Virtual reality gait training versus non-virtual reality gait training for improving participation in subacute stroke survivors: study protocol of the ViRTAS randomized controlled trial

Ilona J M de Rooij, Ingrid G L van de Port, Johanna M A Visser-Meily, Jan-Willem G Meijer, Ilona J M de Rooij, Ingrid G L van de Port, Johanna M A Visser-Meily, Jan-Willem G Meijer

Abstract

Background: A stroke often results in gait impairments, activity limitations and restricted participation in daily life. Virtual reality (VR) has shown to be beneficial for improving gait ability after stroke. Previous studies regarding VR focused mainly on improvements in functional outcomes. As participation in daily life is an important goal for rehabilitation after stroke, it is of importance to investigate if VR gait training improves participation. The primary aim of this study is to examine the effect of VR gait training on participation in community-living people after stroke.

Methods/design: The ViRTAS study comprises a single-blinded, randomized controlled trial with two parallel groups. Fifty people between 2 weeks and 6 months after stroke, who experience constraints with walking in daily life, are randomly assigned to the virtual reality gait training (VRT) group or the non-virtual reality gait training (non-VRT) group. Both training interventions consist of 12 30-min sessions in an outpatient rehabilitation clinic during 6 weeks. Assessments are performed at baseline, post intervention and 3 months post intervention. The primary outcome is participation measured with the Utrecht Scale for Evaluation of Rehabilitation-Participation (USER-P). Secondary outcomes are subjective physical functioning, functional mobility, walking ability, walking activity, fatigue, anxiety and depression, falls efficacy and quality of life.

Discussion: The results of the study provide insight into the effect of VR gait training on participation after stroke.

Trial registration: Netherlands National Trial Register, Identifier NTR6215 . Registered on 3 February 2017.

Keywords: Gait; Rehabilitation; Stroke; virtual reality.

Conflict of interest statement

Ethics approval and consent to participate

The protocol of the ViRTAS study has been approved by the Medical Ethics Review Committee of Slotervaart Hospital and Reade, Amsterdam, The Netherlands (P1668, NL59737.048.16). Written informed consent will be obtained from all people who agree to take part in the study.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flowchart of the study procedure
Fig. 2
Fig. 2
Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) schedule of enrollment, interventions and assessments
Fig. 3
Fig. 3
Setup of the virtual reality gait training intervention on the Gait Real-time Analysis Interactive Lab (GRAIL)

References

    1. Feigin VL, Norrving B, Mensah GA. Global Burden of Stroke. Circ Res. 2017;120(3):439–448. doi: 10.1161/CIRCRESAHA.116.308413.
    1. World Stroke Organization. Annual Report 2016. 2016. . Accessed 29 Aug 2017.
    1. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8(8):741–754. doi: 10.1016/S1474-4422(09)70150-4.
    1. Pollock C, Eng J, Garland S. Clinical measurement of walking balance in people post stroke: a systematic review. Clin Rehabil. 2011;25(8):693–708. doi: 10.1177/0269215510397394.
    1. Jørgensen HS, Nakayama H, Raaschou HO, Olsen TS. Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995;76(1):27–32. doi: 10.1016/S0003-9993(95)80038-7.
    1. Perry J, Garrett M, Gronley JK, Mulroy SJ. Classification of walking handicap in the stroke population. Stroke. 1995;26(6):982–989. doi: 10.1161/01.STR.26.6.982.
    1. Mayo NE, Wood-Dauphinee S, Côté R, Durcan L, Carlton J. Activity, participation, and quality of life 6 months poststroke. Arch Phys Med Rehabil. 2002;83(8):1035–1042. doi: 10.1053/apmr.2002.33984.
    1. Plummer-D'Amato P, Altmann LJ, Saracino D, Fox E, Behrman AL, Marsiske M. Interactions between cognitive tasks and gait after stroke: a dual task study. Gait Posture. 2008;27(4):683–688. doi: 10.1016/j.gaitpost.2007.09.001.
    1. Yang L, Lam FM, Liao LR, Huang MZ, He CQ, Pang MY. Psychometric properties of dual-task balance and walking assessments for individuals with neurological conditions: a systematic review. Gait Posture. 2017;52:110–123. doi: 10.1016/j.gaitpost.2016.11.007.
    1. Field MJ, Gebruers N, Shanmuga Sundaram T, Nicholson S, Mead G. Physical activity after stroke: a systematic review and meta-analysis. ISRN Stroke. 2013;2013:1–13. doi: 10.1155/2013/464176.
    1. van der Zee CH, Visser-Meily JM, Lindeman E, Jaap Kappelle L, Post MW. Participation in the chronic phase of stroke. Top Stroke Rehabil. 2013;20(1):52–61. doi: 10.1310/tsr2001-52.
    1. de Graaf JA, van Mierlo ML, Post MWM, Achterberg WP, Kappelle LJ, Visser-Meily JMA. Long-term restrictions in participation in stroke survivors under and over 70 years of age. Disabil Rehabil. 2018;40(6):637-45.
    1. Zahuranec DB, Skolarus LE, Feng C, Freedman VA, Burke JF. Activity limitations and subjective well-being after stroke. Neurology. 2017;89(9):944–950. doi: 10.1212/WNL.0000000000004286.
    1. Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017;(11):CD008349.
    1. de Rooij IJM, van de Port IGL, Meijer J-WG. Effect of virtual reality training on balance and gait ability in patients with stroke: systematic review and meta-analysis. Phys Ther. 2016;96(12):1905–1918. doi: 10.2522/ptj.20160054.
    1. Corbetta D, Imeri F, Gatti R. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: a systematic review. J Physiother. 2015;61(3):117–124. doi: 10.1016/j.jphys.2015.05.017.
    1. Levin MF, Weiss PL, Keshner EA. Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles. Phys Ther. 2015;95(3):415–425. doi: 10.2522/ptj.20130579.
    1. Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011;377(9778):1693–1702. doi: 10.1016/S0140-6736(11)60325-5.
    1. Winstein CJ, Merians AS, Sullivan KJ. Motor learning after unilateral brain damage. Neuropsychologia. 1999;37(8):975–987. doi: 10.1016/S0028-3932(98)00145-6.
    1. Holden MK. Virtual environments for motor rehabilitation: review. CyberPsychol Behav. 2005;8(3):187–211. doi: 10.1089/cpb.2005.8.187.
    1. Luque-Moreno C, Ferragut-Garcías A, Rodríguez-Blanco C, Heredia-Rizo AM, Oliva-Pascual-Vaca J, Kiper P, Oliva-Pascual-Vaca Á. A decade of progress using virtual reality for poststroke lower extremity rehabilitation: systematic review of the intervention methods. Biomed Res Int. 2015;2015:342529. doi: 10.1155/2015/342529.
    1. Darekar A, McFadyen BJ, Lamontagne A, Fung J. Efficacy of virtual reality-based intervention on balance and mobility disorders post-stroke: a scoping review. J Neuroeng Rehabil. 2015;12:46. doi: 10.1186/s12984-015-0035-3.
    1. Mehrholz J, Pohl M, Elsner B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2017;(8):CD002840.
    1. Eng JJ, Tang PF. Gait training strategies to optimize walking ability in people with stroke: a synthesis of the evidence. Expert Rev Neurother. 2007;7(10):1417–1436. doi: 10.1586/14737175.7.10.1417.
    1. Wevers L, van de Port I, Vermue M, Mead G, Kwakkel G. Effects of task-oriented circuit class training on walking competency after stroke: a systematic review. Stroke. 2009;40(7):2450–2459. doi: 10.1161/STROKEAHA.108.541946.
    1. Chan AW, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin JA, Dickersin K, Hrobjartsson A, Schulz KF, Parulekar WR, Krleza-Jeric K, Laupacis A, Moher D. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586. doi: 10.1136/bmj.e7586.
    1. WHO . International Classification of Functioning, Disability and Health: ICF. Geneva: WHO; 2001.
    1. de Rooij IJM, van de Port IGL, Meijer J-WG. Feasibility and effectiveness of virtual reality training on balance and gait recovery early after stroke: a pilot study. Int J Phys Med Rehabil. 2017;5:418. doi: 10.4172/2329-9096.1000418.
    1. van de Port IG, Wevers L, Roelse H, van Kats L, Lindeman E, Kwakkel G. Cost-effectiveness of a structured progressive task-oriented circuit class training programme to enhance walking competency after stroke: the protocol of the FIT-Stroke trial. BMC Neurol. 2009;9:43. doi: 10.1186/1471-2377-9-43.
    1. Dahl TH. International classification of functioning, disability and health: an introduction and discussion of its potential impact on rehabilitation services and research. J Rehabil Med. 2002;34(5):201–204. doi: 10.1080/165019702760279170.
    1. Post MW, van der Zee CH, Hennink J, Schafrat CG, Visser-Meily JM, van Berlekom SB. Validity of the Utrecht Scale for Evaluation of Rehabilitation-Participation. Disabil Rehabil. 2012;34(6):478–485. doi: 10.3109/09638288.2011.608148.
    1. van der Zee CH, Priesterbach AR, van der Dussen L, Kap A, Schepers VP, Visser-Meily JM, Post MW. Reproducibility of three self-report participation measures: The ICF Measure of Participation and Activities Screener, the Participation Scale, and the Utrecht Scale for Evaluation of Rehabilitation-Participation. J Rehabil Med. 2010;42(8):752–757. doi: 10.2340/16501977-0589.
    1. van der Zee CH, Kap A, Rambaran Mishre R, Schouten EJ, Post MW. Responsiveness of four participation measures to changes during and after outpatient rehabilitation. J Rehabil Med. 2011;43(11):1003–1009. doi: 10.2340/16501977-0879.
    1. Duncan PW, Lai SM, Bode RK, Perera S, DeRosa J. Stroke Impact Scale-16: a brief assessment of physical function. Neurology. 2003;60(2):291–296. doi: 10.1212/01.WNL.0000041493.65665.D6.
    1. Shumway-Cook A, Brauer S, Woollacott M. Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Phys Ther. 2000;80(9):896–903.
    1. Podsiadlo D, Richardson S. The Timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–148. doi: 10.1111/j.1532-5415.1991.tb01616.x.
    1. Ng SS, Hui-Chan CW. The Timed Up & Go test: its reliability and association with lower-limb impairments and locomotor capacities in people with chronic stroke. Arch Phys Med Rehabil. 2005;86(8):1641–1647. doi: 10.1016/j.apmr.2005.01.011.
    1. Chan PP, Si Tou JI, Tse MM, Ng SS. Reliability and validity of the Timed Up and Go Test with a motor task in people with chronic stroke. Arch Phys Med Rehabil. 2017;98(11):2213–2220. doi: 10.1016/j.apmr.2017.03.008.
    1. Fulk GD, Echternach JL, Nof L, O’Sullivan S. Clinometric properties of the six-minute walk test in individuals undergoing rehabilitation poststroke. Physiother Theory Pract. 2008;24(3):195–204. doi: 10.1080/09593980701588284.
    1. Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The Fatigue Severity Scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol. 1989;46(10):1121–1123. doi: 10.1001/archneur.1989.00520460115022.
    1. Cumming TB, Packer M, Kramer SF, English C. The prevalence of fatigue after stroke: a systematic review and meta-analysis. Int J Stroke. 2016;11(9):968–977. doi: 10.1177/1747493016669861.
    1. Lerdal A, Kottorp A. Psychometric properties of the Fatigue Severity Scale-Rasch analyses of individual responses in a Norwegian stroke cohort. Int J Nurs Stud. 2011;48(10):1258–1265. doi: 10.1016/j.ijnurstu.2011.02.019.
    1. Zigmond AS, Snaith RP. The Hospital Anxiety and Depression Scale. Acta Psychiatr Scand. 1983;67(6):361–370. doi: 10.1111/j.1600-0447.1983.tb09716.x.
    1. Aben I, Verhey F, Lousberg R, Lodder J, Honig A. Validity of the Beck Depression Inventory, Hospital Anxiety and Depression Scale, SCL-90, and Hamilton Depression Rating Scale as screening instruments for depression in stroke patients. Psychosomatics. 2002;43(5):386–393. doi: 10.1176/appi.psy.43.5.386.
    1. Herrmann C. International experiences with the Hospital Anxiety and Depression Scale-A review of validation data and clinical results. J Psychosom Res. 1997;42(1):17–41. doi: 10.1016/S0022-3999(96)00216-4.
    1. Yardley L, Beyer N, Hauer K, Kempen G, Piot-Ziegler C, Todd C. Development and initial validation of the Falls Efficacy Scale-International (FES-I) Age Ageing. 2005;34(6):614–619. doi: 10.1093/ageing/afi196.
    1. Kempen GI, Todd CJ, Van Haastregt JC, Zijlstra GA, Beyer N, Freiberger E, Hauer KA, Piot-Ziegler C, Yardley L. Cross-cultural validation of the Falls Efficacy Scale International (FES-I) in older people: results from Germany, the Netherlands and the UK were satisfactory. Disabil Rehabil. 2007;29(2):155–162. doi: 10.1080/09638280600747637.
    1. Azad A, Hassani Mehraban A, Mehrpour M, Mohammadi B. Clinical assessment of fear of falling after stroke: validity, reliability and responsiveness of the Persian version of the Fall Efficacy Scale-International. Med J Islam Repub Iran. 2014;28:131.
    1. Williams LS, Weinberger M, Harris LE, Clark DO, Biller J. Development of a Stroke-Specific Quality of Life Scale. Stroke. 1999;30(7):1362–1369. doi: 10.1161/01.STR.30.7.1362.
    1. Muus I, Williams LS, Ringsberg KC. Validation of the Stroke Specific Quality of Life Scale (SS-QOL): test of reliability and validity of the Danish version (SS-QOL-DK) Clin Rehabil. 2007;21(7):620–627. doi: 10.1177/0269215507075504.
    1. Boosman H, Passier PE, Visser-Meily JM, Rinkel GJ, Post MW. Validation of the Stroke Specific Quality of Life scale in patients with aneurysmal subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry. 2010;81(5):485–489. doi: 10.1136/jnnp.2009.184960.
    1. van Schooten KS, Rispens SM, Elders PJ, Lips P, van Dieen JH, Pijnappels M. Assessing physical activity in older adults: required days of trunk accelerometer measurements for reliable estimation. J Aging Phys Act. 2015;23(1):9–17. doi: 10.1123/JAPA.2013-0103.
    1. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–381. doi: 10.1249/00005768-198205000-00012.
    1. Gauthier LV, Kane C, Borstad A, Strahl N, Uswatte G, Taub E, Morris D, Hall A, Arakelian M, Mark V. Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis. BMC Neurol. 2017;17(1):109. doi: 10.1186/s12883-017-0888-0.
    1. Twisk JWR. Sample size calculations. In: Twisk JWR, editor. Applied longitudinal data analysis for epidemiology: a practical guide. Cambridge: Cambridge University Press; 2003. pp. 280–285.
    1. Punt M, van Alphen B, van de Port IG, van Dieën JH, Michael K, Outermans J, Wittink H. Clinimetric properties of a novel feedback device for assessing gait parameters in stroke survivors. J Neuroeng Rehabil. 2014;11:30. doi: 10.1186/1743-0003-11-30.
    1. Twisk JWR. Longitudinal data analysis. A comparison between generalized estimating equations and random coefficient analysis. Eur J Epidemiol. 2004;19(8):769–776. doi: 10.1023/B:EJEP.0000036572.00663.f2.
    1. Wilson PN, Foreman N, Stanton D. Virtual reality, disability and rehabilitation. Disabil Rehabil. 1997;19(6):213–220. doi: 10.3109/09638289709166530.
    1. Calabrò RS, Naro A, Russo M, Leo A, De Luca R, Balletta T, Buda A, La Rosa G, Bramanti A, Bramanti P. The role of virtual reality in improving motor performance as revealed by EEG: a randomized clinical trial. J Neuroeng Rehabil. 2017;14(1):53. doi: 10.1186/s12984-017-0268-4.
    1. French B, Thomas LH, Leathley MJ, Sutton CJ, McAdam J, Forster A, Langhorne P, Price CI, Walker A, Watkins CL. Repetitive task training for improving functional ability after stroke. Cochrane Database Syst Rev. 2007;(4):CD006073.
    1. Beek PJ, Roerdink M. Evolving insights into motor learning and their implications for neurorehabilitation. In: Selzer ME, Clarke S, Cohen LG, Kwakkel G, Miller RH, editors. Textbook of neural repair and rehabilitation. Cambridge: Cambridge University Press; 2014. pp. 95–104.
    1. Sveistrup H. Motor rehabilitation using virtual reality. J Neuroeng Rehabil. 2004;1(1):10. doi: 10.1186/1743-0003-1-10.
    1. Proffitt R, Lange B. Considerations in the efficacy and effectiveness of virtual reality interventions for stroke rehabilitation: moving the field forward. Phys Ther. 2015;95(3):441–448. doi: 10.2522/ptj.20130571.

Source: PubMed

3
Abonnieren