In Vivo Validation of a Novel Computational Approach to Assess Microcirculatory Resistance Based on a Single Angiographic View

Yongzhen Fan, Simone Fezzi, Pengcheng Sun, Nan Ding, Xiaohui Li, Xiaorong Hu, Shuang Wang, William Wijns, Zhibing Lu, Shengxian Tu, Yongzhen Fan, Simone Fezzi, Pengcheng Sun, Nan Ding, Xiaohui Li, Xiaorong Hu, Shuang Wang, William Wijns, Zhibing Lu, Shengxian Tu

Abstract

(1) Background: In spite of the undeniable clinical value of the index of microvascular resistance (IMR) in assessing the status of coronary microcirculation, its use globally remains very low. The aim of this study was to validate the novel single-view, pressure-wire- and adenosine-free angiographic microvascular resistance (AMR) index, having the invasive wire-based IMR as a reference standard. (2) Methods: one hundred and sixty-three patients (257 vessels) were investigated with pressure wire-based IMR. Microvascular dysfunction (CMD) was defined by IMR ≥ 25. AMR was independently computed from the diagnostic coronary angiography in a blinded fashion. (3) Results: AMR demonstrated a good correlation (r = 0.83, p < 0.001) and diagnostic performance (AUC 0.94; 95% CI: 0.91 to 0.97) compared with wire-based IMR. The best cutoff value for AMR in determining IMR ≥ 25 was 2.5 mmHg*s/cm. The overall diagnostic accuracy of AMR was 87.2% (95% CI: 83.0% to 91.3%), with a sensitivity of 93.5% (95% CI: 87.0% to 97.3%), a specificity of 82.7% (95% CI: 75.6% to 88.4%), a positive predictive value of 79.4% (95% CI: 71.2% to 86.1%) and a negative predictive value of 94.7% (95% CI: 89.3% to 97.8%). No difference in terms of CMD rate was described among different clinical presentations. (4) Conclusions: AMR derived solely from a single angiographic view is a feasible computational alternative to pressure wire-based IMR, with good diagnostic accuracy in assessing CMD.

Keywords: angiography-derived physiology; coronary physiology; coronary pressure and flow; functional coronary angiography; ischemia with non-obstructed coronary artery disease; microvascular dysfunction; myocardial microcirculation; personalized invasive therapy in coronary artery disease.

Conflict of interest statement

ST is the co-founder of Pulse Medical, and reports research grants and consultancy from Pulse Medical. WW reports grants and consulting fees from MicroPort, outside the submitted work, and is medical advisor of Rede Optimus and co-founder of Argonauts, an innovation facilitator. All other authors report no competing interests.

Figures

Figure 1
Figure 1
Correlation and the linear regression between AMR and IMR. AMR values (y axis) showed good correlation (r = 0.83, p < 0.001) with IMR (x axis). The red dotted line represents the 95% CI of the linear regression equation that was quantified as AMR = 0.90 + 0.07 × IMR. AMR, angio-derived microcirculatory resistance; IMR, index of microvascular resistance.
Figure 2
Figure 2
Receiver-operating characteristic curve analysis of AMR for identifying IMR ≥ 25U. AMR, angio-derived microcirculatory resistance; IMR, index of microvascular resistance.
Figure 3
Figure 3
Sensitivity and specificity of AMR in different vessel types and clinical presentations. LAD, left anterior descending artery; NSTEMI, non-ST-segment elevation myocardial infarction; SA, stable angina; STEMI, ST-segment elevation myocardial infarction; UA, unstable angina.
Figure 4
Figure 4
Reproducibility of AMR analysis. Correlation (A) and agreement (B) of AMR analyzed by two blinded investigators.
Figure 5
Figure 5
Derivation of coronary microvascular resistance from coronary angiography. An illustrative case-example of integrated angiography-derived epicardial and microvascular physiology assessment in a patient presenting with unstable angina: values of the pressure-wire thermodilution-derived index of microvascular resistance (IMR) and angio-derived microcirculatory resistance (AMR) index showed concordance and good agreement. AMR, angio-derived microcirculatory resistance; FFR, fractional flow reserve; IMR, index of microvascular resistance; QFR, quantitative flow ratio.

References

    1. Kaski J.C., Crea F., Gersh B.J., Camici P.G. Reappraisal of Ischemic Heart Disease. Circulation. 2018;138:1463–1480. doi: 10.1161/CIRCULATIONAHA.118.031373.
    1. Ford T.J., Ong P., Sechtem U., Beltrame J., Camici P.G., Crea F., Kaski J.C., Bairey Merz C.N., Pepine C.J., Shimokawa H., et al. Assessment of Vascular Dysfunction in Patients without Obstructive Coronary Artery Disease: Why, How, and When. JACC Cardiovasc. Interv. 2020;13:1847–1864. doi: 10.1016/j.jcin.2020.05.052.
    1. Knuuti J., Wijns W., Saraste A., Capodanno D., Barbato E., Funck-Brentano C., Prescott E., Storey R.F., Deaton C., Cuisset T., et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020;41:407–477. doi: 10.1093/eurheartj/ehz425.
    1. Kunadian V., Chieffo A., Camici P.G., Berry C., Escaned J., Maas A., Prescott E., Karam N., Appelman Y., Fraccaro C., et al. An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur. Heart J. 2020;41:3504–3520. doi: 10.1093/eurheartj/ehaa503.
    1. Fearon W.F., Balsam L.B., Farouque H.M., Caffarelli A.D., Robbins R.C., Fitzgerald P.J., Yock P.G., Yeung A.C. Novel index for invasively assessing the coronary microcirculation. Circulation. 2003;107:3129–3132. doi: 10.1161/01.CIR.0000080700.98607.D1.
    1. Scarsini R., Shanmuganathan M., De Maria G.L., Borlotti A., Kotronias R.A., Burrage M.K., Terentes-Printzios D., Langrish J., Lucking A., Fahrni G., et al. Coronary Microvascular Dysfunction Assessed by Pressure Wire and CMR After STEMI Predicts Long-Term Outcomes. JACC Cardiovasc. Imaging. 2021;14:1948–1959. doi: 10.1016/j.jcmg.2021.02.023.
    1. Layland J.J., Whitbourn R.J., Burns A.T., Somaratne J., Leitl G., Macisaac A.I., Wilson A. The index of microvascular resistance identifies patients with periprocedural myocardial infarction in elective percutaneous coronary intervention. Heart. 2012;98:1492–1497. doi: 10.1136/heartjnl-2012-302252.
    1. Pighi M., Gratta A., Marin F., Bellamoli M., Lunardi M., Fezzi S., Zivelonghi C., Pesarini G., Tomai F., Ribichini F. Cardiac allograft vasculopathy: Pathogenesis, diagnosis and therapy. Transplant. Rev. 2020;34:100569. doi: 10.1016/j.trre.2020.100569.
    1. Tona F., Osto E., Famoso G., Previato M., Fedrigo M., Vecchiati A., Perazzolo Marra M., Tellatin S., Bellu R., Tarantini G., et al. Coronary microvascular dysfunction correlates with the new onset of cardiac allograft vasculopathy in heart transplant patients with normal coronary angiography. Am. J. Transplant. 2015;15:1400–1406. doi: 10.1111/ajt.13108.
    1. Fearon W.F., Kobayashi Y. Invasive Assessment of the Coronary Microvasculature: The Index of Microcirculatory Resistance. Circ. Cardiovasc. Interv. 2017;10:e005361. doi: 10.1161/CIRCINTERVENTIONS.117.005361.
    1. Fearon W.F., Aarnoudse W., Pijls N.H., De Bruyne B., Balsam L.B., Cooke D.T., Robbins R.C., Fitzgerald P.J., Yeung A.C., Yock P.G. Microvascular resistance is not influenced by epicardial coronary artery stenosis severity: Experimental validation. Circulation. 2004;109:2269–2272. doi: 10.1161/01.CIR.0000128669.99355.CB.
    1. Ng M.K., Yeung A.C., Fearon W.F. Invasive assessment of the coronary microcirculation: Superior reproducibility and less hemodynamic dependence of index of microcirculatory resistance compared with coronary flow reserve. Circulation. 2006;113:2054–2061. doi: 10.1161/CIRCULATIONAHA.105.603522.
    1. Scarsini R., Shanmuganathan M., Kotronias R.A., Terentes-Printzios D., Borlotti A., Langrish J.P., Lucking A.J., Ribichini F., Ferreira V.M., Channon K.M., et al. Angiography-derived index of microcirculatory resistance (IMR) Int. J. Cardiovasc. Imaging. 2021;37:1801–1813. doi: 10.1007/s10554-021-02254-8.
    1. De Maria G.L., Scarsini R., Shanmuganathan M., Kotronias R.A., Terentes-Printzios D., Borlotti A., Langrish J.P., Lucking A.J., Choudhury R.P., Kharbanda R., et al. Angiography-derived index of microcirculatory resistance as a novel, pressure-wire-free tool to assess coronary microcirculation in ST elevation myocardial infarction. Int. J. Cardiovasc. Imaging. 2020;36:1395–1406. doi: 10.1007/s10554-020-01831-7.
    1. Tebaldi M., Biscaglia S., Di Girolamo D., Erriquez A., Penzo C., Tumscitz C., Campo G. Angio-Based Index of Microcirculatory Resistance for the Assessment of the Coronary Resistance: A Proof of Concept Study. J. Interv. Cardiol. 2020;2020:8887369. doi: 10.1155/2020/8887369.
    1. Mejia-Renteria H., Lee J.M., Choi K.H., Lee S.H., Wang L., Kakuta T., Koo B.K., Escaned J. Coronary microcirculation assessment using functional angiography: Development of a wire-free method applicable to conventional coronary angiograms. Catheter. Cardiovasc. Interv. 2021;98:1027–1037. doi: 10.1002/ccd.29863.
    1. Fernández-Peregrina E., Garcia-Garcia H.M., Sans-Rosello J., Sanz-Sanchez J., Kotronias R., Scarsini R., Echavarria-Pinto M., Tebaldi M., De Maria G.L. Angiography-derived versus invasively-determined index of microcirculatory resistance in the assessment of coronary microcirculation: A systematic review and meta-analysis. Catheter. Cardiovasc. Interv. 2022;99:2018–2025. doi: 10.1002/ccd.30174.
    1. Xu B., Tu S., Qiao S., Qu X., Chen Y., Yang J., Guo L., Sun Z., Li Z., Tian F., et al. Diagnostic Accuracy of Angiography-Based Quantitative Flow Ratio Measurements for Online Assessment of Coronary Stenosis. J. Am. Coll. Cardiol. 2017;70:3077–3087. doi: 10.1016/j.jacc.2017.10.035.
    1. Xu B., Tu S., Song L., Jin Z., Yu B., Fu G., Zhou Y., Wang J., Chen Y., Pu J., et al. Angiographic quantitative flow ratio-guided coronary intervention (FAVOR III China): A multicentre, randomised, sham-controlled trial. Lancet. 2021;398:2149–2159. doi: 10.1016/S0140-6736(21)02248-0.
    1. Tu S., Echavarria-Pinto M., von Birgelen C., Holm N.R., Pyxaras S.A., Kumsars I., Lam M.K., Valkenburg I., Toth G.G., Li Y., et al. Fractional flow reserve and coronary bifurcation anatomy: A novel quantitative model to assess and report the stenosis severity of bifurcation lesions. JACC Cardiovasc. Interv. 2015;8:564–574. doi: 10.1016/j.jcin.2014.12.232.
    1. Tu S., Ding D., Chang Y., Li C., Wijns W., Xu B. Diagnostic accuracy of quantitative flow ratio for assessment of coronary stenosis significance from a single angiographic view: A novel method based on bifurcation fractal law. Catheter. Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 2021;97((Suppl. S2)):1040–1047. doi: 10.1002/ccd.29592.
    1. Ibanez B., James S., Agewall S., Antunes M.J., Bucciarelli-Ducci C., Bueno H., Caforio A.L.P., Crea F., Goudevenos J.A., Halvorsen S., et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC) Eur. Heart J. 2018;39:119–177. doi: 10.1093/eurheartj/ehx393.
    1. Roffi M., Patrono C., Collet J.P., Mueller C., Valgimigli M., Andreotti F., Bax J.J., Borger M.A., Brotons C., Chew D.P., et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC) Eur. Heart J. 2016;37:267–315. doi: 10.1093/eurheartj/ehv320.
    1. Zhang Y., Zhang S., Westra J., Ding D., Zhao Q., Yang J., Sun Z., Huang J., Pu J., Xu B. Automatic coronary blood flow computation: Validation in quantitative flow ratio from coronary angiography. Int. J. Cardiovasc. Imaging. 2019;35:587–595. doi: 10.1007/s10554-018-1506-y.
    1. Murray C.D. The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume. Proc. Natl. Acad. Sci. USA. 1926;12:207–214. doi: 10.1073/pnas.12.3.207.
    1. Tu S., Westra J., Yang J., von Birgelen C., Ferrara A., Pellicano M., Nef H., Tebaldi M., Murasato Y., Lansky A., et al. Diagnostic Accuracy of Fast Computational Approaches to Derive Fractional Flow Reserve From Diagnostic Coronary Angiography: The International Multicenter FAVOR Pilot Study. JACC Cardiovasc. Interv. 2016;9:2024–2035. doi: 10.1016/j.jcin.2016.07.013.
    1. Fearon W.F., Okada K., Kobashigawa J.A., Kobayashi Y., Luikart H., Sana S., Daun T., Chmura S.A., Sinha S., Cohen G., et al. Angiotensin-Converting Enzyme Inhibition Early After Heart Transplantation. J. Am. Coll. Cardiol. 2017;69:2832–2841. doi: 10.1016/j.jacc.2017.03.598.
    1. Sans-Roselló J., Fernández-Peregrina E., Duran-Cambra A., Carreras-Mora J., Sionis A., Álvarez-García J., García-García H.M. Prognostic Value of Microvascular Resistance at Rest in Patients With Takotsubo Syndrome. JACC Cardiovasc. Imaging. 2022;15:1784–1795. doi: 10.1016/j.jcmg.2022.03.030.
    1. Castaldi G., Fezzi S., Widmann M., Lia M., Rizzetto F., Mammone C., Pazzi S., Piccolo S., Galli V., Pighi M., et al. Angiography-derived Index of Microvascular Resistance (IMR) in Takotsubo syndrome. Int. J. Cardiovasc. Imaging. 2022;43:ehac544-1133. doi: 10.1007/s10554-022-02698-6.
    1. Demir O.M., Boerhout C.K.M., de Waard G.A., van de Hoef T.P., Patel N., Beijk M.A.M., Williams R., Rahman H., Everaars H., Kharbanda R.K., et al. Comparison of Doppler Flow Velocity and Thermodilution Derived Indexes of Coronary Physiology. JACC Cardiovasc. Interv. 2022;15:1060–1070. doi: 10.1016/j.jcin.2022.03.015.
    1. Everaars H., de Waard G.A., Driessen R.S., Danad I., van de Ven P.M., Raijmakers P.G., Lammertsma A.A., van Rossum A.C., Knaapen P., van Royen N. Doppler Flow Velocity and Thermodilution to Assess Coronary Flow Reserve: A Head-to-Head Comparison with [15O] H2O PET. JACC Cardiovasc. Interv. 2018;11:2044–2054. doi: 10.1016/j.jcin.2018.07.011.
    1. Williams R.P., de Waard G.A., De Silva K., Lumley M., Asrress K., Arri S., Ellis H., Mir A., Clapp B., Chiribiri A., et al. Doppler Versus Thermodilution-Derived Coronary Microvascular Resistance to Predict Coronary Microvascular Dysfunction in Patients With Acute Myocardial Infarction or Stable Angina Pectoris. Am. J. Cardiol. 2018;121:1–8. doi: 10.1016/j.amjcard.2017.09.012.
    1. Scarsini R., Fezzi S., Pesarini G., Del Sole P.A., Venturi G., Mammone C., Marcoli M., Gambaro A., Tavella D., Pighi M., et al. Impact of physiologically diffuse versus focal pattern of coronary disease on quantitative flow reserve diagnostic accuracy. Catheter. Cardiovasc. Interv. 2021;99:736–745. doi: 10.1002/ccd.30007.
    1. Cortés C., Carrasco-Moraleja M., Aparisi A., Rodriguez-Gabella T., Campo A., Gutiérrez H., Julca F., Gómez I., San Román J.A., Amat-Santos I.J. Quantitative flow ratio-Meta-analysis and systematic review. Catheter. Cardiovasc. Interv. 2021;97:807–814. doi: 10.1002/ccd.28857.
    1. Fezzi S., Huang J., Lunardi M., Ding D., Ribichini F., Tu S., Wijns W. Coronary physiology in the catheterisation laboratory: An A to Z practical guide. AsiaIntervention. 2022;8:86–109. doi: 10.4244/AIJ-D-22-00022.
    1. Mejía-Rentería H., Lee J.M., Lauri F., van der Hoeven N.W., de Waard G.A., Macaya F., Pérez-Vizcayno M.J., Gonzalo N., Jiménez-Quevedo P., Nombela-Franco L., et al. Influence of Microcirculatory Dysfunction on Angiography-Based Functional Assessment of Coronary Stenoses. JACC Cardiovasc. Interv. 2018;11:741–753. doi: 10.1016/j.jcin.2018.02.014.

Source: PubMed

3
Abonnieren