Airway Pressure Release Ventilation Mode Improves Circulatory and Respiratory Function in Patients After Cardiopulmonary Bypass, a Randomized Trial

Huiqing Ge, Ling Lin, Ying Xu, Peifeng Xu, Kailiang Duan, Qing Pan, Kejing Ying, Huiqing Ge, Ling Lin, Ying Xu, Peifeng Xu, Kailiang Duan, Qing Pan, Kejing Ying

Abstract

Importance: Postoperative pulmonary complications and cardiovascular complications are major causes of morbidity, mortality, and resource utilization in cardiac surgery patients.

Objectives: To investigate the effects of airway pressure release ventilation (APRV) on respiration and hemodynamics in post cardiac surgery patients.

Main outcomes and measures: A single-center randomized control trial was performed. In total, 138 patients undergoing cardiopulmonary bypass were prospectively screened. Ultimately 39 patients met the inclusion criteria and were randomized into two groups: 19 patients were managed with pressure control ventilation (PCV) and 20 patients were managed with APRV. Respiratory mechanics after 4 h, hemodynamics within the first day, and Chest radiograph score (CRS) and blood gasses within the first three days were recorded and compared.

Results: A higher cardiac index (3.1 ± 0.7 vs. 2.8 ± 0.8 L⋅min-1⋅m2; p < 0.05), and shock volume index (35.4 ± 9.2 vs. 33.1 ± 9.7 ml m-2; p < 0.05) were also observed in the APRV group after 4 h as well as within the first day (p < 0.05). Compared to the PCV group, the PaO2/FiO2 was significantly higher after 4 h in patients of APRV group (340 ± 97 vs. 301 ± 82, p < 0.05) and within the first three days (p < 0.05) in the APRV group. CRS revealed less overall lung injury in the APRV group (p < 0.001). The duration of mechanical ventilation and ICU length of stay were not significantly (p = 0.248 and 0.424, respectively).

Conclusions and relevance: Compared to PCV, APRV may be associated with increased cardiac output improved oxygenation, and decreased lung injury in postoperative cardiac surgery patients.

Keywords: airway pressure release ventilation; cardiopulmonary bypass; circulatory function; mechanical ventilation; respiratory function.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Ge, Lin, Xu, Xu, Duan, Pan and Ying.

Figures

FIGURE 1
FIGURE 1
Study Enrollment and study protocol. In total, 138 patients were screened in the present study. Ninety-five patients were enrolled, and ultimately 39 patients were randomized.

References

    1. Al Jaaly E., Zakkar M., Florentino F. (2015). Pulmonary Protection Strategies in Cardiac Surgery: Are We Making Any Progress? Oxid. Med. Cell Longev. 2015:416235.
    1. Antonio G. E., Wong K. T., Tsui E. L., Chan D. P., Hui D. S., Ng A. W., et al. (2005). Chest Radiograph Scores as Potential Prognostic Indicators in Severe Acute Respiratory Syndrome (SARS). Am. J. Roentgenol. 184 734–741. 10.2214/ajr.184.3.01840734
    1. Apostolakis E. E., Koletsis E. N., Baikoussis N. G., Siminelakis S. N., Papadopoulos G. S., et al. (2010). Strategies to prevent intraoperative lung injury during cardiopulmonary bypass. J. Cardiothorac. Surg. 5:1.
    1. Bhama J. K., Bansal U., Winger D. G., Teuteberg J. J., Bermudez C., Kormos R. L., et al. (2018). Clinical experience with temporary right ventricular mechanical circulatory support. J. Thorac. Cardiovasc. Surg. 156 1885–1891. 10.1016/j.jtcvs.2018.04.094
    1. Biccard B. M., Madiba T. E., Kluyts H. L. (2018). Perioperative patient outcomes in the African Surgical Outcomes Study: a 7-day prospective observational cohort study. Lancet 391 1589–1598.
    1. Brismar B., Hedenstierna G., Lundquist H., Strandberg A., Svensson L., Tokics L., et al. (1985). Pulmonary densities during anaesthesia with muscular relaxation: a proposal of atelectasis. Anesthesiology 62 422–428. 10.1097/00000542-198504000-00009
    1. Cox C. M., Ascione R., Cohen A. M., Davies I. M., Ryder I. G., Angelini G. D. (2000). Effect of cardiopulmonary bypass on pulmonary gas exchange: a prospective randomized study. Ann. Thorae. Surg. 69 140–145. 10.1016/s0003-4975(99)01196-0
    1. Dean R. H. (2015). Recruitment Maneuvers and PEEP Titration. Respir. Care 60 1688–1704. 10.4187/respcare.04409
    1. Gajic O., Dabbagh O., Park P. K., Adesanya A., Chang S. Y., Hou P., et al. (2011). Early identification of patients at risk of acute lung injury: evaluation of lung injury prediction score in a multicenter cohort study. Am. J. Respir. Crit. Care Med. 183 462–470. 10.1164/rccm.201004-0549oc
    1. García-Delgado M., Navarrete-Sánchez I., Colmenero M. (2014). Preventing and managing perioperative pulmonary complications following cardiac surgery. Curr. Opin. Anaesthesiol. 27 146–152. 10.1097/aco.0000000000000059
    1. Garner W., Downs J. B., Stock M. C., Rasanen J. (1988). Airway pressure release ventilation (APRV): a human trial. Chest 94 779–781. 10.1378/chest.94.4.779
    1. Gary F. N., Joshua S., Penny A. (2017). Personalizing mechanical ventilation according to physiologic parameters to stabilize alveoli and minimize ventilator induced lung injury. Intens. Care Med. Exp. 5:8.
    1. Güldner A., Braune A., Carvalho N., Beda A., Zeidler S., Wiedemann B., et al. (2014). Higher levels of spontaneous breathing induce lung recruitment and reduce global stress/strain in experimental lung injury. Anesthesiology 120 673–682. 10.1097/aln.0000000000000124
    1. Habashi N. M. (2005). Other approaches to open-lung ventilation: airway pressure release ventilation. Crit. Care Med. 33 S228–S240.
    1. Habashi N., Andrews P. (2004). Ventilator strategies for posttraumatic acute respiratory distress syndrome: airway pressure release ventilation and the role of spontaneous breathing in critically ill patients. Curr. Opin. Crit. Care. 10 549–557. 10.1097/01.ccx.0000145473.01597.13
    1. Jansen J. R. C., Versprille A. (1986). Improvement of cardiac output estimation by thermodilution method during mechanical ventilation. Intens. Care Med. 12 71–79. 10.1007/bf00254515
    1. Johnson R. W., Normann R. A. (1989). Central venous blood tem- perature fluctuations and thermodilution signal processing in dogs. Ann. Biomed. Eng. 17 657–669. 10.1007/bf02367469
    1. Kaplan L. J., Bailey H., Formosa V. (2001). Airway pressure release ventilation increases cardiac performance in patients with acute lung injury/adult respiratory distress syndrome. Crit. Care 5 221–226.
    1. Kasenda B., Sauerbrei W., Royston P., Mercat A., Slutsky A. S., Cook D., et al. (2016). Multivariable fractional polynomial interaction to investigate continuous effect modifiers in a meta-analysis on higher versus lower PEEP for patients with ARDS. BMJ Open 6:e011148. 10.1136/bmjopen-2016-011148
    1. Kor D. J., Lingineni R. K., Gajic O., Park P. K., Blum J. M., Hou P. C., et al. (2014). Predicting risk of postoperative lung injury in high-risk surgical patients: a multicenter cohort study. Anesthesiology 120 1168–1181. 10.1097/aln.0000000000000216
    1. Lee M., Curley G. F., Mustard M., Mazer C. D. (2017). The Swan-Ganz Catheter Remains a Critically Important Component of Monitoring in Cardiovascular Critical Care. Can. J. Cardiol. 33 142–147. 10.1016/j.cjca.2016.10.026
    1. Lynch J. P., Mhyre J. G., Dantzker D. R. (1979). Influence of cardiac output on intrapulmonary shunt. J. Appl. Physiol. 46 315–321. 10.1152/jappl.1979.46.2.315
    1. MacDonnell S. M., Kubo H., Crabbe D. L., Renna B. F., Reger P. O., Mohara J., et al. (2012). Early Stabilizing Alveolar Ventilation Prevents ARDS- A Novel Timing-Based Ventilatory Intervention to Avert Lung Injury. J. Trauma. Acute Care Surg. 73 391–400. 10.1097/ta.0b013e31825c7a82
    1. Mekontso Dessap A., Charron C., Devaquet J., Aboab J., Jardin F., Brochard L., et al. (2009). Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intens. Care Med. 35 1850–1858. 10.1007/s00134-009-1569-2
    1. Mireles-Cabodevila E., Kacmarek R. M. (2016). Should Airway Pressure Release Ventilation Be the Primary Mode in ARDS. Respir. Care 61 761–773. 10.4187/respcare.04653
    1. Moudgil R., Michelakis E. D., Archer S. L. (2005). Hypoxic pulmonary vasoconstriction. J. Appl. Physiol. 98 390–403.
    1. Neumann P., Wrigge H., Zinserling J., Hinz J., Maripuu E., Andersson L. G., et al. (2005). Spontaneous breathing affects the spatial ventilation and perfusion distribution during mechanical ventilatory support. Crit. Care Med. 33 1090–1095. 10.1097/01.ccm.0000163226.34868.0a
    1. Rijkenberg S., Stilma W., Bosman R. J., van der Meer N. J., van der Voort P. H. J., et al. (2015). Pain measurement in mechanically ventilated critically ill patients: behavioral pain scale versus critical-care pain observation tool. J. Crit. Care 30 167–172. 10.1016/j.jcrc.2014.09.007
    1. Roy S., Habashi N., Sadowitz B., Andrews P., Ge L., Wang G., et al. (2013). Early airway pressure release ventilation prevents ARDS-a novel preventive approach to lung injury. Shock 39 28–38. 10.1097/shk.0b013e31827b47bb
    1. Santos C. C., Zhang H., Liu M., Slutsky A. S. (2005). Bench-to-bedside review: biotrauma and modulation of the innate immune response. Crit. Care 9 280–286.
    1. Schiller H. J., McCann U. G., II, Carney D. E., Gatto L. A., Steinberg J. M., Nieman G. F., et al. (2001). Altered alveolar mechanics in the acutely injured lung. Crit. Care Med. 29 1049–1055. 10.1097/00003246-200105000-00036
    1. Seah A. S., Grant K. A., Aliyeva M., Allen G. B., Bates J. H. (2011). Quantifying the roles of tidal volume and PEEP in the pathogenesis of ventilator-induced lung injury. Ann. Biomed. Eng. 39 1505–1516. 10.1007/s10439-010-0237-6
    1. Shekerdemian L., Bohn D. (1999). Cardiovascular effects of mechanical ventilation. Arch. Dis. Child. 80 475–480.
    1. Stephens R. S., Shah A. S., Whitman G. J. (2013). Lung injury and acute respiratory distress syndrome after cardiac surgery. Ann. Thorac. Surg. 95 l122–l1129.
    1. Suess E. M., Pinsky M. R. (2015). Hemodynamic Monitoring for the Evaluation and Treatment of Shock: What Is the Current State of the Art? Semin. Respir. Crit. Care Med. 36 890–898. 10.1055/s-0035-1564874
    1. The Acute Respiratory Distress Syndrome Network (2000). Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 342 1301–1308. 10.1056/nejm200005043421801
    1. van den Berg P. C., Pinsky M. R. (2002). Effect of positive pressure on venous return in volume-loaded cardiac surgical patients. J. Appl. Physiol. 92 1223–1231. 10.1152/japplphysiol.00487.2001
    1. Wolthuis E. K., Choi G., Dessing M. C., Bresser P., Lutter R., Dzoljic M., et al. (2008). Mechanical Ventilation with Lower Tidal Volumes and Positive End-expiratory Pressure Prevents Pulmonary Inflammation in Patients without Preexisting Lung Injury. Anesthesiology 108 46–54. 10.1097/01.anes.0000296068.80921.10

Source: PubMed

3
Abonnieren