New Insights into the Role of Neuron-Specific Enolase in Neuro-Inflammation, Neurodegeneration, and Neuroprotection

Azizul Haque, Rachel Polcyn, Denise Matzelle, Naren L Banik, Azizul Haque, Rachel Polcyn, Denise Matzelle, Naren L Banik

Abstract

Neurodegeneration is a complex process that leads to irreversible neuronal damage and death in spinal cord injury (SCI) and various neurodegenerative diseases, which are serious, debilitating conditions. Despite exhaustive research, the cause of neuronal damage in these degenerative disorders is not completely understood. Elevation of cell surface α-enolase activates various inflammatory pathways, including the production of pro-inflammatory cytokines, chemokines, and some growth factors that are detrimental to neuronal cells. While α-enolase is present in all neurological tissues, it can also be converted to neuron specific enolase (NSE). NSE is a glycolytic enzyme found in neuronal and neuroendocrine tissues that may play a dual role in promoting both neuroinflammation and neuroprotection in SCI and other neurodegenerative events. Elevated NSE can promote ECM degradation, inflammatory glial cell proliferation, and actin remodeling, thereby affecting migration of activated macrophages and microglia to the injury site and promoting neuronal cell death. Thus, NSE could be a reliable, quantitative, and specific marker of neuronal injury. Depending on the injury, disease, and microenvironment, NSE may also show neurotrophic function as it controls neuronal survival, differentiation, and neurite regeneration via activation of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways. This review discusses possible implications of NSE expression and activity in neuroinflammation, neurodegeneration, and neuroprotection in SCI and various neurodegenerative diseases for prognostic and therapeutic potential.

Keywords: cathepsin X; degeneration; gliosis; neuron specific enolase (NSE); neuroprotection; spinal cord injury (SCI).

Conflict of interest statement

The authors have no financial conflicts of interest.

Figures

Figure 1
Figure 1
Elevation of enolase promotes glycolysis, cellular proliferation, activation and migration via the PI3K/AKT and MAPK/ERK pathways. Enolase-mediated activation of PI3K also regulates RhoA kinase, which influences actin cytoskeleton reorganization, induction of neurite outgrowth, and growth arrest in neuronal cells. NSE is a substrate of Cat X, and regulation of NSE by Cat X may determine neuronal survival during CNS injury. Treatment with enolase inhibitor, ENOblock, may attenuate NSE, Cat X, and other inflammatory events in SCI, thus reducing neuroinflammation and neurodegeneration and promoting neuronal survival and/or neuroprotection.

References

    1. Shimizu A., Suzuki F., Kato K. Characterization of alpha alpha, beta beta, gamma gamma and alpha gamma human enolase isozymes, and preparation of hybrid enolases (alpha gamma, beta gamma and alpha beta) from homodimeric forms. Biochim. Biophys. Acta. 1983;748:278–284. doi: 10.1016/0167-4838(83)90305-9.
    1. Merkulova T., Dehaupas M., Nevers M.C., Creminon C., Alameddine H., Keller A. Differential modulation of alpha, beta and gamma enolase isoforms in regenerating mouse skeletal muscle. Eur. J. Biochem. 2000;267:3735–3743. doi: 10.1046/j.1432-1327.2000.01408.x.
    1. Piast M., Kustrzeba-Wojcicka I., Matusiewicz M., Banas T. Molecular evolution of enolase. Acta Biochim. Pol. 2005;52:507–513.
    1. Deloulme J.C., Helies A., Ledig M., Lucas M., Sensenbrenner M. A comparative study of the distribution of alpha- and gamma-enolase subunits in cultured rat neural cells and fibroblasts. Int. J. Dev. Neurosci. 1997;15:183–194. doi: 10.1016/S0736-5748(96)00090-1.
    1. Hafner A., Glavan G., Obermajer N., Zivin M., Schliebs R., Kos J. Neuroprotective role of gamma-enolase in microglia in a mouse model of Alzheimer’s disease is regulated by cathepsin X. Aging Cell. 2013;12:604–614. doi: 10.1111/acel.12093.
    1. Ergun R., Bostanci U., Akdemir G., Beskonakli E., Kaptanoglu E., Gursoy F., Taskin Y. Prognostic value of serum neuron-specific enolase levels after head injury. Neurol. Res. 1998;20:418–420. doi: 10.1080/01616412.1998.11740541.
    1. Kleine T.O., Benes L., Zofel P. Studies of the brain specificity of S100B and neuron-specific enolase (NSE) in blood serum of acute care patients. Brain Res. Bull. 2003;61:265–279. doi: 10.1016/S0361-9230(03)00090-X.
    1. Streitburger D.P., Arelin K., Kratzsch J., Thiery J., Steiner J., Villringer A., Mueller K., Schroeter M.L. Validating serum S100B and neuron-specific enolase as biomarkers for the human brain—A combined serum, gene expression and MRI study. PLoS ONE. 2012;7:e43284. doi: 10.1371/journal.pone.0043284.
    1. Egea-Guerrero J.J., Murillo-Cabezas F., Rodriguez-Rodriguez A., Gordillo-Escobar E., Revuelto-Rey J., Munoz-Sanchez M.A., Leon-Justel A., Vilches-Arenas A. (An experimental model of mass-type brain damage in the rat: Expression of brain damage based on neurospecific enolase and protein S100B) Med. Intensiv. 2014;38:218–225. doi: 10.1016/j.medin.2013.03.015.
    1. Johnsson P., Blomquist S., Luhrs C., Malmkvist G., Alling C., Solem J.O., Stahl E. Neuron-specific enolase increases in plasma during and immediately after extracorporeal circulation. Ann. Thorac. Surg. 2000;69:750–754. doi: 10.1016/S0003-4975(99)01393-4.
    1. Sahu S., Nag D.S., Swain A., Samaddar D.P. Biochemical changes in the injured brain. World J. Biol. Chem. 2017;8:21–31. doi: 10.4331/wjbc.v8.i1.21.
    1. Steinberg R., Scarna H., Pujol J.F. Neuron-specific enolase in cerebrospinal fluid: A possible indicator of neuronal damage in kainic acid lesions. Neurosci. Lett. 1984;45:147–150. doi: 10.1016/0304-3940(84)90090-9.
    1. Kwon B.K., Tetzlaff W., Grauer J.N., Beiner J., Vaccaro A.R. Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J. 2004;4:451–464. doi: 10.1016/j.spinee.2003.07.007.
    1. McDonald J.W., Sadowsky C. Spinal-cord injury. Lancet. 2002;359:417–425. doi: 10.1016/S0140-6736(02)07603-1.
    1. Ondruschka B., Pohlers D., Sommer G., Schober K., Teupser D., Franke H., Dressler J. S100B and NSE as useful postmortem biochemical markers of traumatic brain injury in autopsy cases. J. Neurotrauma. 2013;30:1862–1871. doi: 10.1089/neu.2013.2895.
    1. Cao F., Yang X.F., Liu W.G., Hu W.W., Li G., Zheng X.J., Shen F., Zhao X.Q., Lv S.T. Elevation of neuron-specific enolase and S-100beta protein level in experimental acute spinal cord injury. J. Clin. Neurosci. 2008;15:541–544. doi: 10.1016/j.jocn.2007.05.014.
    1. Sawhney S., Hood K., Shaw A., Braithwaite A.W., Stubbs R., Hung N.A., Royds J.A., Slatter T.L. Alpha-enolase is upregulated on the cell surface and responds to plasminogen activation in mice expressing a 133p53alpha mimic. PLoS ONE. 2015;10:e0116270. doi: 10.1371/journal.pone.0116270.
    1. Hafner A., Obermajer N., Kos J. gamma-Enolase C-terminal peptide promotes cell survival and neurite outgrowth by activation of the PI3K/Akt and MAPK/ERK signalling pathways. Biochem. J. 2012;443:439–450. doi: 10.1042/BJ20111351.
    1. Bae S., Kim H., Lee N., Won C., Kim H.R., Hwang Y.I., Song Y.W., Kang J.S., Lee W.J. Alpha-Enolase expressed on the surfaces of monocytes and macrophages induces robust synovial inflammation in rheumatoid arthritis. J. Immunol. 2012;189:365–372. doi: 10.4049/jimmunol.1102073.
    1. Polcyn R., Capone M., Hossain A., Matzelle D., Banik N.L., Haque A. Enolase and acute spinal cord injury. J. Clin. Cell. Immunol. 2017;8:536. doi: 10.4172/2155-9899.1000536.
    1. Qian J., Herrera J.J., Narayana P.A. Neuronal and axonal degeneration in experimental spinal cord injury: In vivo proton magnetic resonance spectroscopy and histology. J. Neurotrauma. 2010;27:599–610. doi: 10.1089/neu.2009.1145.
    1. Whalley K., O’Neill P., Ferretti P. Changes in response to spinal cord injury with development: Vascularization, hemorrhage and apoptosis. Neuroscience. 2006;137:821–832. doi: 10.1016/j.neuroscience.2005.07.064.
    1. Varma A.K., Das A., Wallace G.t., Barry J., Vertegel A.A., Ray S.K., Banik N.L. Spinal cord injury: A review of current therapy, future treatments, and basic science frontiers. Neurochem. Res. 2013;38:895–905. doi: 10.1007/s11064-013-0991-6.
    1. Haque A., Capone M., Matzelle D., Cox A., Banik N.L. Targeting Enolase in Reducing Secondary Damage in Acute Spinal Cord Injury in Rats. Neurochem. Res. 2017;42:2777–2787. doi: 10.1007/s11064-017-2291-z.
    1. Zheng J., Liang J., Deng X., Chen X., Wu F., Zhao X., Luo Y., Fu L., Jiang Z. Mitogen activated protein kinase signaling pathways participate in the active principle region of Buyang Huanwu decoction-induced differentiation of bone marrow mesenchymal stem cells. Neural Regen. Res. 2012;7:1370–1377.
    1. Polcyn R., Capone M., Hossain A., Matzelle D., Banik N.L., Haque A. Neuron specific enolase is a potential target for regulating neuronal cell survival and death: Implications in neurodegeneration and regeneration. Neuroimmunol. Neuroinflamm. 2017;4:254–257. doi: 10.20517/2347-8659.2017.59.
    1. Marangos P.J., Schmechel D.E., Parma A.M., Goodwin F.K. Developmental profile of neuron-specific (NSE) and non-neuronal (NNE) enolase. Brain Res. 1980;190:185–193. doi: 10.1016/0006-8993(80)91168-3.
    1. Kirino T., Brightman M.W., Oertel W.H., Schmechel D.E., Marangos P.J. Neuron-specific enolase as an index of neuronal regeneration and reinnervation. J. Neurosci. 1983;3:915–923.
    1. Schmechel D.E., Brightman M.W., Marangos P.J. Neurons switch from non-neuronal enolase to neuron-specific enolase during differentiation. Brain Res. 1980;190:195–214. doi: 10.1016/0006-8993(80)91169-5.
    1. Pislar A., Bozic B., Zidar N., Kos J. Inhibition of cathepsin X reduces the strength of microglial-mediated neuroinflammation. Neuropharmacology. 2017;114:88–100. doi: 10.1016/j.neuropharm.2016.11.019.
    1. Hu X., Leak R.K., Shi Y., Suenaga J., Gao Y., Zheng P., Chen J. Microglial and macrophage polarization-new prospects for brain repair. Nat. Rev. Neurol. 2015;11:56–64. doi: 10.1038/nrneurol.2014.207.
    1. Deloulme J.C., Lucas M., Gaber C., Bouillon P., Keller A., Eclancher F., Sensenbrenner M. Expression of the neuron-specific enolase gene by rat oligodendroglial cells during their differentiation. J. Neurochem. 1996;66:936–945. doi: 10.1046/j.1471-4159.1996.66030936.x.
    1. Vinores S.A., Rubinstein L.J. Simultaneous expression of glial fibrillary acidic (GFA) protein and neuron-specific enolase (NSE) by the same reactive or neoplastic astrocytes. Neuropathol. Appl. Neurobiol. 1985;11:349–359. doi: 10.1111/j.1365-2990.1985.tb00031.x.
    1. Sensenbrenner M., Lucas M., Deloulme J.C. Expression of two neuronal markers, growth-associated protein 43 and neuron-specific enolase, in rat glial cells. J. Mol. Med. 1997;75:653–663. doi: 10.1007/s001090050149.
    1. Yamamoto C., Kawana E. Immunohistochemical detection of NSE and S-100 protein in the thalamic VB nucleus after ablation of somatosensory cortex in the rat. Okajimas Folia Anat. Jpn. 1991;67:417–428. doi: 10.2535/ofaj1936.67.6_417.
    1. Steiner J., Bielau H., Bernstein H.G., Bogerts B., Wunderlich M.T. Increased cerebrospinal fluid and serum levels of S100B in first-onset schizophrenia are not related to a degenerative release of glial fibrillar acidic protein, myelin basic protein and neurone-specific enolase from glia or neurones. J. Neurol. Neurosurg. Psychiatry. 2006;77:1284–1287. doi: 10.1136/jnnp.2006.093427.
    1. Liddelow S.A., Guttenplan K.A., Clarke L.E., Bennett F.C., Bohlen C.J., Schirmer L., Bennett M.L., Munch A.E., Chung W.S., Peterson T.C., et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481–487. doi: 10.1038/nature21029.
    1. Cahoy J.D., Emery B., Kaushal A., Foo L.C., Zamanian J.L., Christopherson K.S., Xing Y., Lubischer J.L., Krieg P.A., Krupenko S.A., et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function. J. Neurosci. 2008;28:264–278. doi: 10.1523/JNEUROSCI.4178-07.2008.
    1. Srodulski S., Sharma S., Bachstetter A.B., Brelsfoard J.M., Pascual C., Xie X.S., Saatman K.E., van Eldik L.J., Despa F. Neuroinflammation and neurologic deficits in diabetes linked to brain accumulation of amylin. Mol. Neurodegener. 2014;9:30. doi: 10.1186/1750-1326-9-30.
    1. Kadlubowska J., Malaguarnera L., Waz P., Zorena K. Neurodegeneration and Neuroinflammation in Diabetic Retinopathy: Potential Approaches to Delay Neuronal Loss. Curr. Neuropharmacol. 2016;14:831–839. doi: 10.2174/1570159X14666160614095559.
    1. Nayak A.R., Badar S.R., Lande N., Kawle A.P., Kabra D.P., Chandak N.H., Raje D.V., Singh L.R., Daginawala H.F., Kashyap R.S. Prediction of Outcome in Diabetic Acute Ischemic Stroke Patients: A Hospital-Based Pilot Study Report. Ann. Neurosci. 2016;23:199–208. doi: 10.1159/000449480.
    1. Chao C., Williams S.G., Xu L., Chen J., Wallner L.P., Porter K.R., Jacobsen S.J. Statin therapy is not associated with prostate cancer recurrence among patients who underwent radiation therapy. Cancer Lett. 2013;335:214–218. doi: 10.1016/j.canlet.2013.02.017.
    1. Ciancarelli I., de Amicis D., di Massimo C., Sandrini G., Pistarini C., Carolei A., Ciancarelli M.G.T. Influence of intensive multifunctional neurorehabilitation on neuronal oxidative damage in patients with Huntington’s disease. Funct. Neurol. 2015;30:47–52.
    1. Dincel G.C., Atmaca H.T. Role of oxidative stress in the pathophysiology of Toxoplasma gondii infection. Int. J. Immunopathol. Pharmacol. 2016;29:226–240. doi: 10.1177/0394632016638668.
    1. Vasiljevic B., Maglajlic-Djukic S., Gojnic M., Stankovic S. The role of oxidative stress in perinatal hypoxic-ischemic brain injury. Srp. Arh. Celok. Lek. 2012;140:35–41. doi: 10.2298/SARH1202035V.
    1. Schon E.A., Manfredi G. Neuronal degeneration and mitochondrial dysfunction. J. Clin. Investig. 2003;111:303–312. doi: 10.1172/JCI200317741.
    1. Constantinescu R., Zetterberg H., Holmberg B., Rosengren L. Levels of brain related proteins in cerebrospinal fluid: An aid in the differential diagnosis of parkinsonian disorders. Parkinsonism Relat. Disord. 2009;15:205–212. doi: 10.1016/j.parkreldis.2008.05.001.
    1. Schaf D.V., Tort A.B., Fricke D., Schestatsky P., Portela L.V., Souza D.O., Rieder C.R. S100B and NSE serum levels in patients with Parkinson’s disease. Parkinsonism Relat. Disord. 2005;11:39–43. doi: 10.1016/j.parkreldis.2004.07.002.
    1. Schmidt F.M., Mergl R., Stach B., Jahn I., Gertz H.J., Schonknecht P. Elevated levels of cerebrospinal fluid neuron-specific enolase (NSE) in Alzheimer’s disease. Neurosci. Lett. 2014;570:81–85. doi: 10.1016/j.neulet.2014.04.007.
    1. Chaves M.L., Camozzato A.L., Ferreira E.D., Piazenski I., Kochhann R., Dall’Igna O., Mazzini G.S., Souza D.O., Portela L.V. Serum levels of S100B and NSE proteins in Alzheimer’s disease patients. J. Neuroinflamm. 2010;7:6. doi: 10.1186/1742-2094-7-6.
    1. Streitberger K.J., Leithner C., Wattenberg M., Tonner P.H., Hasslacher J., Joannidis M., Pellis T., di Luca E., Fodisch M., Krannich A., et al. Neuron-Specific Enolase Predicts Poor Outcome After Cardiac Arrest and Targeted Temperature Management: A Multicenter Study on 1053 Patients. Crit. Care Med. 2017;45:1145–1151. doi: 10.1097/CCM.0000000000002335.
    1. Wiberg S., Hassager C., Stammet P., Winther-Jensen M., Thomsen J.H., Erlinge D., Wanscher M., Nielsen N., Pellis T., Aneman A., et al. Single versus Serial Measurements of Neuron-Specific Enolase and Prediction of Poor Neurological Outcome in Persistently Unconscious Patients after Out-Of-Hospital Cardiac Arrest—A TTM-Trial Substudy. PLoS ONE. 2017;12:e0168894. doi: 10.1371/journal.pone.0168894.
    1. Sogut O., Guloglu C., Orak M., Sayhan M.B., Gokdemir M.T., Ustundag M., Akkus Z. Trauma scores and neuron-specific enolase, cytokine and C-reactive protein levels as predictors of mortality in patients with blunt head trauma. J. Int. Med. Res. 2010;38:1708–1720. doi: 10.1177/147323001003800516.
    1. Dunker S., Sadun A.A., Sebag J. Neuron specific enolase in retinal detachment. Curr. Eye Res. 2001;23:382–385. doi: 10.1076/ceyr.23.5.382.5446.
    1. Quintyn J.C., Pereira F., Hellot M.F., Brasseur G., Coquerel A. Concentration of neuron-specific enolase and S100 protein in the subretinal fluid of rhegmatogenous retinal detachment. Graefes Arch. Clin. Exp. Ophthalmol. 2005;243:1167–1174. doi: 10.1007/s00417-005-1175-0.
    1. Yee K.M., Ross-Cisneros F.N., Lee J.G., da Rosa A.B., Salomao S.R., Berezovsky A., Belfort R., Jr., Chicani F., Moraes-Filho M., Sebag J., et al. Neuron-specific enolase is elevated in asymptomatic carriers of Leber’s hereditary optic neuropathy. Investig. Ophthalmol. Vis. Sci. 2012;53:6389–6392. doi: 10.1167/iovs.12-9677.
    1. Bharosay A., Bharosay V.V., Varma M., Saxena K., Sodani A., Saxena R. Correlation of Brain Biomarker Neuron Specific Enolase (NSE) with Degree of Disability and Neurological Worsening in Cerebrovascular Stroke. Indian J. Clin. Biochem. 2012;27:186–190. doi: 10.1007/s12291-011-0172-9.
    1. Pandey A., Shrivastava A.K., Saxena K. Neuron specific enolase and c-reactive protein levels in stroke and its subtypes: Correlation with degree of disability. Neurochem. Res. 2014;39:1426–1432. doi: 10.1007/s11064-014-1328-9.
    1. Goksuluk H., Gulec S., Ozcan O.U., Gerede M., Vurgun V.K., Ozyuncu N., Erol C. Usefulness of Neuron-Specific Enolase to Detect Silent Neuronal Ischemia After Percutaneous Coronary Intervention. Am. J. Cardiol. 2016;117:1917–1920. doi: 10.1016/j.amjcard.2016.03.037.
    1. Rech T.H., Vieira S.R., Nagel F., Brauner J.S., Scalco R. Serum neuron-specific enolase as early predictor of outcome after in-hospital cardiac arrest: A cohort study. Crit. Care. 2006;10:R133. doi: 10.1186/cc5046.
    1. Rech T.H., Vieira S.R., Brauner J.S. Serum neuron-specific enolase as a prognostic marker after a cardiac arrest. Rev. Bras. Ter. Intensiv. 2006;18:396–401.
    1. Yan T., Skaftnesmo K.O., Leiss L., Sleire L., Wang J., Li X., Enger P.O. Neuronal markers are expressed in human gliomas and NSE knockdown sensitizes glioblastoma cells to radiotherapy and temozolomide. BMC Cancer. 2011;11:524. doi: 10.1186/1471-2407-11-524.
    1. Chen S.D., Zhen Y.Y., Lin J.W., Lin T.K., Huang C.W., Liou C.W., Chan S.H., Chuang Y.C. Dynamin-Related Protein 1 Promotes Mitochondrial Fission and Contributes to The Hippocampal Neuronal Cell Death Following Experimental Status Epilepticus. CNS Neurosci. Ther. 2016;22:988–999. doi: 10.1111/cns.12600.
    1. Anderson B.J., Reilly J.P., Shashaty M.G.S., Palakshappa J.A., Wysoczanski A., Dunn T.G., Kazi A., Tommasini A., Mikkelsen M.E., Schweickert W.D., et al. Admission plasma levels of the neuronal injury marker neuron-specific enolase are associated with mortality and delirium in sepsis. J. Crit. Care. 2016;36:18–23. doi: 10.1016/j.jcrc.2016.06.012.
    1. Koch M., Mostert J., Heersema D., Teelken A., de Keyser J. Plasma S100beta and NSE levels and progression in multiple sclerosis. J. Neurol. Sci. 2007;252:154–158. doi: 10.1016/j.jns.2006.11.012.
    1. Hajdukova L., Sobek O., Prchalova D., Bilkova Z., Koudelkova M., Lukaskova J., Matuchova I. Biomarkers of Brain Damage: S100B and NSE Concentrations in Cerebrospinal Fluid—A Normative Study. Biomed. Res. Int. 2015;2015:379071. doi: 10.1155/2015/379071.
    1. Ilzecki M., Ilzecka J., Przywara S., Terlecki P., Grabarska A., Stepulak A., Zubilewicz T. Serum Neuron-Specific Enolase as a Marker of Brain Ischemia-Reperfusion Injury in Patients Undergoing Carotid Endarterectomy. Acta Clin. Croat. 2016;55:579–584. doi: 10.20471/acc.2016.55.04.07.
    1. Rodriguez-Rodriguez A., Egea-Guerrero J.J., Gordillo-Escobar E., Enamorado-Enamorado J., Hernandez-Garcia C., de Azua-Lopez Z.R., Vilches-Arenas A., Guerrero J.M., Murillo-Cabezas F. S100B and Neuron-Specific Enolase as mortality predictors in patients with severe traumatic brain injury. Neurol. Res. 2016;38:130–137. doi: 10.1080/01616412.2016.1144410.
    1. Isgro M.A., Bottoni P., Scatena R. Neuron-Specific Enolase as a Biomarker: Biochemical and Clinical Aspects. Adv. Exp. Med. Biol. 2015;867:125–143.
    1. Ramont L., Thoannes H., Volondat A., Chastang F., Millet M.C., Maquart F.X. Effects of hemolysis and storage condition on neuron-specific enolase (NSE) in cerebrospinal fluid and serum: Implications in clinical practice. Clin. Chem. Lab. Med. 2005;43:1215–1217. doi: 10.1515/CCLM.2005.210.
    1. Zabel M.K., Kirsch W.M. From development to dysfunction: Microglia and the complement cascade in CNS homeostasis. Ageing Res. Rev. 2013;12:749–756. doi: 10.1016/j.arr.2013.02.001.
    1. Chen X., Chen C., Hao J., Zhang J., Zhang F. Effect of CLIP3 Upregulation on Astrocyte Proliferation and Subsequent Glial Scar Formation in the Rat Spinal Cord via STAT3 Pathway After Injury. J. Mol. Neurosci. 2018;64:117–128. doi: 10.1007/s12031-017-0998-6.
    1. Perea G., Sur M., Araque A. Neuron-glia networks: Integral gear of brain function. Front. Cell. Neurosci. 2014;8:378. doi: 10.3389/fncel.2014.00378.
    1. Chakrabarti M., Haque A., Banik N.L., Nagarkatti P., Nagarkatti M., Ray S.K. Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration. Brain Res. Bull. 2014;109:22–31. doi: 10.1016/j.brainresbull.2014.09.004.
    1. Samantaray S., Smith J.A., Das A., Matzelle D.D., Varma A.K., Ray S.K., Banik N.L. Low dose estrogen prevents neuronal degeneration and microglial reactivity in an acute model of spinal cord injury: Effect of dosing, route of administration, and therapy delay. Neurochem. Res. 2011;36:1809–1816. doi: 10.1007/s11064-011-0498-y.
    1. Samantaray S., Knaryan V.H., Shields D.C., Cox A.A., Haque A., Banik N.L. Inhibition of Calpain Activation Protects MPTP-Induced Nigral and Spinal Cord Neurodegeneration, Reduces Inflammation, and Improves Gait Dynamics in Mice. Mol. Neurobiol. 2015;52:1054–1066. doi: 10.1007/s12035-015-9255-6.
    1. Gold M., el Khoury J. beta-amyloid, microglia, and the inflammasome in Alzheimer’s disease. Semin. Immunopathol. 2015;37:607–611. doi: 10.1007/s00281-015-0518-0.
    1. Cai Z., Hussain M.D., Yan L.J. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int. J. Neurosci. 2014;124:307–321. doi: 10.3109/00207454.2013.833510.
    1. Piovesana R., Faroni A., Magnaghi V., Reid AJ., Tata AM. Supplement: GLIA Bilbao 2017: Abstracts Oral Presentations, Posters, Indexes. Glia. 2017;65:E533.
    1. Polazzi E., Altamira L.E., Eleuteri S., Barbaro R., Casadio C., Contestabile A., Monti B. Neuroprotection of microglial conditioned medium on 6-hydroxydopamine-induced neuronal death: Role of transforming growth factor beta-2. J. Neurochem. 2009;110:545–556. doi: 10.1111/j.1471-4159.2009.06117.x.
    1. Van Ham T.J., Brady C.A., Kalicharan R.D., Oosterhof N., Kuipers J., Veenstra-Algra A., Sjollema K.A., Peterson R.T., Kampinga H.H., Giepmans B.N. Intravital correlated microscopy reveals differential macrophage and microglial dynamics during resolution of neuroinflammation. Dis. Model Mech. 2014;7:857–869. doi: 10.1242/dmm.014886.
    1. Hornik T.C., Vilalta A., Brown G.C. Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis. J. Cell Sci. 2016;129:65–79. doi: 10.1242/jcs.174631.
    1. Rodriguez A.M., Delpino M.V., Miraglia M.C., Franco M.M.C., Barrionuevo P., Dennis V.A., Oliveira S.C., Giambartolomei G.H. Brucella abortus-activated microglia induce neuronal death through primary phagocytosis. Glia. 2017;65:1137–1151. doi: 10.1002/glia.23149.
    1. Hamadi N., Sheikh A., Madjid N., Lubbad L., Amir N., Shehab S.A., Khelifi-Touhami F., Adem A. Increased pro-inflammatory cytokines, glial activation and oxidative stress in the hippocampus after short-term bilateral adrenalectomy. BMC Neurosci. 2016;17:61. doi: 10.1186/s12868-016-0296-1.
    1. Obermajer N., Doljak B., Jamnik P., Fonovic U.P., Kos J. Cathepsin X cleaves the C-terminal dipeptide of alpha- and gamma-enolase and impairs survival and neuritogenesis of neuronal cells. Int. J. Biochem. Cell Biol. 2009;41:1685–1696. doi: 10.1016/j.biocel.2009.02.019.
    1. Burke R.E., O’Malley K. Axon degeneration in Parkinson’s disease. Exp. Neurol. 2013;246:72–83. doi: 10.1016/j.expneurol.2012.01.011.
    1. Coleman M. Axon degeneration mechanisms: Commonality amid diversity. Nat. Rev. Neurosci. 2005;6:889–898. doi: 10.1038/nrn1788.
    1. Wang J.T., Medress Z.A., Barres B.A. Axon degeneration: Molecular mechanisms of a self-destruction pathway. J. Cell Biol. 2012;196:7–18. doi: 10.1083/jcb.201108111.
    1. De Vos K.J., Grierson A.J., Ackerley S., Miller C.C. Role of axonal transport in neurodegenerative diseases. Annu. Rev. Neurosci. 2008;31:151–173. doi: 10.1146/annurev.neuro.31.061307.090711.

Source: PubMed

3
Abonnieren