COVID-19 for the Cardiologist: Basic Virology, Epidemiology, Cardiac Manifestations, and Potential Therapeutic Strategies

Deepak Atri, Hasan K Siddiqi, Joshua P Lang, Victor Nauffal, David A Morrow, Erin A Bohula, Deepak Atri, Hasan K Siddiqi, Joshua P Lang, Victor Nauffal, David A Morrow, Erin A Bohula

Abstract

Coronavirus disease-2019 (COVID-19), a contagious disease caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), has reached pandemic status. As it spreads across the world, it has overwhelmed health care systems, strangled the global economy, and led to a devastating loss of life. Widespread efforts from regulators, clinicians, and scientists are driving a rapid expansion of knowledge of the SARS-CoV-2 virus and COVID-19. The authors review the most current data, with a focus on the basic understanding of the mechanism(s) of disease and translation to the clinical syndrome and potential therapeutics. The authors discuss the basic virology, epidemiology, clinical manifestation, multiorgan consequences, and outcomes. With a focus on cardiovascular complications, they propose several mechanisms of injury. The virology and potential mechanism of injury form the basis for a discussion of potential disease-modifying therapies.

Keywords: ACE2, angiotensin-converting enzyme 2; ARDS, acute respiratory distress syndrome; CFR, case fatality rate; COVID-19; COVID-19, coronavirus disease-2019; CoV, coronavirus; DIC, disseminated intravascular coagulation; ER, endoplasmic reticulum; ICU, intensive care unit; SARS-CoV, severe acute respiratory syndrome-coronavirus; SARS-CoV-2; SOFA, sequential organ failure assessment; TMPRSS2, transmembrane serine protease 2; cardiovascular; hsCRP, high-sensitivity C-reactive protein; treatments; virology.

© 2020 Published by Elsevier on behalf of the American College of Cardiology Foundation.

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
Putative SARS-CoV-2 Life Cycle and Therapeutic Targets Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) binds to the angiotensin-converting enzyme 2 (ACE2) receptor on the host cell membrane. Endocytosis is believed to be mediated, in part, by JAK-2. Membrane fusion occurs between the mature endosome and virion with facilitation by the transmembrane serine protease 2 (TMPRSS2) resulting in release of the SARS-CoV-2 RNA into the intracellular space. The RNA is translated by host machinery to produce the replicase and structural proteins. Host and SARS-CoV-2 proteases cleave the replicase into nonstructural proteins, including the RNA-dependent RNA polymerase (RdRp). RdRp mediates SARS-CoV-2 RNA replication and amplification. SARS-CoV-2 transmembrane proteins (spike [S], envelope [E], and membrane [M]) are shuttled via the endoplasmic reticulum and Golgi apparatus to the forming viral capsids. Viral assembly occurs with addition of the viral RNA and nucleocapsid (N) protein through association with the transmembrane viral proteins. Exocytosis results in release of the newly synthesized viral particle. Ab = antibody.
Central Illustration
Central Illustration
Potential Mechanisms of Myocardial Injury in COVID-19 ASCVD = atherosclerotic cardiovascular disease; COVID-19 = coronavirus disease-2019; DIC = disseminated intravascular coagulation; MI = myocardial infarction.

References

    1. Fehr A.R., Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1–23.
    1. Zhu N., Zhang D., Wang W. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–733.
    1. Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nature reviews Microbiology. 2019;17:181–192.
    1. Zhou P., Yang X.L., Wang X.G. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273.
    1. Wu F., Zhao S., Yu B. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–269.
    1. Prentice E., McAuliffe J., Lu X., Subbarao K., Denison M.R. Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins. J Virol. 2004;78:9977–9986.
    1. Hoffmann M., Kleine-Weber H., Schroeder S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–280.e8.
    1. Du L., He Y., Zhou Y., Liu S., Zheng B.J., Jiang S. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7:226–236.
    1. Wrapp D., Wang N., Corbett K.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260–1263.
    1. Yan R., Zhang Y., Li Y., Xia L., Guo Y., Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367:1444–1448.
    1. Shang J., Ye G., Shi K. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020 Mar 30 [E-pub ahead of print]
    1. Siu Y.L., Teoh K.T., Lo J. The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J Virol. 2008;82:11318–11330.
    1. Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181:281–292.e6.
    1. Bosch B.J., Smits S.L., Haagmans B.L. Membrane ectopeptidases targeted by human coronaviruses. Curr Opin Virol. 2014;6:55–60.
    1. Cheng A., Zhang W., Xie Y. Expression, purification, and characterization of SARS coronavirus RNA polymerase. Virology. 2005;335:165–176.
    1. Li W., Moore M.J., Vasilieva N. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–454.
    1. Dijkman R., Jebbink M.F., Deijs M. Replication-dependent downregulation of cellular angiotensin-converting enzyme 2 protein expression by human coronavirus NL63. J Gen Virol. 2012;93 1924–9.
    1. Vaduganathan M., Vardeny O., Michel T., McMurray J.J.V., Pfeffer M.A., Solomon S.D. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N Engl J Med. 2020;382:1653–1659.
    1. Clerkin K.J., Fried J.A., Raikhelkar J. Coronavirus disease 2019 (COVID-19) and cardiovascular disease. Circulation. 2020 Mar 21 [E-pub ahead of print]
    1. Brosnihan K.B., Neves L.A., Chappell M.C. Does the angiotensin-converting enzyme (ACE)/ACE2 balance contribute to the fate of angiotensin peptides in programmed hypertension? Hypertension. 2005;46:1097–1099.
    1. Tikellis C., Thomas M.C. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int J Pept. 2012;2012:256294.
    1. Hamming I., Cooper M.E., Haagmans B.L. The emerging role of ACE2 in physiology and disease. J Pathol. 2007;212:1–11.
    1. Vickers C., Hales P., Kaushik V. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002;277:14838–14843.
    1. Hamming I., Timens W., Bulthuis M.L., Lely A.T., Navis G., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203:631–637.
    1. Wang C., Horby P.W., Hayden F.G., Gao G.F. A novel coronavirus outbreak of global health concern. Lancet. 2020;395:470–473.
    1. Imai Y., Kuba K., Rao S. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436:112–116.
    1. Yang P., Gu H., Zhao Z. Angiotensin-converting enzyme 2 (ACE2) mediates influenza H7N9 virus-induced acute lung injury. Sci Rep. 2014;4:7027.
    1. Zou Z., Yan Y., Shu Y. Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections. Nat Commun. 2014;5:3594.
    1. Kuba K., Imai Y., Rao S. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11:875–879.
    1. Crackower M.A., Sarao R., Oudit G.Y. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417:822–828.
    1. Lambert D.W., Yarski M., Warner F.J. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2) J Biol Chem. 2005;280:30113–30119.
    1. Gu H., Xie Z., Li T. Angiotensin-converting enzyme 2 inhibits lung injury induced by respiratory syncytial virus. Sci Rep. 2016;6:19840.
    1. Khan A., Benthin C., Zeno B. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017;21:234.
    1. Monteil V., Kwon H., Prado P. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020 Apr 2 [E-pub ahead of print]
    1. Huang C., Wang Y., Li X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.
    1. Lu R., Zhao X., Li J. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395:565–574.
    1. Chan J.F., Yuan S., Kok K.H. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395:514–523.
    1. van Doremalen N., Bushmaker T., Morris D.H. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020 Mar 17 [E-pub ahead of print]
    1. Moriarty L.F., Plucinski M.M., Marston B.J. Public health responses to COVID-19 outbreaks on cruise ships - worldwide, February-March 2020. MMWR Morb Mortal Wkly Rep. 2020;69:347–352.
    1. Wang W., Xu Y., Gao R. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020 Mar 11 [E-pub ahead of print]
    1. Alhazzani W., Moller M.H., Arabi Y.M. Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19) Crit Care Med. 2020 Mar 28 [E-pub ahead of print]
    1. Li R., Pei S., Chen B. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2) Science. 2020 Mar 16 [E-pub ahead of print]
    1. Callaway E., Cyranoski D., Mallapaty S., Stoye E., Tollefson J. The coronavirus pandemic in five powerful charts. Nature. 2020;579:482–483.
    1. Wei W.E., Li Z., Chiew C.J., Yong S.E., Toh M.P., Lee V.J. Presymptomatic transmission of SARS-CoV-2 — Singapore, January 23–March 16, 2020. MMWR Morb Mortal Wkly Rep. 2020;69:411–415.
    1. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020 Feb 24 [E-pub ahead of print]
    1. CDC COVID-19 Response Team Severe outcomes among patients with coronavirus disease 2019 (COVID-19) — United States. MMWR eMorb Mortal Wkly Rep. 2020;69:343–346.
    1. Lipsitch M., Swerdlow D.L., Finelli L. Defining the epidemiology of Covid-19 - studies needed. N Engl J Med. 2020;382:1194–1196.
    1. Guan W.J., Ni Z.Y., Hu Y. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1861–1862.
    1. American Academy of Otolaryngology–Head and Neck Surgery. Available at: . Accessed April 6, 2020.
    1. Lauer S.A., Grantz K.H., Bi Q. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med. 2020 Mar 10 [E-pub ahead of print]
    1. Wu C., Chen X., Cai Y. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020 Mar 13 [E-pub ahead of print]
    1. Wang D., Hu B., Hu C. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020 Feb 7 [E-pub ahead of print]
    1. Zhou F., Yu T., Du R. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–1062.
    1. Guo T., Fan Y., Chen M. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19) JAMA Cardiol. 2020 Mar 27 [E-pub ahead of print]
    1. Arentz M., Yim E., Klaff L. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA. 2020 Mar 19 [E-pub ahead of print]
    1. Shi S., Qin M., Shen B. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020 Mar 25 [E-pub ahead of print]
    1. Chen N., Zhou M., Dong X. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–513.
    1. Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020 Mar 3 [E-pub ahead of print]
    1. Cheng Y., Luo R., Wang K. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97:829–838.
    1. Inciardi R.M., Lupi L., Zaccone G. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19) JAMA Cardiol. 2020 Mar 27 [E-pub ahead of print]
    1. Fleet J.C., Clinton S.K., Salomon R.N., Loppnow H., Libby P. Atherogenic diets enhance endotoxin-stimulated interleukin-1 and tumor necrosis factor gene expression in rabbit aortae. J Nutr. 1992;122:294–305.
    1. Estabragh Z.R., Mamas M.A. The cardiovascular manifestations of influenza: a systematic review. Int J Cardiol. 2013;167:2397–2403.
    1. Hu H., Ma F., Wei X., Fang Y. Coronavirus fulminant myocarditis saved with glucocorticoid and human immunoglobulin. Eur Heart J. 2020 Mar 16 [E-pub ahead of print]
    1. Deng Y., Liu W., Liu K. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 (COVID-19) in Wuhan, China: a retrospective study. Chin Med J (Engl) 2020 Mar 20 [E-pub ahead of print]
    1. Hwang D.M., Chamberlain D.W., Poutanen S.M., Low D.E., Asa S.L., Butany J. Pulmonary pathology of severe acute respiratory syndrome in Toronto. Mod Pathol. 2005;18:1–10.
    1. Luo W., Yu H., Gou J. Clinical pathology of critical patient with novel coronavirus pneumonia (COVID-19) Preprints. 2020 Mar 30 [E-pub ahead of print]
    1. American Society of Hematology COVID-19 and coagulopathy: frequently asked questions. April 1, 2020. Available at: Accessed April 6, 2020.
    1. Ruan S. Likelihood of survival of coronavirus disease 2019. Lancet Infect Dis. 2020
    1. Johns Hopkins University and Medicine Coronavirus Resource Center. Available at: Accessed April 2, 2020.
    1. Verity R., Okell L.C., Dorigatti I. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020 Mar 30 [E-pub ahead of print]
    1. Onder G., Rezza G., Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020 Mar 23 [E-pub ahead of print]
    1. Dudley J.P., Lee N.T. Disparities in age-specific morbidity and mortality from SARS-CoV-2 in China and the Republic of Korea. Clin Infect Dis. 2020 Mar 31 [E-pub ahead of print]
    1. Kumar A., Thota V., Dee L., Olson J., Uretz E., Parrillo J.E. Tumor necrosis factor alpha and interleukin 1beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med. 1996;183:949–958.
    1. Oudit G.Y., Kassiri Z., Jiang C. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009;39:618–625.
    1. Ding Y., He L., Zhang Q. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol. 2004;203:622–630.
    1. To K.F., Tong J.H., Chan P.K. Tissue and cellular tropism of the coronavirus associated with severe acute respiratory syndrome: an in-situ hybridization study of fatal cases. J Pathol. 2004;202:157–163.
    1. Ding Y., Wang H., Shen H. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol. 2003;200:282–289.
    1. Guillevin L. Virus-induced systemic vasculitides: new therapeutic approaches. Clin Dev Immunol. 2004;11:227–231.
    1. Pagnoux C., Cohen P., Guillevin L. Vasculitides secondary to infections. Clin Exp Rheumatol. 2006;24:S71–S81.
    1. Ding Y.Q., Wang H.J., Shen H. [Study on etiology and pathology of severe acute respiratory syndrome] Zhonghua Bing Li Xue Za Zhi. 2003;32:195–200.
    1. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18:844–847.
    1. Levi M., van der Poll T., ten Cate H., van Deventer S.J. The cytokine-mediated imbalance between coagulant and anticoagulant mechanisms in sepsis and endotoxaemia. Eur J Clin Invest. 1997;27:3–9.
    1. Simmons J., Pittet J.F. The coagulopathy of acute sepsis. Curr Opin Anaesthesiol. 2015;28:227–236.
    1. Nakamura S., Imamura T., Okamoto K. Tissue factor in neutrophils: yes. J Thromb Haemost. 2004;2:214–217.
    1. van der Poll T., Buller H.R., ten Cate H. Activation of coagulation after administration of tumor necrosis factor to normal subjects. N Engl J Med. 1990;322:1622–1627.
    1. de Jonge E., Friederich P.W., Vlasuk G.P. Activation of coagulation by administration of recombinant factor VIIa elicits interleukin 6 (IL-6) and IL-8 release in healthy human subjects. Clin Diagn Lab Immunol. 2003;10:495–497.
    1. Franco R.F., de Jonge E., Dekkers P.E. The in vivo kinetics of tissue factor messenger RNA expression during human endotoxemia: relationship with activation of coagulation. Blood. 2000;96:554–559.
    1. Levi M., van der Poll T., Buller H.R. Bidirectional relation between inflammation and coagulation. Circulation. 2004;109:2698–2704.
    1. Della Valle P., Pavani G., D'Angelo A. The protein C pathway and sepsis. Thromb Res. 2012;129:296–300.
    1. Green J., Doughty L., Kaplan S.S., Sasser H., Carcillo J.A. The tissue factor and plasminogen activator inhibitor type-1 response in pediatric sepsis-induced multiple organ failure. Thromb Haemost. 2002;87:218–223.
    1. Cox D., Kerrigan S.W., Watson S.P. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J Thromb Haemost. 2011;9:1097–1107.
    1. Gawaz M., Dickfeld T., Bogner C., Fateh-Moghadam S., Neumann F.J. Platelet function in septic multiple organ dysfunction syndrome. Intensive Care Med. 1997;23:379–385.
    1. Akca S., Haji-Michael P., de Mendonca A., Suter P., Levi M., Vincent J.L. Time course of platelet counts in critically ill patients. Crit Care Med. 2002;30:753–756.
    1. Lee K.H., Hui K.P., Tan W.C. Thrombocytopenia in sepsis: a predictor of mortality in the intensive care unit. Singapore Med J. 1993;34:245–246.
    1. Medina de Chazal H., Del Buono M.G., Keyser-Marcus L. Stress cardiomyopathy diagnosis and treatment: JACC State-of-the-Art Review. J Am Coll Cardiol. 2018;72:1955–1971.
    1. Bangalore S., Sharma A., Slotwiner A. ST-segment elevation in patients with Covid-19 - a case series. N Engl J Med. 2020 Apr 17 [E-pub ahead of print]
    1. Corrales-Medina V.F., Alvarez K.N., Weissfeld L.A. Association between hospitalization for pneumonia and subsequent risk of cardiovascular disease. JAMA. 2015;313:264–274.
    1. Udell J.A., Zawi R., Bhatt D.L. Association between influenza vaccination and cardiovascular outcomes in high-risk patients: a meta-analysis. JAMA. 2013;310:1711–1720.
    1. Kwong J.C., Schwartz K.L., Campitelli M.A. Acute myocardial infarction after laboratory-confirmed influenza infection. N Engl J Med. 2018;378:345–353.
    1. Welt FGP, Shah P.B., Aronow H.D. Catheterization laboratory considerations during the coronavirus (COVID-19) pandemic: from ACC's Interventional Council and SCAI. J Am Coll Cardiol. 2020;75:2372–2375.
    1. Libby P., Loscalzo J., Ridker P.M. Inflammation, immunity, and infection in atherothrombosis: JACC Review Topic of the Week. J Am Coll Cardiol. 2018;72:2071–2081.
    1. Ridker P.M., Everett B.M., Thuren T. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–1131.
    1. Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:2045–2051.
    1. Violi F., Cangemi R., Calvieri C. Pneumonia, thrombosis and vascular disease. J Thromb Haemost. 2014;12:1391–1400.
    1. Mogensen T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22:240–273.
    1. van de Veerdonk F.L., Netea M.G., Dinarello C.A., Joosten L.A. Inflammasome activation and IL-1beta and IL-18 processing during infection. Trends Immunol. 2011;32:110–116.
    1. Vallance P., Collier J., Bhagat K. Infection, inflammation, and infarction: does acute endothelial dysfunction provide a link? Lancet. 1997;349:1391–1392.
    1. Sarkisian L., Saaby L., Poulsen T.S. Prognostic impact of myocardial injury related to various cardiac and noncardiac conditions. Am J Med. 2016;129:506–514.e1.
    1. Lim W., Qushmaq I., Devereaux P.J. Elevated cardiac troponin measurements in critically ill patients. Arch Intern Med. 2006;166:2446–2454.
    1. Sarkisian L., Saaby L., Poulsen T.S. Clinical characteristics and outcomes of patients with myocardial infarction, myocardial injury, and nonelevated troponins. Am J Med. 2016;129 446.e5–446.e21.
    1. Thygesen K., Alpert J.S., Jaffe A.S. Fourth Universal Definition of Myocardial Infarction (2018) J Am Coll Cardiol. 2018;72:2231–2264.
    1. Chapman A.R., Shah A.S.V., Lee K.K. Long-term outcomes in patients with type 2 myocardial infarction and myocardial injury. Circulation. 2018;137:1236–1245.
    1. Qin C., Zhou L., Hu Z. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020 Mar 12 [E-pub ahead of print]
    1. Grupp S.A., Kalos M., Barrett D. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509–1518.
    1. Mehta P., McAuley D.F., Brown M. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–1034.
    1. Siddiqi H., Mehra M.R. COVID-19 Illness in Native and Immunosuppressed States: A Clinical-Therapeutic Staging Proposal. J Heart Lung Transplant. 2020;39:405–407.
    1. Frey N., Porter D. Cytokine release syndrome with chimeric antigen receptor T cell therapy. Biol Blood Marrow Transplant. 2019;25:e123–e127.
    1. Natanson C., Eichenholz P.W., Danner R.L. Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. J Exp Med. 1989;169:823–832.
    1. Pathan N., Hemingway C.A., Alizadeh A.A. Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. Lancet. 2004;363:203–209.
    1. Goldhaber J.I., Kim K.H., Natterson P.D., Lawrence T., Yang P., Weiss J.N. Effects of TNF-alpha on [Ca2+]i and contractility in isolated adult rabbit ventricular myocytes. Am J Physiol. 1996;271:H1449–H1455.
    1. Krown K.A., Yasui K., Brooker M.J. TNF alpha receptor expression in rat cardiac myocytes: TNF alpha inhibition of L-type Ca2+ current and Ca2+ transients. FEBS Lett. 1995;376:24–30.
    1. Hobai I.A., Edgecomb J., LaBarge K., Colucci W.S. Dysregulation of intracellular calcium transporters in animal models of sepsis-induced cardiomyopathy. Shock. 2015;43:3–15.
    1. Balligand J.L., Ungureanu D., Kelly R.A. Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest. 1993;91:2314–2319.
    1. Stanzani G., Duchen M.R., Singer M. The role of mitochondria in sepsis-induced cardiomyopathy. Biochim Biophys Acta Mol Basis Dis. 2019;1865:759–773.
    1. Mulangu S., Dodd L.E., Davey R.T., Jr. A randomized, controlled trial of Ebola virus disease therapeutics. N Engl J Med. 2019;381:2293–2303.
    1. Holshue M.L., DeBolt C., Lindquist S. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382:929–936.
    1. Gordon C.J., Tchesnokov E.P., Feng J.Y., Porter D.P., Gotte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem. 2020;295:4773–4779.
    1. Sheahan T.P., Sims A.C., Leist S.R. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020;11:222.
    1. Harrison C. Coronavirus puts drug repurposing on the fast track. Nat Biotechnol. 2020;38:379–381.
    1. Dong L., Hu S., Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19) Drug Discov Ther. 2020;14:58–60.
    1. Chan K.W., Wong V.T., Tang S.C.W. COVID-19: an update on the Epidemiological, Clinical, Preventive and Therapeutic Evidence and Guidelines of Integrative Chinese-Western Medicine for the Management of 2019 Novel Coronavirus Disease. Am J Chin Med. 2020 Mar 13 [E-pub ahead of print]
    1. Cao B., Wang Y., Wen D. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020;382:1787–1799.
    1. Zhang L., Lin D., Sun X. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science. 2020;368:409–412.
    1. Chen H., Zhang Z., Wang L. First clinical study using HCV protease inhibitor danoprevir to treat naive and experienced COVID-19 patients. medRxiv. 2020 Mar 24 [E-pub ahead of print]
    1. Savarino A., Gennero L., Sperber K., Boelaert J.R. The anti-HIV-1 activity of chloroquine. J Clin Virol. 2001;20:131–135.
    1. Savarino A., Gennero L., Chen H.C. Anti-HIV effects of chloroquine: mechanisms of inhibition and spectrum of activity. Aids. 2001;15:2221–2229.
    1. Mauthe M., Orhon I., Rocchi C. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 2018;14:1435–1455.
    1. Scott C.C., Vacca F., Gruenberg J. Endosome maturation, transport and functions. Semin Cell Dev Biol. 2014;31:2–10.
    1. Vincent M.J., Bergeron E., Benjannet S. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69.
    1. Liu J., Cao R., Xu M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6:16.
    1. Gautret P., Lagier J.C., Parola P. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020:105949.
    1. Gordon D.E., Jang G., Bouhaddou M. A SARS-CoV-2-human protein-protein interaction map reveals drug targets and potential drug-repurposing. Nature. 2020 April 30 [E-pub ahead of print]
    1. Shen C., Wang Z., Zhao F. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA. 2020 Mar 27 [E-pub ahead of print]
    1. Lei C., Fu W., Zian K. Potent neutralization of 2019 novel coronavirus by recombinant ACE2-Ig. bioRxiv. 2020 Feb 3 [E-pub ahead of print]
    1. Russell C.D., Millar J.E., Baillie J.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395:473–475.
    1. Le R.Q., Li L., Yuan W. FDA Approval Summary: Tocilizumab for Treatment of Chimeric Antigen Receptor T Cell-Induced Severe or Life-Threatening Cytokine Release Syndrome. Oncologist. 2018;23:943–947.
    1. Xu X., Han M., Li T. Effective treatment of severe COVID-19 patients with tocilizumab. ChinaXiv. 2020 Mar 19 [E-pub ahead of print]
    1. Zimmermann P., Ziesenitz V.C., Curtis N., Ritz N. The immunomodulatory effects of macrolides-a systematic review of the underlying mechanisms. Fronti Immunol. 2018;9:302.
    1. Kawamura K., Ichikado K., Takaki M., Eguchi Y., Anan K., Suga M. Adjunctive therapy with azithromycin for moderate and severe acute respiratory distress syndrome: a retrospective, propensity score-matching analysis of prospectively collected data at a single center. Int J Antimicrob Agents. 2018;51:918–924.
    1. Richardson P., Griffin I., Tucker C. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395:e30–e31.
    1. Jacobson J.R., Barnard J.W., Grigoryev D.N., Ma S.F., Tuder R.M., Garcia J.G. Simvastatin attenuates vascular leak and inflammation in murine inflammatory lung injury. Am J Physiol. 2005;288:L1026–L1032.
    1. Shyamsundar M., McKeown S.T., O'Kane C.M. Simvastatin decreases lipopolysaccharide-induced pulmonary inflammation in healthy volunteers. Am J Respir Crit Car Med. 2009;179:1107–1114.
    1. McAuley D.F., Laffey J.G., O'Kane C.M. Simvastatin in the acute respiratory distress syndrome. N Engl J Med. 2014;371:1695–1703.
    1. Calfee C.S., Delucchi K.L., Sinha P. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med. 2018;6:691–698.
    1. Novack V., MacFadyen J., Malhotra A., Almog Y., Glynn R.J., Ridker P.M. The effect of rosuvastatin on incident pneumonia: results from the JUPITER trial. CMAJ. 2012;184:E367–E372.
    1. Jiang S., He Y., Liu S. SARS vaccine development. Emerg Infect Dis. 2005;11:1016–1020.
    1. Bukreyev A., Lamirande E.W., Buchholz U.J. Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet. 2004;363:2122–2127.
    1. Song Z., Xu Y., Bao L. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses. 2019;11:E59.
    1. Shang W., Yang Y., Rao Y., Rao X. The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines. NPJ Vaccines. 2020;5:18.
    1. Ura T., Okuda K., Shimada M. Developments in viral vector-based vaccines. Vaccines (Basel) 2014;2:624–641.
    1. Emanuel E.J., Persad G., Upshur R. Fair allocation of scarce medical resources in the time of Covid-19. N Engl J Med. 2020 Mar 23 [E-pub ahead of print]
    1. Italian Society of Anesthesia, Analgesia, Resuscitation and Intensive Care. Clinical ethics recommendations for the allocation of intensive care treatments, in exceptional, resource-limited circumstances. March 16, 2020. Available at: Accessed April 6, 2020.
    1. Committee on Guidance for Establishing Crisis Standards of Care for Use in Disaster Situations; Institute of Medicine . National Academies Press; Washington: DC: 2012. Crisis Standards of Care: A Systems Framework for Catastrophic Disaster Response.
    1. Biddison L.D., Berkowitz K.A., Courtney B. Ethical considerations: care of the critically ill and injured during pandemics and disasters: CHEST consensus statement. Chest. 2014;146:e145S–e155S.
    1. Truog R.D., Mitchell C., Daley G.Q. The toughest triage - allocating ventilators in a pandemic. N Engl J Med. 2020 Mar 23 [E-pub ahead of print]
    1. Shahpori R., Stelfox H.T., Doig C.J., Boiteau P.J., Zygun D.A. Sequential organ failure assessment in H1N1 pandemic planning. Crit Care Med. 2011;39:827–832.
    1. Khan Z., Hulme J., Sherwood N. An assessment of the validity of SOFA score based triage in H1N1 critically ill patients during an influenza pandemic. Anaesthesia. 2009;64:1283–1288.

Source: PubMed

3
Abonnieren