Protective effect of sevoflurane preconditioning on ischemia-reperfusion injury in patients undergoing reconstructive plastic surgery with microsurgical flap, a randomized controlled trial

Claudia Claroni, Giulia Torregiani, Marco Covotta, Maria Sofra, Alessandra Scotto Di Uccio, Maria E Marcelli, Alessia Naccarato, Ester Forastiere, Claudia Claroni, Giulia Torregiani, Marco Covotta, Maria Sofra, Alessandra Scotto Di Uccio, Maria E Marcelli, Alessia Naccarato, Ester Forastiere

Abstract

Background: In many clinical conditions that involve free flaps and tissue transplantations the possibility of minimizing ischemia-reperfusion injury can be a determinant factor for the success of the surgery itself. We hypothesize that preconditioning with sevoflurane is a protective factor against ischemia-reperfusion injury.

Methods: In this randomized controlled trial, patients ASA I-II undergoing breast reconstruction with deep inferior epigastric perforator flaps were allocated into two groups and analyzed: group BAL included patients who received balanced anesthesia with sevoflurane for 30 min before removal of the flap and throughout the surgery. The TCI group included patients who received a total intravenous anesthesia with propofol and remifentanil. We evaluated regional tissue oximetry at the end of the surgery and at 4, 12 and 20 h after surgery. Other assessed parameters were: blood lactate clearance, alanine aminotransferase, aspartate aminotransferase, lactic dehydrogenase, creatine phosphokinase.

Results: In total 54 patients, twenty-seven per group, were analyzed. There was a significant increase of the average value of regional tissue oximetry measured 4 h after surgery in the BAL group compared to the TCI group: BAL: 84.05 % (8.96 SD); TCI : 76.17 % (12.92 SD) (P = 0.03), but not at the other time frames. The creatine phosphokinase value was significantly lower in the BAL group at the end of surgery, but not at the other time-frames. There were no significant differences in blood levels of other markers.

Conclusions: From our results, the positive preconditioning impact of sevoflurane on ischemia-reperfusion injury in patients undergoing free flap surgery is expressed in the early postoperative hours, but it does not persist in the long-term.

Trial registration: ClinicalTrial.gov identifier: NCT01905501 . Registered July 18, 2013.

Keywords: Free flap; Ischemia reperfusion injury; Near infrared spettroscopy; Preconditioning; Sevoflurane.

Figures

Fig. 1
Fig. 1
Patient disposition
Fig. 2
Fig. 2
Intraoperative data. All data presented as mean (standard deviation). * Significant. MAP: mean arterial pressure. EtCO2: end tidal carbon dioxide. FiO2: fraction of inspired oxygen. SpO2: saturation of peripheral oxygen. HR: heart rate. Bpm: beats per minute. h.: hour of surgery
Fig. 3
Fig. 3
Postoperative data. All data presented as mean (standard deviation). * Significant. rSO2: regional tissue oximetry. MAP: mean arterial pressure. SpO2: saturation of peripheral oxygen. HR: heart rate. Bpm: beats per minute. T0: end of surgery, T1 4 h after surgery, T2: 12 h after surgery, T3: 20 h after surgery

References

    1. Wang WZ, Baynosa RC, Zamboni WA. Update on ischemia-reperfusion injury for the plastic surgeon: 2011. Plast Reconstr Surg. 2011;128(6):685e–692e. doi: 10.1097/PRS.0b013e318230c57b.
    1. Küntscher MV, Hartmann B, Germann G. Remote ischemic preconditioning of flaps: a review. Microsurgery. 2005;25(4):346–352. doi: 10.1002/micr.20123.
    1. Lango R, Mroziński P. Clinical importance of anaesthetic preconditioning. Anestezjol Intens Ter. 2010;42(4):206–212.
    1. Lorsomradee S, Cromheecke S, Lorsomradee S, De Hert SG. Cardioprotection with volatile anesthetics in cardiac surgery. Asian Cardiovasc Thorac Ann. 2008;16(3):256–264. doi: 10.1177/021849230801600319.
    1. Landoni G, Fochi O, Bignami E, Calabrò MG, D’Arpa MC, Moizo E, Mizzi A, Pappalardo F, Morelli A, Zangrillo A. Cardiac protection by volatile anesthetics in non-cardiac surgery? a meta-analysis of randomized controlled studies on clinically relevant endpoints. HSR Proc Intensive Care Cardiovasc Anesth. 2009;1(4):34–43.
    1. Landoni G, Greco T, Biondi-Zoccai G, Nigro Neto C, Febres D, Pintaudi M, et al. Anaesthetic drugs and survival: a Bayesian network meta-analysis of randomized trials in cardiac surgery. Br J Anaesth. 2013;111(6):886–896. doi: 10.1093/bja/aet231.
    1. Chappell D, Heindl B, Jacob M, Annecke T, Chen C, Rehm M, et al. Sevoflurane reduces leukocyte and platelet adhesion after ischemia-reperfusion by protecting the endothelial glycocalyx. Anesthesiology. 2011;115(3):483–491. doi: 10.1097/ALN.0b013e3182289988.
    1. Bedirli N, Demirtas CY, Akkaya T, Salman B, Alper M, Bedirli A, et al. Volatile anesthetic preconditioning attenuated sepsis induced lung inflammation. J Surg Res. 2012;178(1):e17–e23. doi: 10.1016/j.jss.2011.12.037.
    1. Wang H, Lu S, Yu Q, Liang W, Gao H, Li P, et al. Sevofllurane preconditioning confers neuroprotection via anti inflammatory effects. Front Biosci (Elite Ed) 2011;1(3):604–615.
    1. Lucchinetti E, Ambrosio S, Aguirre J, Herrmann P, Härter L, Keel M, et al. Sevoflurane inhalation at sedative concentrations provides endothelial protection against ischemia-reperfusion injury in humans. Anesthesiology. 2007;106(2):262–268. doi: 10.1097/00000542-200702000-00013.
    1. Julier K, Silva R, Garcia C, Bestmann L, Frascarolo P, Zollinger A, et al. Preconditioning by sevoflurane decreases biochemical markers for myocardial and renal dysfunction in coronary artery bypass graft surgery: A double-blinded, placebo-controlled, multicenter study. Anesthesiology. 2003;98:1315–1327. doi: 10.1097/00000542-200306000-00004.
    1. Harel F, Denault A, Ngo Q, Dupuis J, Khairy P. Near-infrared spectroscopyto monitor peripheral blood flow perfusion. J Clin Mon Comput. 2008;22:37–43.
    1. Smit JM, Zeebregts CJ, Acosta R, Werker PM. Advancements in free flap monitoring in the last decade: a critical review. Plast Reconstr Surg. 2010;125(1):177–185. doi: 10.1097/PRS.0b013e3181c49580.
    1. Repez A, Oroszy D, Arnez ZM. Continuous postoperative monitoring of cutaneous free flaps using near infrared spectroscopy. J Plast Reconstr Aesthet Surg. 2008;61(1):71–77. doi: 10.1016/j.bjps.2007.04.003.
    1. Chen Y, Shen Z, Shao Z, Yu P, Wu J. Free flap monitoring using near-infrared spectroscopy: a systemic review. Ann Plast Surg. 2016;76(5):590–597. doi: 10.1097/SAP.0000000000000430.
    1. Mücke T, Rau A, Merezas A, Kanatas A, Mitchell DA, Wagenpfeil S, Wolff KD, Steiner T. Changes of perfusion of microvascular free flaps in the head and neck: a prospective clinical study. Br J Oral Maxillofac Surg. 2014;52(9):810–815. doi: 10.1016/j.bjoms.2014.07.001.
    1. Shan XF, Ouyang SY, Cai ZG, Zhang JJ. Evaluation of foot perfusion after fibular flap surgery. Craniofac Surg. 2014;25(4):1346–1347. doi: 10.1097/SCS.0000000000000812.
    1. Balzan SM, Gava VG, Rieger A, Pra D, Trombini L, Zenkner FF, et al. Ischemic versus pharmacologic hepatic preconditioning. J Surg Res. 2014;191(1):134–139. doi: 10.1016/j.jss.2014.03.073.
    1. Swyers T, Redford D, Larson DF. Volatile anesthetic-induced preconditioning. Perfusion. 2014;29(1):10–15. doi: 10.1177/0267659113503975.
    1. Wang WZ, Baynosa RC, Zamboni WA. Therapeutic interventions against reperfusion injury in skeletal muscle. J Surg Res. 2011;171(1):175–182. doi: 10.1016/j.jss.2011.07.015.
    1. Wu L, Zhao H, Wang T, Pac-Soo C, Ma D. Cellular signaling pathways and molecular mechanisms involving inhalational anesthetics-induced organoprotection. J Anesth. 2014;28:740–758. doi: 10.1007/s00540-014-1805-y.
    1. Huang SS, Wei FC, Hung LM. Ischemic preconditioning attenuates postischemic leukocyte--endothelial cell interactions: role of nitric oxide and protein kinase C. Circ J. 2006;70(8):1070–1075. doi: 10.1253/circj.70.1070.
    1. Weerateerangkul P, Chattipakorn S, Chattipakorn N. Roles of the nitric oxide signaling pathway in cardiac ischemic preconditioning against myocardial ischemia-reperfusion injury. Med Sci Monit. 2011;17(2):RA44–RA52. doi: 10.12659/MSM.881385.
    1. Kohro S, Hogan QH, Nakae Y, Yamakage M, Bosnjak ZJ. Anesthetic effects on mitochondrial ATP-sensitive K channel. Anesthesiology. 2001;95(6):1435–340. doi: 10.1097/00000542-200112000-00024.
    1. Xiong L, Zheng Y, Wu M, Hou L, Zhu Z, Zhang X, Lu Z. Preconditioning with isoflurane produces dose-dependent neuroprotection via activation of adenosine triphosphate-regulated potassium channels after focal cerebral ischemia in rats. Anesth Analg. 2003;96(1):233–237.
    1. Park HP, Jeon YT, Hwang JW, Kang H, Lim SW, Kim CS, Oh YS. Isoflurane preconditioning protects motor neurons from spinal cord ischemia: its dose–response effects and activation of mitochondrial adenosine triphosphate-dependent potassium channel. Neurosci Lett. 2005;387(2):90–94. doi: 10.1016/j.neulet.2005.06.072.
    1. Esenther BR, Ge Z, Meng F, Cottrell JE, Kass IS. Sevoflurane preconditioning attenuates the fall in adenosine triphosphate levels, but does not alter the changes in sodium and potassium levels during hypoxia in rat hippocampal slices. Anesthesiology. 2013;119(1):119–128. doi: 10.1097/ALN.0b013e31828ce844.
    1. Piriou V, Mantz J, Goldfarb G, Kitakaze M, Chiari P, Paquin S, Cornu C, Lecharny JB, Aussage P, Vicaut E, Pons A, Lehot JJ. Sevoflurane preconditioning at 1 MAC only provides limited protection in patients undergoing coronary artery bypass surgery: a randomized bi-centre trial. Br J Anaesth. 2007;99(5):624–631. doi: 10.1093/bja/aem264.
    1. Fadini GP, de Kreutzenberg S, Albiero M, Coracina A, Pagnin E, Baesso I, Cignarella A, Bolego C, Plebani M, Nardelli GB, Sartore S, Agostini C, Avogaro A. Gender differences in endothelial progenitor cells and cardiovascular risk profile: the role of female estrogens. Arterioscler Thromb Vasc Biol. 2008;28(5):997–1004. doi: 10.1161/ATVBAHA.107.159558.
    1. Mendelsohn ME. Protective effects of estrogen on the cardiovascular system. Am J Cardiol. 2002;89(12A):12E–17E. doi: 10.1016/S0002-9149(02)02405-0.
    1. Lamas AZ, Caliman IF, Dalpiaz PL, de Melo AF, Jr, Abreu GR, Lemos EM, Gouvea SA, Bissoli NS. Comparative effects of estrogen, raloxifene and tamoxifen on endothelial dysfunction, inflammatory markers and oxidative stress in ovariectomized rats. Life Sci. 2015;124:101–109. doi: 10.1016/j.lfs.2015.01.004.
    1. Mendelsohn ME. Estrogen actions in the cardiovascular system. Climacteric. 2009;12(Suppl 1):18–21. doi: 10.1080/13697130903020291.
    1. Wang C, Chiari PC, Weihrauch D, Krolikowski JG, Warltier DC, Kersten JR, Pratt PF, Jr, Pagel PS. Gender-specificity of delayed preconditioning by isoflurane in rabbits: potential role of endothelial nitric oxide synthase. Anesth Analg. 2006;103(2):274–280. doi: 10.1213/01.ANE.0000230389.76351.0C.
    1. Zheng Z, Yang M, Zhang F, Yu J, Wang J, Ma L, Zhong Y, Qian L, Chen G, Yu L, Yan M. Gender-related difference of sevoflurane postconditioning in isolated rat hearts: focus on phosphatidylinositol-3-kinase/Akt signaling. J Surg Res. 2011;170(1):e3–e9. doi: 10.1016/j.jss.2011.04.035.
    1. Zaugg M, Lucchinetti E, Behmanesh S, Clanachan AS. Anesthetic cardioprotection in clinical practice from proof-of-concept to clinical applications. Curr Pharm Des. 2014;20(36):5706–5726. doi: 10.2174/1381612820666140204120829.
    1. Rodríguez A, Taurà P, García Domingo MI, Herrero E, Camps J, Forcada P, et al. Hepatic cytoprotective effect of ischemic and anesthetic preconditioning before liver resection when using intermittent vascular inflow occlusion: a randomized clinical trial. Surgery. 2015;157(2):249–259. doi: 10.1016/j.surg.2014.09.005.
    1. Slankamenac K, Breitenstein S, Beck-Schimmer B, Graf R, Puhan MA, Clavien PA, et al. Does pharmacological conditioning with the volatile anaesthetic sevoflurane offer protection in liver surgery? HPB (Oxford) 2012;14(12):854–862. doi: 10.1111/j.1477-2574.2012.00570.x.
    1. Obal D, Dettwiler S, Favoccia C, et al. Effect of sevoflurane preconditioning on ischaemia/reperfusion injury in the rat kidney in vivo. Eur J Anaesthesiol. 2006;23(4):319–326. doi: 10.1017/S0265021505002000.
    1. Lee JH, Joo DJ, Kim JM, Park JH, Kim YS, Koo BN. Preconditioning effects of the anesthetic administered to the donor on grafted kidney function in living donor kidney transplantation recipients. Minerva Anestesiol. 2013;79(5):504–514.

Source: PubMed

3
Abonnieren