Soc Nephrol. 2016.
    1. Mandel EI, Curhan GC, Hu FB, Taylor EN. Plasma bicarbonate and risk of type 2 diabetes mellitus. CMAJ. 2012;184(13):E719–25. doi: 10.1503/cmaj.120438.
    1. Rebholz CM, Coresh J, Grams ME, Steffen LM, Anderson CA, Appel LJ, Crews DC. Dietary acid load and incident chronic kidney disease: results from the ARIC study. Am J Nephrol. 2015;42(6):427–35. doi: 10.1159/000443746.
    1. Kraut JA, Madias NE. Metabolic acidosis of CKD: an update. Am J Kidney Dis. 2016;67(2):307–17. doi: 10.1053/j.ajkd.2015.08.028.
    1. Raphael KL. Approach to the treatment of chronic metabolic acidosis in CKD. Am J Kidney Dis. 2016;67(4):696–702. doi: 10.1053/j.ajkd.2015.12.016.
    1. Farwell WR, Taylor EN. Serum bicarbonate, anion gap and insulin resistance in the National Health and Nutrition Examination Survey. Diabet Med. 2008;25(7):798–804. doi: 10.1111/j.1464-5491.2008.02471.x.
    1. Kobayashi S, Maesato K, Moriya H, Ohtake T, Ikeda T. Insulin resistance in patients with chronic kidney disease. Am J Kidney Dis. 2005;45(2):275–80. doi: 10.1053/j.ajkd.2004.09.034.
    1. Ikizler HO, Zelnick L, Ruzinski J, Curtin L, Utzschneider KM, Kestenbaum B, Himmelfarb J, de Boer IH. Dietary acid load is associated with serum bicarbonate but not insulin sensitivity in chronic kidney disease. J Ren Nutr. 2016;26(2):93–102. doi: 10.1053/j.jrn.2015.08.008.
    1. Leyking S, Fliser D. Insulin resistance in CKD. Clin J Am Soc Nephrol. 2014;9(4):638–40. doi: 10.2215/CJN.01290214.
    1. Shah SN, Abramowitz M, Hostetter TH, Melamed ML. Serum bicarbonate levels and the progression of kidney disease: a cohort study. Am J Kidney Dis. 2009;54(2):270–7. doi: 10.1053/j.ajkd.2009.02.014.
    1. Mahajan A, Simoni J, Sheather SJ, Broglio KR, Rajab MH, Wesson DE. Daily oral sodium bicarbonate preserves glomerular filtration rate by slowing its decline in early hypertensive nephropathy. Kidney Int. 2010;78(3):303–9. doi: 10.1038/ki.2010.129.
    1. Raphael KL, Wei G, Baird BC, Greene T, Beddhu S. Higher serum bicarbonate levels within the normal range are associated with better survival and renal outcomes in African Americans. Kidney Int. 2011;79(3):356–62. doi: 10.1038/ki.2010.388.
    1. Banerjee T, Crews DC, Wesson DE, Tilea A, Saran R, Rios Burrows N, Williams DE, Powe NR, Centers for Disease C, Prevention Chronic Kidney Disease Surveillance T Dietary acid load and chronic kidney disease among adults in the United States. BMC Nephrol. 2014;15:137. doi: 10.1186/1471-2369-15-137.
    1. Scialla JJ, Appel LJ, Astor BC, Miller ER, 3rd, Beddhu S, Woodward M, Parekh RS, Anderson CA, African American Study of Kidney D, Hypertension Study G Net endogenous acid production is associated with a faster decline in GFR in African Americans. Kidney Int. 2012;82(1):106–12. doi: 10.1038/ki.2012.82.
    1. Scialla JJ, Anderson CA. Dietary acid load: a novel nutritional target in chronic kidney disease? Adv Chronic Kidney Dis. 2013;20(2):141–9. doi: 10.1053/j.ackd.2012.11.001.
    1. Chauveau P, Combe C, Fouque D, Aparicio M. Vegetarianism: advantages and drawbacks in patients with chronic kidney diseases. J Ren Nutr. 2013;23(6):399–405. doi: 10.1053/j.jrn.2013.08.004.
    1. Scialla JJ, Appel LJ, Wolf M, Yang W, Zhang X, Sozio SM, Miller ER, 3rd, Bazzano LA, Cuevas M, Glenn MJ, et al. Plant protein intake is associated with fibroblast growth factor 23 and serum bicarbonate levels in patients with chronic kidney disease: the Chronic Renal Insufficiency Cohort study. J Ren Nutr. 2012;22(4):379–88. doi: 10.1053/j.jrn.2012.01.026.
    1. Garcia-Estevez DA, Araujo-Vilar D, Fiestras-Janeiro G, Saavedra-Gonzalez A, Cabezas-Cerrato J. Comparison of several insulin sensitivity indices derived from basal plasma insulin and glucose levels with minimal model indices. Horm Metab Res. 2003;35(1):13–7. doi: 10.1055/s-2003-38385.
    1. Hermans MP, Levy JC, Morris RJ, Turner RC. Comparison of insulin sensitivity tests across a range of glucose tolerance from normal to diabetes. Diabetologia. 1999;42(6):678–87. doi: 10.1007/s001250051215.

Source: PubMed

3
Abonner