Nutrient Composition Comparison between the Low Saturated Fat Swank Diet for Multiple Sclerosis and Healthy U.S.-Style Eating Pattern

Catherine A Chenard, Linda M Rubenstein, Linda G Snetselaar, Terry L Wahls, Catherine A Chenard, Linda M Rubenstein, Linda G Snetselaar, Terry L Wahls

Abstract

Multiple sclerosis (MS) is an incurable degenerative disease that attacks the central nervous system. Roy Swank proposed a low saturated fat diet to treat MS around 1950 and showed delayed disease progression in his patients. However, there is insufficient evidence to recommend this diet for MS and default dietary recommendations are the Dietary Guidelines for Americans (DGA). This study assessed the nutritional adequacy of seven-day menus developed by Swank and their compliance with the DGA; menus were modeled for comparison with the DGA Healthy US-Style Eating Pattern (HEP) for males and females 31⁻50 years. Swank recommended dietary supplements corrected menu shortfalls in vitamins D, E, calcium, folate and iron but not dietary fiber, potassium and choline. Healthy Eating Index-2015 score for Swank menus (93.2/100) indicated good compliance with the DGA. Nutritional adequacy of the Swank modeled diet was similar to HEP for 17 vitamins and minerals (Mean Adequacy Ratios ≥94%) with similar shortfall nutrients except magnesium (HEP males) and dietary fiber (Swank males). Alternate Healthy Eating Index-2010 scores for Swank male (90/110) and female (88/110) model diets were similar to HEP. Swank menus have similar nutritional adequacy as HEP. Inclusion of foods high in dietary fiber, potassium and choline may be advised as well as selection of foods to reduce sodium below the Tolerable Upper Intake Level.

Keywords: AHEI-2010; HEI-2015; Swank diet; exemplary menus; low saturated fat diet; multiple sclerosis; nutrient density; nutritional adequacy.

Conflict of interest statement

T.L.W. strongly advocates for a modified Paleolithic style diet in academic and business settings and follows variations of the Wahls Elimination diet and the various diet plans described in the Wahls Protocol® books and programs. She has copyrights for The Wahls Protocol Cooking for Life, The Wahls Protocol and Minding My Mitochondria, 2nd Edition and trademarked Wahls™ Diet, Wahls Paleo™ Diet and Wahls Paleo Plus™ Diet. She has not trademarked Wahls Elimination Diet. T.L.W. has financial relationships with BioCeuticals; Genova Diagnostics; Institute for Health and Healing; Integrative Medicine for Mental Health; MCG Health Inc.; NCURA; Penguin Random House Inc.; Suttler Pacific and an equity interest in Terry Wahls, LLC; TZ Press, LLC; The Wahls Institute, PLC; and www.terrywahls.com. T.L.W. received funding from the National Multiple Sclerosis Society to conduct a randomized clinical trial comparing the effect of the Wahls Elimination and Swank diets on multiple sclerosis-related fatigue. The University of Iowa prepared a conflict of interest management plan for this clinical trial that T.L.W. follows to mitigate conflicts of interest. L.M.R. was assigned to independently review the clinical trial data collection, analysis and study results as part of T.L.W.’s conflict of interest management plan. L.M.R. has been a paid statistical consultant for T.L.W. since 2013; she does not follow a special diet. L.G.S. is a co-investigator on the clinical trial comparing Swank and Wahls Elimination diets and reports no other conflicts of interest; she does not follow a special diet. C.A.C. has been employed by T.L.W. since 2013, was paid to calculate the nutrient composition of the menus in The Wahls Protocol and was paid for the preparation of this manuscript; she does not follow any special diet. The funding sponsors had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript and in the decision to publish the results.

Figures

Figure 1
Figure 1
Healthy Eating Index-2015 component scores for seven-day low saturated fat Swank and seven-day USDA Healthy US-Style Eating Pattern menus [71] calculated using the population ratio method. Values in parentheses indicate maximum score for each component. Component scores are plotted on each axis as a percentage of the maximum score and connected with lines. The outermost ring represents a perfect score.

References

    1. Compston A., Coles A. Multiple sclerosis. Lancet. 2008;372:1502–1517. doi: 10.1016/S0140-6736(08)61620-7.
    1. Capriotti T., Noel J., Brissenden S. Multiple Sclerosis: An Update for Home Healthcare Clinicians. Home Healthc. Now. 2018;36:169–180. doi: 10.1097/NHH.0000000000000666.
    1. Ganesh A., Stahnisch F.W. A history of multiple sclerosis investigations in Canada between 1850 and 1950. Can. J. Neurol. Sci. 2014;41:320–332. doi: 10.1017/S0317167100017261.
    1. Murray T.J. The history of multiple sclerosis: The changing frame of the disease over the centuries. J. Neurol. Sci. 2009;277(Suppl. 1):S3–S8. doi: 10.1016/S0022-510X(09)70003-6.
    1. Talley C.L. The emergence of multiple sclerosis, 1870–1950: A puzzle of historical epidemiology. Perspect. Biol. Med. 2005;48:383–395. doi: 10.1353/pbm.2005.0079.
    1. Bourdette D. Roy Laver Swank, MD, PhD (1909–2008) Neurology. 2009;72:1120. doi: 10.1212/01.wnl.0000345371.55418.d1.
    1. Swank R.L. Multiple sclerosis; A correlation of its incidence with dietary fat. Am. J. Med. Sci. 1950;220:421–430. doi: 10.1097/00000441-195022040-00011.
    1. Swank R.L., Lerstad O., Strom A., Backer J. Multiple sclerosis in rural Norway its geographic and occupational incidence in relation to nutrition. N. Engl. J. Med. 1952;246:722–728. doi: 10.1056/NEJM195205082461901.
    1. Swank R.L., Goodwin J. Review of MS patient survival on a Swank low saturated fat diet. Nutrition. 2003;19:161–162. doi: 10.1016/S0899-9007(02)00851-1.
    1. Swank R.L. Treatment of multiple sclerosis with low-fat diet. AMA Arch. Neurol. Psychiatry. 1953;69:91–103. doi: 10.1001/archneurpsyc.1953.02320250097011.
    1. Swank R.L. Treatment of multiple sclerosis with low-fat diet; results of five and one-half years’ experience. AMA Arch. Neurol. Psychiatry. 1955;73:631–644. doi: 10.1001/archneurpsyc.1955.02330120035004.
    1. Swank R.L. Treatment of multiple sclerosis with low-fat diet: Result of seven years’ experience. Ann. Intern. Med. 1956;45:812–824.
    1. Swank R.L. Treatment of multiple sclerosis with a low-fat diet. J. Am. Diet. Assoc. 1960;36:322–325.
    1. Swank R.L., Bourdillon R.B. Multiple sclerosis: Assessment of treatment with a modified low-fat diet. J. Nerv. Ment. Dis. 1960;131:468–488. doi: 10.1097/00005053-196012000-00002.
    1. Swank R.L. Multiple sclerosis: Twenty years on low fat diet. Arch. Neurol. 1970;23:460–474. doi: 10.1001/archneur.1970.00480290080009.
    1. Swank R.L., Grimsgaard A. Multiple sclerosis: The lipid relationship. Am. J. Clin. Nutr. 1988;48:1387–1393. doi: 10.1093/ajcn/48.6.1387.
    1. Swank R.L., Dugan B.B. Effect of low satured fat diet in early and late cases of multiple sclerosis. Lancet. 1990;336:37–39. doi: 10.1016/0140-6736(90)91533-G.
    1. Swank R.L. Multiple sclerosis: Fat-oil relationship. Nutrition. 1991;7:368–376.
    1. Swank R.L., Goodwin J.W. How saturated fats may be a causative factor in multiple sclerosis and other diseases. Nutrition. 2003;19:478. doi: 10.1016/S0899-9007(02)01099-7.
    1. [Editorial] Lipids and multiple sclerosis. Lancet. 1990;336:25–26. doi: 10.1016/0140-6736(90)91527-H.
    1. Ben-Shlomo Y., Smith G.D., Marmot M.G. Dietary fat in the epidemiology of multiple sclerosis: Has the situation been adequately assessed? Neuroepidemiology. 1992;11:214–225. doi: 10.1159/000110934.
    1. Wahls T.L., Chenard C.A., Snetselaar L.G. Review of Two Popular Eating Plans within the Multiple Sclerosis Community: Low Saturated Fat and Modified Paleolithic. Nutrients. 2019;11:352. doi: 10.3390/nu11020352.
    1. Wilmot V.A., Swank R.L. The influence of low-fat diet on blood lipid levels in health and in multiple sclerosis. Am. J. Med. Sci. 1952;223:25–34. doi: 10.1097/00000441-195201000-00005.
    1. Swank R.L., Grimsgaard A. Changes in blood produced by a fat meal and by intravenous heparin. Am. J. Physiol. 1951;164:798–811. doi: 10.1152/ajplegacy.1951.164.3.798.
    1. Swank R.L., Franklin A.E., Quastel J.H. Effects of fat meals and heparin on blood plasma composition as shown by paper chromatography. Proc. Soc. Exp. Biol. Med. 1950;75:850–854. doi: 10.3181/00379727-75-18367.
    1. Swank R.L., Franklin A.E., Quastel J.H. Paper chromatography of blood plasmas in multiple sclerosis. Proc. Soc. Exp. Biol. Med. 1951;76:183–189. doi: 10.3181/00379727-76-18431.
    1. Swank R.L., Wilmot V. Chylomicra: their composition and their fate after intravenous injection of small amounts of heparin. Am. J. Physiol. 1951;167:403–412. doi: 10.1152/ajplegacy.1951.167.2.403.
    1. Ganesh A., Stahnisch F.W. On the historical succession of vessel-based therapies in the treatment of multiple sclerosis. Eur. Neurol. 2013;70:48–58. doi: 10.1159/000348780.
    1. Corthals A.P. Multiple sclerosis is not a disease of the immune system. Q. Rev. Biol. 2011;86:287–321. doi: 10.1086/662453.
    1. Zhornitsky S., McKay K.A., Metz L.M., Teunissen C.E., Rangachari M. Cholesterol and markers of cholesterol turnover in multiple sclerosis: Relationship with disease outcomes. Mult. Scler. Relat. Disord. 2016;5:53–65. doi: 10.1016/j.msard.2015.10.005.
    1. Tettey P., Simpson S., Jr., Taylor B., Blizzard L., Ponsonby A.L., Dwyer T., Kostner K., van der Mei I. An adverse lipid profile is associated with disability and progression in disability, in people with MS. Mult. Scler. 2014;20:1737–1744. doi: 10.1177/1352458514533162.
    1. Weinstock-Guttman B., Zivadinov R., Mahfooz N., Carl E., Drake A., Schneider J., Teter B., Hussein S., Mehta B., Weiskopf M., et al. Serum lipid profiles are associated with disability and MRI outcomes in multiple sclerosis. J. Neuroinflamm. 2011;8:127. doi: 10.1186/1742-2094-8-127.
    1. Tettey P., Simpson S., Jr., Taylor B., Blizzard L., Ponsonby A.L., Dwyer T., Kostner K., van der Mei I. Adverse lipid profile is not associated with relapse risk in MS: Results from an observational cohort study. J. Neurol. Sci. 2014;340:230–232. doi: 10.1016/j.jns.2014.02.038.
    1. Azary S., Schreiner T., Graves J., Waldman A., Belman A., Guttman B.W., Aaen G., Tillema J.M., Mar S., Hart J., et al. Contribution of dietary intake to relapse rate in early paediatric multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2018;89:28–33. doi: 10.1136/jnnp-2017-315936.
    1. Fitzgerald K. Diet and disease modification in multiple sclerosis: A nutritional epidemiology perspective. J. Neurol. Neurosurg. Psychiatry. 2018;89:3. doi: 10.1136/jnnp-2017-316375.
    1. Swank R.L., Dugan B.B. The Multiple Sclerosis Diet Book. A Low-Fat Diet for the Treatment of MS. Doubleday; New York, NY, USA: 1987.
    1. Swank MS Foundation The Swank Low-Fat Diet for the Treatment of MS. [(accessed on 17 October 2017)]; Available online:
    1. Nayak S., Matheis R.J., Schoenberger N.E., Shiflett S.C. Use of unconventional therapies by individuals with multiple sclerosis. Clin. Rehabil. 2003;17:181–191. doi: 10.1191/0269215503cr604oa.
    1. Masullo L., Papas M.A., Cotugna N., Baker S., Mahoney L., Trabulsi J. Complementary and alternative medicine use and nutrient intake among individuals with multiple sclerosis in the United States. J. Community Health. 2015;40:153–160. doi: 10.1007/s10900-014-9913-z.
    1. Leong E.M., Semple S.J., Angley M., Siebert W., Petkov J., McKinnon R.A. Complementary and alternative medicines and dietary interventions in multiple sclerosis: What is being used in South Australia and why? Complement. Ther. Med. 2009;17:216–223. doi: 10.1016/j.ctim.2009.03.001.
    1. Fitzgerald K.C., Tyry T., Salter A., Cofield S.S., Cutter G., Fox R.J., Marrie R.A. A survey of dietary characteristics in a large population of people with multiple sclerosis. Mult. Scler. Relat. Disord. 2018;22:12–18. doi: 10.1016/j.msard.2018.02.019.
    1. Yadav V., Marracci G., Kim E., Spain R., Cameron M., Overs S., Riddehough A., Li D.K.B., McDougall J., Lovera J., et al. Low-fat, plant-based diet in multiple sclerosis: A randomized controlled trial. Mult. Scler. Relat. Disord. 2016;9:80–90. doi: 10.1016/j.msard.2016.07.001.
    1. Sedaghat F., Jessri M., Behrooz M., Mirghotbi M., Rashidkhani B. Mediterranean diet adherence and risk of multiple sclerosis: A case-control study. Asia Pac. J. Clin. Nutr. 2016;25:377–384.
    1. Katz Sand I. The Role of Diet in Multiple Sclerosis: Mechanistic Connections and Current Evidence. Curr. Nutr. Rep. 2018;7:150–160. doi: 10.1007/s13668-018-0236-z.
    1. Storoni M., Plant G.T. The Therapeutic Potential of the Ketogenic Diet in Treating Progressive Multiple Sclerosis. Mult. Scler. Int. 2015;2015:681289. doi: 10.1155/2015/681289.
    1. Fitzgerald K.C., Vizthum D., Henry-Barron B., Schweitzer A., Cassard S.D., Kossoff E., Hartman A.L., Kapogiannis D., Sullivan P., Baer D.J., et al. Effect of intermittent vs. daily calorie restriction on changes in weight and patient-reported outcomes in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2018;23:33–39. doi: 10.1016/j.msard.2018.05.002.
    1. Cignarella F., Cantoni C., Ghezzi L., Salter A., Dorsett Y., Chen L., Phillips D., Weinstock G.M., Fontana L., Cross A.H., et al. Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota. Cell Metab. 2018;27:1222–1235. doi: 10.1016/j.cmet.2018.05.006.
    1. Saadatnia M., Etemadifar M., Fatehi F., Ashtari F., Shaygannejad V., Chitsaz A., Maghzi A.H. Short-term effects of prolonged fasting on multiple sclerosis. Eur. Neurol. 2009;61:230. doi: 10.1159/000197108.
    1. Bisht B., Darling W.G., Grossmann R.E., Shivapour E.T., Lutgendorf S.K., Snetselaar L.G., Hall M.J., Zimmerman M.B., Wahls T.L. A multimodal intervention for patients with secondary progressive multiple sclerosis: Feasibility and effect on fatigue. J. Altern. Complement. Med. 2014;20:347–355. doi: 10.1089/acm.2013.0188.
    1. Bisht B., Darling W.G., Shivapour E.T., Lutgendorf S.K., Snetselaar L.G., Chenard C.A., Wahls T.L. Multimodal intervention improves fatigue and quality of life in subjects with progressive multiple sclerosis: A pilot study. Degener. Neurol. Neuromuscul. Dis. 2015;5:19–35.
    1. Irish A.K., Erickson C.M., Wahls T.L., Snetselaar L.G., Darling W.G. Randomized control trial evaluation of a modified Paleolithic dietary intervention in the treatment of relapsing-remitting multiple sclerosis: A pilot study. Degener. Neurol. Neuromuscul. Dis. 2017;7:1–18. doi: 10.2147/DNND.S116949.
    1. Lee J.E., Bisht B., Hall M.J., Rubenstein L.M., Louison R., Klein D.T., Wahls T.L. A Multimodal, Nonpharmacologic Intervention Improves Mood and Cognitive Function in People with Multiple Sclerosis. J. Am. Coll. Nutr. 2017;36:150–168. doi: 10.1080/07315724.2016.1255160.
    1. Bisht B., Darling W.G., White E.C., White K.A., Shivapour E.T., Zimmerman M.B., Wahls T.L. Effects of a multimodal intervention on gait and balance of subjects with progressive multiple sclerosis: A prospective longitudinal pilot study. Degener. Neurol. Neuromuscul. Dis. 2017;7:79–93. doi: 10.2147/DNND.S128872.
    1. Farinotti M., Vacchi L., Simi S., Di Pietrantonj C., Brait L., Filippini G. Dietary interventions for multiple sclerosis. Cochrane Database Syst. Rev. 2012;12:Cd004192. doi: 10.1002/14651858.CD004192.pub3.
    1. Venasse M., Edwards T., Pilutti L.A. Exploring Wellness Interventions in Progressive Multiple Sclerosis: An Evidence-Based Review. Curr. Treat. Options Neurol. 2018;20:13. doi: 10.1007/s11940-018-0497-2.
    1. Bhargava P. Diet and Multiple Sclerosis. [(accessed on 25 June 2015)]; Available online: .
    1. Diet & Nutrition. [(accessed on 16 October 2017)]; Available online: .
    1. U.S. Department of Health and Human Services and U.S. Department of Agriculture . 2015–2020 Dietary Guidelines for Americans. Skyhorse Publishing Inc.; Washington, DC, USA: 2015.
    1. Eckel R.H., Jakicic J.M., Ard J.D., de Jesus J.M., Miller N.H., Hubbard V.S., Lee I.M., Lichtenstein A.H., Loria C.M., Millen B.E., et al. 2013 AHA/ACC Guideline on Lifestyle Management to Reduce Cardiovascular Risk. Circulation. 2014;129:S76–S99. doi: 10.1161/01.cir.0000437740.48606.d1.
    1. Kushi L.H., Doyle C., McCullough M., Rock C.L., Demark-Wahnefried W., Bandera E.V., Gapstur S., Patel A.V., Andrews K., Gansler T. American Cancer Society Guidelines on nutrition and physical activity for cancer prevention: Reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J. Clin. 2012;62:30–67. doi: 10.3322/caac.20140.
    1. Wahls T., Scott M.O., Alshare Z., Rubenstein L., Darling W., Carr L., Smith K., Chenard C.A., LaRocca N., Snetselaar L. Dietary approaches to treat MS-related fatigue: Comparing the modified Paleolithic (Wahls Elimination) and low saturated fat (Swank) diets on perceived fatigue in persons with relapsing-remitting multiple sclerosis: Study protocol for a randomized controlled trial. Trials. 2018;19:309.
    1. Wahls T.L. Dietary Approaches to Treat Multiple Sclerosis-Related Fatigue Study. [(accessed on 15 June 2018)]; Available online: .
    1. Lichtenstein A.H., Van Horn L. Very Low Fat Diets. Circulation. 1998;98:935–939. doi: 10.1161/01.CIR.98.9.935.
    1. Mueller-Cunningham W.M., Quintana R., Kasim-Karakas S.E. An ad libitum, very low-fat diet results in weight loss and changes in nutrient intakes in postmenopausal women. J. Am. Diet. Assoc. 2003;103:1600–1606. doi: 10.1016/j.jada.2003.09.017.
    1. Institute of Medicine Dietary Reference Intakes: EAR, RDA, AI, Acceptable Macronutrient Distribution Ranges, and UL. [(accessed on 16 June 2018)]; Available online: .
    1. Institute of Medicine . Dietary Reference Intakes: Applications in Dietary Planning. The National Academies Press; Washington, DC, USA: 2003.
    1. Krebs-Smith S.M., Pannucci T.E., Subar A.F., Kirkpatrick S.I., Lerman J.L., Tooze J.A., Wilson M.M., Reedy J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018;118:1591–1602. doi: 10.1016/j.jand.2018.05.021.
    1. Chiuve S.E., Fung T.T., Rimm E.B., Hu F.B., McCullough M.L., Wang M., Stampfer M.J., Willett W.C. Alternative dietary indices both strongly predict risk of chronic disease. J. Nutr. 2012;142:1009–1018. doi: 10.3945/jn.111.157222.
    1. Center for Nutrition Policy and Promotion Healthy US-Style Pattern: Recommended Intake Amounts. [(accessed on 19 September 2017)]; Available online: .
    1. U.S. Department of Health and Human Services and U.S. Department of Agriculture Nutrients in Healthy US-Style Food Pattern: Nutrients in the Pattern at Each Calorie Level and Comparison of Nutrient Content to the Nutritional Goals for That Pattern. [(accessed on 22 September 2017)]; Available online: .
    1. Reedy J., Lerman J.L., Krebs-Smith S.M., Kirkpatrick S.I., Pannucci T.E., Wilson M.M., Subar A.F., Kahle L.L., Tooze J.A. Evaluation of the Healthy Eating Index-2015. J. Acad. Nutr. Diet. 2018;118:1622–1633. doi: 10.1016/j.jand.2018.05.019.
    1. U.S. Department of Agriculture, ARS Item Clusters, Percent of Consumption, and Representative Foods for USDA Food Pattern Food Groups and Subgroups. [(accessed on 22 September 2017)]; Available online: .
    1. Nutrition Coordinating Center (NCC) Nutrition Data System for Research (NDSR) Software. University of Minnesota; Minneapolis, MN, USA: 2017.
    1. Bowman S.A., Clemens J.C., Shimizu M., Friday J.E., Alanna J., Moshfegh A.J. Food Patterns Equivalents Database 2015–2016: Methodology and User Guide. [(accessed on 27 September 2018)]; Available online: .
    1. Murphy S.P. Using DRIs as the basis for dietary guidelines. Asia Pac. J. Clin. Nutr. 2008;17(Suppl. 1):52–54.
    1. U.S. Department of Health and Human Services and U.S. Department of Agriculture. Estimated Calorie Needs per Day—Energy Levels Used for Assignment of Individuals to USDA Food Patterns. [(accessed on 19 September 2017)]; Available online: .
    1. Krebs-Smith S.M., Clark L.D. Validation of a nutrient adequacy score for use with women and children. J. Am. Diet. Assoc. 1989;89:775–783.
    1. Dietary Guidelines Advisory Committee Scientific Report of the 2015 Dietary Guidelines Advisory Committee Appendix E-3.1: Adequacy of USDA Food Patterns. [(accessed on 5 July 2018)]; Available online: .
    1. U.S. Department of Health and Human Services and U.S. Department of Agriculture Nutrient Profiles for Food Groups and Subgroups in the 2015 USDA Food Patterns. [(accessed on 22 September 2017)]; Available online: .
    1. Britten P., Cleveland L.E., Koegel K.L., Kuczynski K.J., Nickols-Richardson S.M. Updated US Department of Agriculture Food Patterns meet goals of the 2010 dietary guidelines. J. Acad. Nutr. Diet. 2012;112:1648–1655. doi: 10.1016/j.jand.2012.05.021.
    1. Pannucci T. (USDA, Alexandria, VA, USA). Personal communication. 2018.
    1. National Cancer Institute The Healthy Eating Index—Population Ratio Method. [(accessed on 25 October 2017)]; Available online: .
    1. McCullough M.L., Willett W.C. Evaluating adherence to recommended diets in adults: The Alternate Healthy Eating Index. Public Health Nutr. 2006;9:152–157. doi: 10.1079/PHN2005938.
    1. McCullough M.L., Feskanich D., Stampfer M.J., Giovannucci E.L., Rimm E.B., Hu F.B., Spiegelman D., Hunter D.J., Colditz G.A., Willett W.C. Diet quality and major chronic disease risk in men and women: Moving toward improved dietary guidance. Am. J. Clin. Nutr. 2002;76:1261–1271. doi: 10.1093/ajcn/76.6.1261.
    1. McCullough M.L., Feskanich D., Rimm E.B., Giovannucci E.L., Ascherio A., Variyam J.N., Spiegelman D., Stampfer M.J., Willett W.C. Adherence to the Dietary Guidelines for Americans and risk of major chronic disease in men. Am. J. Clin. Nutr. 2000;72:1223–1231. doi: 10.1093/ajcn/72.5.1223.
    1. McCullough M.L., Feskanich D., Stampfer M.J., Rosner B.A., Hu F.B., Hunter D.J., Variyam J.N., Colditz G.A., Willett W.C. Adherence to the Dietary Guidelines for Americans and risk of major chronic disease in women. Am. J. Clin. Nutr. 2000;72:1214–1222. doi: 10.1093/ajcn/72.5.1214.
    1. Kennedy E.T., Ohls J., Carlson S., Fleming K. The Healthy Eating Index: Design and Applications. J. Am. Diet. Assoc. 1995;95:1103. doi: 10.1016/S0002-8223(95)00300-2.
    1. Shivappa N., Hebert J.R., Kivimaki M., Akbaraly T. Alternate Healthy Eating Index 2010, Dietary Inflammatory Index and risk of mortality: Results from the Whitehall II cohort study and meta-analysis of previous Dietary Inflammatory Index and mortality studies. Br. J. Nutr. 2017;118:210–221. doi: 10.1017/S0007114517001908.
    1. Mears M., Tussing-Humphreys L., Cerwinske L., Tangney C., Hughes S.L., Fitzgibbons M., Gomez-Perez S. Associations between Alternate Healthy Eating Index-2010, Body Composition, Osteoarthritis Severity, and Interleukin-6 in Older Overweight and Obese African American Females with Self-Reported Osteoarthritis. Nutrients. 2018;11:26. doi: 10.3390/nu11010026.
    1. McCullough M.L. (American Cancer Society, Inc., Atlanta, GA, USA). Personal communication. 2019
    1. Hoy M.K., Goldman J.D., Murayi T., Rhodes D.G., Moshfegh A.J. Sodium Intake of the U.S. Population: What We Eat In America, NHANES 2007-2008. Food Surveys Research Group Dietary Data Brief No. 8. October 2011. [(accessed on 5 March 2019)]; Available online: .
    1. Schwingshackl L., Bogensberger B., Hoffmann G. Diet Quality as Assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension Score, and Health Outcomes: An Updated Systematic Review and Meta-Analysis of Cohort Studies. J. Acad. Nutr. Diet. 2018;118:74–100. doi: 10.1016/j.jand.2017.08.024.
    1. SAS Institute Inc. SAS 9.4. SAS Institute Inc.; Cary, NC, USA: 2015.
    1. Microsoft Corporation . Microsoft Excel, 14.0.7208.5000 (32-bit) Microsoft Corporation; Albuquerque, NM, USA: 2010.
    1. Brand-Miller J.C., Stockmann K., Atkinson F., Petocz P., Denyer G. Glycemic index, postprandial glycemia, and the shape of the curve in healthy subjects: Analysis of a database of more than 1000 foods. Am. J. Clin. Nutr. 2009;89:97–105. doi: 10.3945/ajcn.2008.26354.
    1. Institute of Medicine Dietary Reference Intakes: Macronutrients. [(accessed on 16 June 2018)]; Available online: .
    1. Jacobson T.A., Maki K.C., Orringer C.E., Jones P.H., Kris-Etherton P., Sikand G., La Forge R., Daniels S.R., Wilson D.P., Morris P.B., et al. National Lipid Association Recommendations for Patient-Centered Management of Dyslipidemia: Part 2. J. Clin. Lipidol. 2015;9:S1–S122. doi: 10.1016/j.jacl.2015.09.002.
    1. Slavin J.L., Lloyd B. Health benefits of fruits and vegetables. Adv. Nutr. 2012;3:506–516. doi: 10.3945/an.112.002154.
    1. Hadgkiss E.J., Jelinek G.A., Weiland T.J., Pereira N.G., Marck C.H., van der Meer D.M. The association of diet with quality of life, disability, and relapse rate in an international sample of people with multiple sclerosis. Nutr. Neurosci. 2015;18:125–136. doi: 10.1179/1476830514Y.0000000117.
    1. Fitzgerald K.C., Tyry T., Salter A., Cofield S.S., Cutter G., Fox R., Marrie R.A. Diet quality is associated with disability and symptom severity in multiple sclerosis. Neurology. 2018;90:e1–e11. doi: 10.1212/WNL.0000000000004768.
    1. Marck C.H., De Livera A.M., Brown C.R., Neate S.L., Taylor K.L., Weiland T.J., Hadgkiss E.J., Jelinek G.A. Health outcomes and adherence to a healthy lifestyle after a multimodal intervention in people with multiple sclerosis: Three year follow-up. PLoS ONE. 2018;13:e0197759. doi: 10.1371/journal.pone.0197759.
    1. Thau-Zuchman O., Gomes R.N., Dyall S.C., Davies M., Priestley J.V., Groenendijk M., De Wilde M.C., Tremoleda J.L., Michael-Titus A.T. Brain Phospholipid Precursors Administered Post-Injury Reduce Tissue Damage and Improve Neurological Outcome in Experimental Traumatic Brain Injury. J. Neurotrauma. 2019;36:25–42. doi: 10.1089/neu.2017.5579.
    1. Skripuletz T., Manzel A., Gropengiesser K., Schafer N., Gudi V., Singh V., Salinas Tejedor L., Jorg S., Hammer A., Voss E., et al. Pivotal role of choline metabolites in remyelination. Brain. 2015;138:398–413. doi: 10.1093/brain/awu358.
    1. Skripuletz T., Linker R.A., Stangel M. The choline pathway as a strategy to promote central nervous system (CNS) remyelination. Neural Regener. Res. 2015;10:1369–1370.
    1. Hollenbeck C.B. An introduction to the nutrition and metabolism of choline. Cent. Nerv. Syst. Agents Med. Chem. 2012;12:100–113. doi: 10.2174/187152412800792689.
    1. Ames B.N. Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage. Proc. Natl. Acad. Sci. USA. 2006;103:17589–17594. doi: 10.1073/pnas.0608757103.
    1. Ames B.N. Optimal micronutrients delay mitochondrial decay and age-associated diseases. Mech. Ageing Dev. 2010;131:473–479. doi: 10.1016/j.mad.2010.04.005.
    1. NIH Office of Dietary Supplements Choline Fact Sheet for Health Professionals. [(accessed on 25 September 2018)]; Available online: .
    1. Wen W., Wan Z., Ren K., Zhou D., Gao Q., Wu Y., Wang L., Yuan Z., Zhou J. Potassium supplementation inhibits IL-17A production induced by salt loading in human T lymphocytes via p38/MAPK-SGK1 pathway. Exp. Mol. Pathol. 2016;100:370–377. doi: 10.1016/j.yexmp.2016.03.009.
    1. Gijsbers L., Dower J.I., Schalkwijk C.G., Kusters Y.H., Bakker S.J., Hollman P.C., Geleijnse J.M. Effects of sodium and potassium supplementation on endothelial function: A fully controlled dietary intervention study. Br. J. Nutr. 2015;114:1419–1426. doi: 10.1017/S0007114515002986.
    1. Khalili H., Malik S., Ananthakrishnan A.N., Garber J.J., Higuchi L.M., Joshi A., Peloquin J., Richter J.M., Stewart K.O., Curhan G.C., et al. Identification and Characterization of a Novel Association between Dietary Potassium and Risk of Crohn’s Disease and Ulcerative Colitis. Front. Immunol. 2016;7:554. doi: 10.3389/fimmu.2016.00554.
    1. Miyake S., Yamamura T. Gut environmental factors and multiple sclerosis. J. Neuroimmunol. 2018 doi: 10.1016/j.jneuroim.2018.07.015.
    1. Berer K., Martinez I., Walker A., Kunkel B., Schmitt-Kopplin P., Walter J., Krishnamoorthy G. Dietary non-fermentable fiber prevents autoimmune neurological disease by changing gut metabolic and immune status. Sci. Rep. 2018;8:10431. doi: 10.1038/s41598-018-28839-3.
    1. Lombardi V.C., De Meirleir K.L., Subramanian K., Nourani S.M., Dagda R.K., Delaney S.L., Palotás A. Nutritional modulation of the intestinal microbiota: Future opportunities for the prevention and treatment of neuroimmune and neuroinflammatory disease. J. Nutr. Biochem. 2018;61:1–16. doi: 10.1016/j.jnutbio.2018.04.004.
    1. Shahi S.K., Freedman S.N., Mangalam A.K. Gut microbiome in multiple sclerosis: The players involved and the roles they play. Gut Microbes. 2017;8:607–615. doi: 10.1080/19490976.2017.1349041.
    1. Freedman S.N., Shahi S.K., Mangalam A.K. The “Gut Feeling”: Breaking Down the Role of Gut Microbiome in Multiple Sclerosis. Neurotherapeutics. 2018;15:109–125. doi: 10.1007/s13311-017-0588-x.
    1. Ledikwe J.H., Blanck H.M., Khan L.K., Serdula M.K., Seymour J.D., Tohill B.C., Rolls B.J. Dietary energy density determined by eight calculation methods in a nationally representative United States population. J. Nutr. 2005;135:273–278. doi: 10.1093/jn/135.2.273.
    1. Pérez-Escamilla R., Obbagy J.E., Altman J.M., Essery E.V., McGrane M.M., Wong Y.P., Spahn J.M., Williams C.L. Dietary Energy Density and Body Weight in Adults and Children: A Systematic Review. J. Acad. Nutr. Diet. 2012;112:671–684. doi: 10.1016/j.jand.2012.01.020.
    1. Vernarelli J.A., Mitchell D.C., Rolls B.J., Hartman T.J. Dietary energy density and obesity: How consumption patterns differ by body weight status. Eur. J. Nutr. 2018;57:351–361. doi: 10.1007/s00394-016-1324-8.
    1. Mokry L.E., Ross S., Timpson N.J., Sawcer S., Davey Smith G., Richards J.B. Obesity and Multiple Sclerosis: A Mendelian Randomization Study. PLoS Med. 2016;13:e1002053. doi: 10.1371/journal.pmed.1002053.
    1. Marck C.H., Neate S.L., Taylor K.L., Weiland T.J., Jelinek G.A. Prevalence of Comorbidities, Overweight and Obesity in an International Sample of People with Multiple Sclerosis and Associations with Modifiable Lifestyle Factors. PLoS ONE. 2016;11:e0148573. doi: 10.1371/journal.pone.0148573.
    1. Tettey P., Simpson S., Taylor B., Ponsonby A.L., Lucas R.M., Dwyer T., Kostner K., van der Mei I.A. An adverse lipid profile and increased levels of adiposity significantly predict clinical course after a first demyelinating event. J. Neurol. Neurosurg. Psychiatry. 2017;88:395–401. doi: 10.1136/jnnp-2016-315037.
    1. Pasquinelli S., Solaro C. Nutritional assessment and malnutrition in multiple sclerosis. Neurol.Sci. 2008;29(Suppl. 4):S367. doi: 10.1007/s10072-008-1046-7.
    1. Edwards N.C., Munsell M., Menzin J., Phillips A.L. Comorbidity in US patients with multiple sclerosis. Patient Relat. Outcome Meas. 2018;9:97–102. doi: 10.2147/PROM.S148387.
    1. National Heart, Lung, and Blood Institute DASH Eating Plan. [(accessed on 28 February 2019)]; Available online: .
    1. USDA Center for Nutrition Policy and Promotion Report Card on the Quality of Americans’ Diets. [(accessed on 1 September 2018)]; Available online: .

Source: PubMed

3
Abonnieren