Pain Management in Patients with Multiple Myeloma: An Update

Flaminia Coluzzi, Roman Rolke, Sebastiano Mercadante, Flaminia Coluzzi, Roman Rolke, Sebastiano Mercadante

Abstract

Most patients with multiple myeloma (MM) suffer from chronic pain at every stage of the natural disease process. This review focuses on the most common causes of chronic pain in MM patients: (1) pain from myeloma bone disease (MBD); (2) chemotherapy-induced peripheral neuropathy as a possible consequence of proteasome inhibitor therapy (i.e., bortezomib-induced); (3) post-herpetic neuralgia as a possible complication of varicella zoster virus reactivation because of post-transplantation immunodepression; and (4) pain in cancer survivors, with increasing numbers due to the success of antiblastic treatments, which have significantly improved overall survival and quality of life. In this review, non-pain specialists will find an overview including a detailed description of physiopathological mechanisms underlying central sensitization and pain chronification in bone pain, the rationale for the correct use of analgesics and invasive techniques in different pain syndromes, and the most recent recommendations published on these topics. The ultimate target of this review was to underlie that different types of pain can be observed in MM patients, and highlight that only after an accurate pain assessment, clinical examination, and pain classification, can pain be safely and effectively addressed by selecting the right analgesic option for the right patient.

Keywords: bisphosphonate; cancer survivors; chemotherapy induced neuropathic pain; denosumab; multiple myeloma; neuropathic pain; opioids; pain; post-herpetic neuralgia; skeletal-related events.

Conflict of interest statement

FC served as a speaker and consultant for Grunenthal, Angelini, Malesci, Molteni, Shionogi. RR has received speaker fees or honoraria for counseling services from the following companies: AOP Orphan, bionorica ethics, Grunenthal, Pfizer, Tilray Germany Inc. SM has no conflicts of interest to declare. The authors report no other conflicts of interest in this work.

Figures

Figure 1
Figure 1
Pain management in multiple myeloma patients. APAP: acetaminophen (paracetamol); BPs: bisphosphonates; CINP: chemotherapy induced peripheral neuropathy; MBD: myeloma bone disease; PHN: post-herpetic neuralgia

References

    1. [(accessed on 22 October 2019)]; Available online: .
    1. Ramsenthaler C., Kane P., Gao W., Siegert R.J., Edmonds P.M., Schey S.A., Higginson I.J. Prevalence of symptoms in patients with multiple myeloma: A systematic review and meta-analysis. Eur. J. Haematol. 2016;97:416–429. doi: 10.1111/ejh.12790.
    1. Panaroni C., Yee A.J., Raje N.S. Myeloma and Bone Disease. Curr. Osteoporos. Rep. 2017;15:483–498. doi: 10.1007/s11914-017-0397-5.
    1. Argyriou A.A., Cavaletti G., Bruna J., Kyritsis A.P., Kalofonos H.P. Bortezomib-induced peripheral neurotoxicity: An update. Arch. Toxicol. 2014;88:1669–1679. doi: 10.1007/s00204-014-1316-5.
    1. Schutzer-Weissmann J., Farquhar-Smith P. Post-herpetic neuralgia—A review of current management and future directions. Expert Opin. Pharm. 2017;18:1739–1750. doi: 10.1080/14656566.2017.1392508.
    1. Shapiro C.L. Cancer survivorship. N. Engl. J. Med. 2018;379:2438–2450. doi: 10.1056/NEJMra1712502.
    1. Coluzzi F., Fornasari D., Pergolizzi J., Romualdi P. From acute to chronic pain: Tapentadol in the progressive stages of this disease entity. Eur. Rev. Med. Pharm. Sci. 2017;21:1672–1683.
    1. Coleman R., Body J.J., Aapro M., Hadji P., Herrstedt J., ESMO Guidelines Working Group Bone health in cancer patients: ESMO Clinical Practice Guidelines. Ann. Oncol. 2014;25:124–137. doi: 10.1093/annonc/mdu103.
    1. Hameed A., Brady J.J., Dowling P., Clynes M., O’Gorman P. Bone disease in multiple myeloma: Pathophysiology and management. Cancer Growth Metastasis. 2014;10:33–42. doi: 10.4137/CGM.S16817.
    1. Mantyh P.W. The neurobiology of skeletal pain. Eur. J. Neurosci. 2014;39:508–519. doi: 10.1111/ejn.12462.
    1. Castañeda-Corral G., Jimenez-Andrade J.M., Bloom A.P., Taylor R.N., Mantyh W.G., Kaczmarska M.J., Ghilardi J.R., Mantyh P.W. The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience. 2011;178:196–207. doi: 10.1016/j.neuroscience.2011.01.039.
    1. Longo G., Osikowicz M., Ribeiro-da-Silva A. Sympathetic fiber sprouting in inflamed joints and adjacent skin contributes to pain-related behavior in arthritis. J. Neurosci. 2013;33:10066–10074. doi: 10.1523/JNEUROSCI.5784-12.2013.
    1. Hiasa M., Okui T., Allette Y.M., Ripsch M.S., Sun-Wada G.H., Wakabayashi H., Roodman G.D., White F.A., Yoneda T. Bone Pain Induced by Multiple Myeloma Is Reduced by Targeting V-ATPase and ASIC3. Cancer Res. 2017;77:1283–1295. doi: 10.1158/0008-5472.CAN-15-3545.
    1. Morlion B., Coluzzi F., Aldington D., Kocot-Kepska M., Pergolizzi J., Mangas A.C., Ahlbeck K., Kalso E. Pain chronification: What should a non-pain medicine specialist know? Curr. Med. Res. Opin. 2018;34:1169–1178. doi: 10.1080/03007995.2018.1449738.
    1. Terpos E., Christoulas D., Gavriatopoulou M. Biology and treatment of myeloma related bone disease. Metabolism. 2018;80:80–90. doi: 10.1016/j.metabol.2017.11.012.
    1. An G., Acharya C., Feng X., Wen K., Zhong M., Zhang L., Munshi N.C., Qiu L., Tai Y.T., Anderson K.C. Osteoclasts promote immune suppressive microenvironment in multiple myeloma: Therapeutic implication. Blood. 2016;128:1590–1603. doi: 10.1182/blood-2016-03-707547.
    1. Terpos E., Ntanasis-Stathopoulos I., Dimopoulos M.A. Myeloma bone disease: From biology findings to treatment approaches. Blood. 2019;133:1534–1539. doi: 10.1182/blood-2018-11-852459.
    1. Coluzzi F., Di Bussolo E., Mandatori I., Mattia C. Bone metastatic disease: Taking aim at new therapeutic targets. Curr. Med. Chem. 2011;18:3093–3115. doi: 10.2174/092986711796391660.
    1. Terpos E., Morgan G., Dimopoulos M.A., Drake M.T., Lentzsch S., Raje N., Sezer O., García-Sanz R., Shimizu K., Turesson I., et al. International Myeloma Working Group recommendations for the treatment of multiple myeloma-related bone disease. J. Clin. Oncol. 2013;31:2347–2357. doi: 10.1200/JCO.2012.47.7901.
    1. Berenson J.R., Lichtenstein A., Porter L., Dimopoulos M.A., Bordoni R., George S., Lipton A., Keller A., Ballester O., Kovacs M.J., et al. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. N. Engl. J. Med. 1996;334:488–493. doi: 10.1056/NEJM199602223340802.
    1. Rosen L.S., Gordon D., Kaminski M., Howell A., Belch A., Mackey J., Apffelstaedt J., Hussein M., Coleman R.E., Reitsma D.J., et al. Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: A phase III, double-blind, comparative trial. Cancer J. 2001;77:377–387.
    1. Gimsing P., Carlson K., Turesson I., Fayers P., Waage A., Vangsted A., Mylin A., Gluud C., Juliusson G., Gregersen H., et al. Effect of pamidronate 30 mg versus 90 mg on physical function in patients with newly diagnosed multiple myeloma (Nordic Myeloma Study Group): A double-blind, randomised controlled trial. Lancet Oncol. 2010;11:973–982. doi: 10.1016/S1470-2045(10)70198-4.
    1. Morgan G.J., Davies F.E., Gregory W.M., Cocks K., Bell S.E., Szubert A.J., Navarro-Coy N., Drayson M.T., Owen R.G., Feyler S., et al. First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): A randomised controlled trial. Lancet. 2010;376:1989–1999. doi: 10.1016/S0140-6736(10)62051-X.
    1. Morgan G.J., Child J.A., Gregory W.M., Szubert A.J., Cocks K., Bell S.E., Navarro-Coy N., Drayson M.T., Owen R.G., Feyler S., et al. Effects of zoledronic acid versus clodronic acid on skeletal morbidity in patients with newly diagnosed multiple myeloma (MRC Myeloma IX): Secondary outcomes from a randomised controlled trial. Lancet Oncol. 2011;12:743–752. doi: 10.1016/S1470-2045(11)70157-7.
    1. Himelstein A.L., Foster J.C., Khatcheressian J.L., Roberts J.D., Seisler D.K., Novotny P.J., Qin R., Go R.S., Grubbs S.S., O’Connor T., et al. Effect of longer-interval vs standard dosing of zoledronic acid on skeletal events in patients with bone metastases: A randomized clinical trial. JAMA. 2017;317:48–58. doi: 10.1001/jama.2016.19425.
    1. Raje N., Terpos E., Willenbacher W., Shimizu K., García-Sanz R., Durie B., Legieć W., Krejčí M., Laribi K., Zhu L., et al. Denosumab versus zoledronic acid in bone disease treatment of newly diagnosed multiple myeloma: An international, double-blind, double-dummy, randomised, controlled, phase 3 study. Lancet Oncol. 2018;19:370–381. doi: 10.1016/S1470-2045(18)30072-X.
    1. Terpos E., Kleber M., Engelhardt M., Zweegman S., Gay F., Kastritis E., van de Donk N.W., Bruno B., Sezer O., Broijl A., et al. European Myeloma Network. European Myeloma Network guidelines for the management of multiple myeloma-related complications. Haematol. 2015;100:1254–1266. doi: 10.3324/haematol.2014.117176.
    1. Anderson K., Ismaila N., Flynn P.J., Halabi S., Jagannath S., Ogaily M.S., Omel J., Raje N., Roodman G.D., Yee G.C., et al. Role of Bone-Modifying Agents in Multiple Myeloma: American Society of Clinical Oncology Clinical Practice Guideline Update. J. Clin. Oncol. 2018;36:812–818. doi: 10.1200/JCO.2017.76.6402.
    1. Raje N., Vescio R., Montgomery C.W., Badros A., Munshi N., Orlowski R., Hadala J.T., Warsi G., Argonza-Aviles E., Ericson S.G., et al. Bone marker-directed dosing of zoledronic acid for the prevention of skeletal complications in patients with multiple myeloma: Results of the Z-MARK study. Clin. Cancer Res. 2016;22:1378–1384. doi: 10.1158/1078-0432.CCR-15-1864.
    1. Mhaskar R., Kumar A., Miladinovic B., Djulbegovic B. Bisphosphonates in multiple myeloma: An updated network meta-analysis. Cochrane Database Syst. Rev. 2017;12:CD003188. doi: 10.1002/14651858.CD003188.pub4.
    1. Royle K.L., Gregory W.M., Cairns D.A., Bell S.E., Cook G., Owen R.G., Drayson M.T., Davies F.E., Jackson G.H., Morgan G.J., et al. Quality of life during and following sequential treatment of previously untreated patients with multiple myeloma: Findings of the Medical Research Council Myeloma IX randomised study. Br. J. Haematol. 2018;182:816–829. doi: 10.1111/bjh.15459.
    1. Tsang R.W., Campbell B.A., Goda J.S., Kelsey C.R., Kirova Y.M., Parikh R.R., Ng A.K., Ricardi U., Suh C.O., Mauch P.M., et al. Radiation Therapy for Solitary Plasmacytoma and Multiple Myeloma: Guidelines From the International Lymphoma Radiation Oncology Group. Int. J. Radiat. Oncol. Biol. Phys. 2018;101:794–808. doi: 10.1016/j.ijrobp.2018.05.009.
    1. Rades D., Conde-Moreno A.J., Cacicedo J., Segedin B., Rudat V., Schild S.E. Excellent outcomes after radiotherapy alone for malignant spinal cord compression from myeloma. Radiol. Oncol. 2016;50:337–340. doi: 10.1515/raon-2016-0029.
    1. Rudzianskiene M., Inciura A., Gerbutavicius R., Rudzianskas V., Macas A., Simoliuniene R., Dambrauskiene R., Kiavialaitis G.E., Juozaityte E. Single vs. multiple fraction regimens for palliative radiotherapy treatment of multiple myeloma: A prospective randomised study. Strahlenther. Onkol. 2017;193:742–749. doi: 10.1007/s00066-017-1154-5.
    1. Chow E., van der Linden Y.M., Roos D., Hartsell W.F., Hoskin P., Wu J.S., Brundage M.D., Nabid A., Tissing-Tan C.J., Oei B., et al. Single versus multiple fractions of repeat radiation for painful bone metastases: A randomised, controlled, non-inferiority trial. Lancet Oncol. 2014;15:164–171. doi: 10.1016/S1470-2045(13)70556-4.
    1. Garland P., Gishen P., Rahemtulla A. Percutaneous vertebroplasty to treat painful myelomatous vertebral deposits-long-term efficacy outcomes. Ann. Hematol. 2011;90:95–100. doi: 10.1007/s00277-010-1021-2.
    1. Chen L.H., Hsieh M.K., Niu C.C., Fu T.S., Lai P.L., Chen W.J. Percutaneous vertebroplasty for pathological vertebral compression fractures secondary to multiple myeloma. Arch. Orthop. Trauma Surg. 2012;132:759–764. doi: 10.1007/s00402-012-1474-y.
    1. Berenson J., Pflugmacher R., Jarzem P., Zonder J., Schechtman K., Tillman J.B., Bastian L., Ashraf T., Vrionis F. Cancer Patient Fracture Evaluatione (CAFE) Investigators. Balloon kyphoplasty versus non-surgical fracture management for treatment of painful vertebral body compression fractures in patients with cancer: A multicentre, randomized controlled trial. Lancet Oncol. 2011;12:225–235. doi: 10.1016/S1470-2045(11)70008-0.
    1. Kurita G.P., Sjøgren P., Klepstad P., Mercadante S. Interventional Techniques to Management of Cancer-Related Pain: Clinical and Critical Aspects. Cancers. 2019;11:443. doi: 10.3390/cancers11040443.
    1. Moreau P., San Miguel J., Sonneveld P., Mateos M.V., Zamagni E., Avet-Loiseau H., Hajek R., Dimopoulos M.A., Ludwig H., Einsele H., et al. ESMO Guidelines Committee. Multiple myeloma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017;28:iv52–iv61. doi: 10.1093/annonc/mdx096.
    1. White P., Arnold R., Bull J., Cicero B. The Use of Corticosteroids as Adjuvant Therapy for Painful Bone Metastases: A Large Cross-Sectional Survey of Palliative Care Providers. Am. J. Hosp. Palliat. Care. 2018;35:151–158. doi: 10.1177/1049909116683720.
    1. Lim F.M.Y., Bobrowski A., Agarwal A., Silva M.F. Use of corticosteroids for pain control in cancer patients with bone metastases: A comprehensive literature review. Curr. Opin. Support. Palliat. Care. 2017;11:78–87. doi: 10.1097/SPC.0000000000000263.
    1. Kumar A., Weber M.H., Gokaslan Z., Wolinsky J.P., Schmidt M., Rhines L. Metastatic Spinal Cord Compression and Steroid Treatment: A Systematic Review. Clin. Spine Surg. 2017;30:156–163. doi: 10.1097/BSD.0000000000000528.
    1. Bennett M.I., Eisenberg E., Ahmedzai S.H., Bhaskar A., O’Brien T., Mercadante S., Krčevski Škvarč N., Vissers K., Wirz S., Wells C., et al. Standards for the management of cancer-related pain across Europe-A position paper from the EFIC Task Force on Cancer Pain. Eur. J. Pain. 2019;23:660–668. doi: 10.1002/ejp.1346.
    1. Fallon M., Giusti R., Aielli F., Hoskin P., Rolke R., Sharma M., Ripamonti C.I. ESMO Guidelines Committee. Management of cancer pain in adult patients: ESMO Clinical Practice Guidelines. Ann. Oncol. 2018;29:iv166–iv191. doi: 10.1093/annonc/mdy152.
    1. Corder G., Castro D., Bruchas M., Scherrer G. Endogenous and Exogenous Opioids in Pain. Annu. Rev. Neurosci. 2018;41:453–473. doi: 10.1146/annurev-neuro-080317-061522.
    1. Farmer A.D., Drewes A.M., Chiarioni G., De Giorgio R., O’Brien T., Morlion B., Tack J. Pathophysiology and management of opioid-induced constipation: European expert consensus statement. United Eur. Gastroenterol. J. 2019;77:7–20. doi: 10.1177/2050640618818305.
    1. Candy B., Jones L., Vickerstaff V., Larkin P.J., Stone P. Mu-opioid antagonists for opioid-induced bowel dysfunction in people with cancer and people receiving palliative care. Cochrane Database Syst. Rev. 2018;6:CD006332. doi: 10.1002/14651858.CD006332.pub3.
    1. Bouhassira D., Luporsi E., Krakowski I. Prevalence and incidence of chronic pain with or without neuropathic characteristics in patients with cancer. Pain. 2017;158:1118–1125. doi: 10.1097/j.pain.0000000000000895.
    1. Coluzzi F., Raffa R.B., Pergolizzi J., Rocco A., Locarini P., Cenfra N., Cimino G., Mattia C. Tapentadol prolonged release for patients with multiple myeloma suffering from moderate-to-severe cancer pain due to bone disease. J. Pain Res. 2015;8:229–238. doi: 10.2147/JPR.S83490.
    1. Pergolizzi J.V., Jr., LeQuang J.A., Taylor R., Jr., Ossipov M.H., Colucci D., Raffa R.B. Designing safer analgesics: A focus on μ-opioid receptor pathways. Expert Opin. Drug Discov. 2018;13:965–972. doi: 10.1080/17460441.2018.1511539.
    1. Schröder W., Vry J.D., Tzschentke T.M., Jahnel U., Christoph T. Differential contribution of opioid and noradrenergic mechanisms of tapentadol in rat models of nociceptive and neuropathic pain. Eur. J. Pain. 2010;14:814–821. doi: 10.1016/j.ejpain.2010.05.005.
    1. Coluzzi F. Assessing and Treating Chronic Pain in Patients with End-Stage Renal Disease. Drugs. 2018;78:1459–1479. doi: 10.1007/s40265-018-0980-9.
    1. Coluzzi F., Pergolizzi J., Raffa R.B., Mattia C. The unsolved case of “bone-impairing analgesics”: The endocrine effects of opioids on bone metabolism. Clin. Risk Manag. 2015;11:515–523. doi: 10.2147/TCRM.S79409.
    1. Coluzzi F., Billeci D., Maggi M., Corona G. Testosterone deficiency in non-cancer opioid-treated patients. J. Endocrinol. Investig. 2018;41:1377–1388. doi: 10.1007/s40618-018-0964-3.
    1. Eichenbaum G., Göhler K., Etropolski M., Steigerwald I., Pergolizzi J., Kim M., Vorsanger G. Does tapentadol affect sex hormone concentrations differently from morphine and oxycodone? An initial assessment and possible implications for opioid-induced androgen deficiency. J. Opioid Manag. 2015;11:211–227. doi: 10.5055/jom.2015.0270.
    1. Coluzzi F., Taylor RJr Pergolizzi JVJr Mattia C., Raffa R.B. Good clinical practice guide for opioids in pain management: The three Ts—Titration (trial), tweaking (tailoring), transition (tapering) Braz. J. Anesthesiol. 2016;66:310–317. doi: 10.1016/j.bjan.2016.02.008.
    1. Hellmann A., Rule S., Walewski J., Shpilberg O., Feng H., van de Velde H., Patel H., Skee D.M., Girgis S., Louw V.J. Effect of cytochrome P450 3A4 inducers on the pharmacokinetic, pharmacodynamic and safety profiles of bortezomib in patients with multiple myeloma or non-Hodgkin’s lymphoma. Clin. Pharm. 2011;50:781–791. doi: 10.2165/11594410-000000000-00000.
    1. Kummer O., Hammann F., Moser C., Schaller O., Drewe J., Krähenbühl S. Effect of the inhibition of CYP3A4 or CYP2D6 on the pharmacokinetics and pharmacodynamics of oxycodone. Eur. J. Clin. Pharm. 2011;67:63–71. doi: 10.1007/s00228-010-0893-3.
    1. Xie J.D., Huang Y., Chen D.T., Pan J.H., Bi B.T., Feng K.Y., Huang W., Zeng W.A. Fentanyl Enhances Hepatotoxicity of Paclitaxel via Inhibition of CYP3A4 and ABCB1 Transport Activity in Mice. PLoS ONE. 2015;10:e0143701. doi: 10.1371/journal.pone.0143701.
    1. Mercadante S., Marchetti P., Cuomo A., Mammucari M., Caraceni A., IOPS MS study Group Breakthrough pain and its treatment: Critical review and recommendations of IOPS (Italian Oncologic Pain Survey) expert group. Support. Care Cancer. 2016;24:961–968. doi: 10.1007/s00520-015-2951-y.
    1. Mercadante S. The patient with difficult cancer pain. Cancers. 2019;11:565. doi: 10.3390/cancers11040565.
    1. Mercadante S., Adile C., Aielli F., Gaetano L., Mistakidou K., Maltoni M., Soares L.G., DeSantis S., Ferrera P., Rosati M., et al. Personalized pain goals and responses in advanced cancer patients. Pain Med. 2019;21:pnz254. doi: 10.1093/pm/pnz254.
    1. Bujedo B.M., Karlsson B. Fentanyl in a pectin gel treating breakthrough pain in vertebral compression fracture due to multiple myeloma: A descriptive study of three cases. J. Opioid Manag. 2016;12:197–203.
    1. Mercadante S., Cuomo A. Breakthrough Cancer Pain: Ten Commandments. Value Health. 2016;19:531–536. doi: 10.1016/j.jval.2016.03.002.
    1. Bechakra M., Nieuwenhoff M.D., van Rosmalen J., Groeneveld G.J., Scheltens-de Boer M., Sonneveld P., van Doorn P.A., de Zeeuw C.I., Jongen J.L. Clinical, electrophysiological, and cutaneous innervation changes in patients with bortezomib-induced peripheral neuropathy reveal insight into mechanisms of neuropathic pain. Mol. Pain. 2018;14:797042. doi: 10.1177/1744806918797042.
    1. Filosto M., Rossi G., Pelizzari A.M., Buzio S., Tentorio M., Broglio L., Mancuso M., Rinaldi M., Scarpelli M., Padovani A. A high-dose bortezomib neuropathy with sensory ataxia and myelin involvement. J. Neurol. Sci. 2007;263:40–43. doi: 10.1016/j.jns.2007.05.023.
    1. Argyriou A.A., Iconomou G., Kalofonos H.P. Bortezomib-induced peripheral neuropathy in multiple myeloma: A comprehensive review of the literature. Blood. 2008;112:1593–1599. doi: 10.1182/blood-2008-04-149385.
    1. Koeppen S. Treatment of multiple myeloma: Thalidomide-, bortezomib-, and lenalidomide-induced peripheral neuropathy. Oncol. Res. Treat. 2014;37:506–513. doi: 10.1159/000365534.
    1. Chaudhry V., Cornblath D.R., Polydefkis M., Ferguson A., Borrello I. Characteristics of bortezomib- and thalidomide-induced peripheral neuropathy. J. Peripher. Nerv. Syst. 2008;13:275–282. doi: 10.1111/j.1529-8027.2008.00193.x.
    1. Tacchetti P., Terragna C., Galli M., Zamagni E., Petrucci M.T., Pezzi A., Montefusco V., Martello M., Tosi P., Baldini L. Bortezomib- and thalidomide-induced peripheral neuropathy in multiple myeloma: Clinical and molecular analyses of a phase 3 study. Am. J. Hematol. 2014;89:1085–1091. doi: 10.1002/ajh.23835.
    1. Richardson P.G., Briemberg H., Jagannath S., Wen P.Y., Barlogie B., Berenson J., Singhal S., Siegel D.S., Irwin D., Schuster M., et al. Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J. Clin. Oncol. 2006;24:3113–3120. doi: 10.1200/JCO.2005.04.7779.
    1. Ludman T., Melemedjian O.K. Bortezomib-induced aerobic glycolysis contributes to chemotherapy-induced painful peripheral neuropathy. Mol. Pain. 2019;15:837429. doi: 10.1177/1744806919837429.
    1. Yin Y., Qi X., Qiao Y., Liu H., Yan Z., Li H., Liu Z. The Association of Neuronal Stress with Activating Transcription Factor 3 in Dorsal Root Ganglion of in vivo and in vitro Models of Bortezomib- Induced Neuropathy. Curr. Cancer Drug Targets. 2019;19:50–64. doi: 10.2174/1568009618666181003170027.
    1. Kastritis E., Dimopoulos M.A. The evolving role of lenalidomide in the treatment of hematologic malignancies. Expert Opin. Pharmacother. 2007;8:497–509. doi: 10.1517/14656566.8.4.497.
    1. Kotla V., Goel S., Nischal S., Heuck C., Vivek K., Das B., Verma A. Mechanism of action of lenalidomide in hematological malignancies. J. Hematol. Oncol. 2009;2:36. doi: 10.1186/1756-8722-2-36.
    1. Maj M.A., Ma J., Krukowski K.N., Kavelaars A., Heijnen C.J. Inhibition of Mitochondrial p53 Accumulation by PFT-mu Prevents Cisplatin-Induced Peripheral Neuropathy. Front. Mol. Neurosci. 2017;10:108. doi: 10.3389/fnmol.2017.00108.
    1. Martino E., Casamassima G., Castiglione S., Cellupica E., Pantalone S., Papagni F., Rui M., Siciliano A.M., Collina S. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorg. Med. Chem. Lett. 2018;28:2816–2826. doi: 10.1016/j.bmcl.2018.06.044.
    1. Zhi W.I., Ingram E., Li S.Q., Chen P., Piulson L., Bao T. Acupuncture for Bortezomib-Induced Peripheral Neuropathy: Not Just for Pain. Integr. Cancer Ther. 2018;17:1079–1086. doi: 10.1177/1534735418788667.
    1. Larocca A., Bringhen S., Petrucci M.T., Oliva S., Falcone A.P., Caravita T., Villani O., Benevolo G., Liberati A.M., Morabito F., et al. A phase 2 study of three low-dose intensity subcutaneous bortezomib regimens in elderly frail patients with untreated multiple myeloma. Leukemia. 2016;30:1320–1326. doi: 10.1038/leu.2016.36.
    1. Nucci M., Anaissie E. Infections in patients with multiple myeloma in the era of high-dose therapy and novel agents. Clin. Infect. Dis. 2009;49:1211–1225. doi: 10.1086/605664.
    1. Kim J.W., Min C.K., Mun Y.C., Park Y., Kim B.S., Nam S.H., Koh Y., Kwon J.H., Choe P.G., Park W.B., et al. Varicella-zoster virus-specific cell-mediated immunity and herpes zoster development in multiple myeloma patients receiving bortezomib- or thalidomide-based chemotherapy. J. Clin. Virol. 2015;73:64–69. doi: 10.1016/j.jcv.2015.10.018.
    1. Brioli A., Klaus M., Sayer H., Scholl S., Ernst T., Hilgendorf I., Scherag A., Yomade O., Schilling K., Hochhaus A., et al. The risk of infections in multiple myeloma before and after the advent of novel agents: A 12-year survey. Ann. Hematol. 2019;98:713–722. doi: 10.1007/s00277-019-03621-1.
    1. Woo Y.R., Jung Y.J., Kim J.S., Kim M., Park Y.M., Min C.K., Kim D.W., Park H.J. Cutaneous comorbidities in patients with multiple myeloma: A 10-year retrospective cohort study from a Korean population. Medicine. 2018;97:e12825. doi: 10.1097/MD.0000000000012825.
    1. Ludwig H., Delforge M., Facon T., Einsele H., Gay F., Moreau P., Avet-Loiseau H., Boccadoro M., Hajek R., Mohty M., et al. Prevention and management of adverse events of Novel agents in multiple myeloma: A consensus of the european myeloma network. Leukemia. 2017 doi: 10.1038/leu.2017.353.
    1. Pickering G., Martin E., Tiberghien F., Delorme C., Mick G. Localized neuropathic pain: An expert consensus on local treatments. Drug Des. Dev. Ther. 2017;11:2709–2718. doi: 10.2147/DDDT.S142630.
    1. Casale R., Symeonidou Z., Bartolo M. Topical Treatments for Localized Neuropathic Pain. Curr. Pain Headache Rep. 2017;21:15. doi: 10.1007/s11916-017-0615-y.
    1. Paisley P., Serpell M. The role of topiceuticals in cancer pain. Curr. Opin. Support. Palliat. Care. 2017;11:93–98. doi: 10.1097/SPC.0000000000000271.
    1. Navez M.L., Monella C., Bösl I., Sommer D., Delorme C. 5% Lidocaine Medicated Plaster for the Treatment of Postherpetic Neuralgia: A Review of the Clinical Safety and Tolerability. Pain Ther. 2015;4:1–15. doi: 10.1007/s40122-015-0034-x.
    1. Nicolaou A., Nicholson B., Hans G., Brasseur L. Outcome predictors for treatment success with 5% lidocaine medicated plaster in low back pain with neuropathic components and neuropathic pain after surgical and nonsurgical trauma. J. Pain Res. 2011;4:25–38.
    1. Blair H.A. Capsaicin 8% Dermal Patch: A Review in Peripheral Neuropathic Pain. Drugs. 2018;78:1489–1500. doi: 10.1007/s40265-018-0982-7.
    1. Finnerup N.B., Attal N., Haroutounian S., McNicol E., Baron R., Dworkin R.H., Gilron I., Haanpää M., Hansson P., Jensen T.S., et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 2015;14:162–173. doi: 10.1016/S1474-4422(14)70251-0.
    1. Kress H.G., Coluzzi F. Tapentadol in the management of cancer pain: Current evidence and future perspectives. J. Pain Res. 2019;12:1553–1560. doi: 10.2147/JPR.S191543.
    1. Sommer C., Klose P., Welsch P., Petzke F., Häuser W. Opioids for chronic non-cancer neuropathic pain. An updated systematic review and meta-analysis of efficacy, tolerability and safety in randomized placebo-controlled studies of at least 4 weeks duration. Eur. J. Pain. 2019;9 doi: 10.1002/ejp.1494.
    1. Landgren O., Iskander K. Modern multiple myeloma therapy: Deep, sustained treatment response and good clinical outcomes. J. Intern. Med. 2017;281:365–382. doi: 10.1111/joim.12590.
    1. Brown M., Farquhar-Smith P. Pain in cancer survivors; filling in the gaps. Br. J. Anaesth. 2017;119:723–736. doi: 10.1093/bja/aex202.
    1. Kurtin S. Living with Multiple Myeloma: A Continuum-Based Approach to Cancer Survivorship. Semin. Oncol. Nurs. 2017;33:348–361. doi: 10.1016/j.soncn.2017.05.009.
    1. Nijs J., Leysen L., Adriaenssens N., Aguilar Ferrándiz M.E., Devoogdt N., Tassenoy A., Ickmans K., Goubert D., van Wilgen C.P., Wijma A.J., et al. Pain following cancer treatment: Guidelines for the clinical classification of predominant neuropathic, nociceptive and central sensitization pain. Acta Oncol. 2016;55:659–663. doi: 10.3109/0284186X.2016.1167958.
    1. Müller-Schwefe G., Ahlbeck K., Aldington D., Alon E., Coaccioli S., Coluzzi F., Huygen F., Jaksch W., Kalso E., Kocot-Kępska M., et al. Pain in the cancer patient: Different pain characteristics CHANGE pharmacological treatment requirements. Curr. Med. Res. Opin. 2014;30:1895–1908. doi: 10.1185/03007995.2014.925439.
    1. Green C.R., Hart-Johnson T., Loeffler D.R. Cancer-related chronic pain: Examining quality of life in diverse cancer survivors. Cancer. 2011;117:1994–2003. doi: 10.1002/cncr.25761.
    1. Boland E., Eiser C., Ezaydi Y., Greenfield D.M., Ahmedzai S.H., Snowden J.A. Living with advanced but stable multiple myeloma: A study of the symptom burden and cumulative effects of disease and intensive (hematopoietic stem cell transplant-based) treatment on health-related quality of life. J. Pain Symptom Manag. 2013;46:671–680. doi: 10.1016/j.jpainsymman.2012.11.003.
    1. Georges G.E., Bar M., Onstad L., Yi J.C., Shadman M., Flowers M.E., Carpenter P.A., Stewart S., Lee S.J., Holmberg L.A. Survivorship after Autologous Hematopoietic Cell Transplantation for Lymphoma and Multiple Myeloma: Late Effects and Quality of Life. Biol. Blood Marrow Transplant. 2019;9 doi: 10.1016/j.bbmt.2019.10.002.
    1. Grauer O., Wolff D., Bertz H., Greinix H., Kühl J.S., Lawitschka A. Neurological manifestations of chronic graft-versus-host disease after allogeneic haematopoietic stem cell transplantation: Report from the Consensus Conference on Clinical Practice in chronic graft-versus-host disease. Brain. 2010;133:2852–2865. doi: 10.1093/brain/awq245.
    1. Lee S.J., Onstad L., Chow E.J., Shaw B.E., Jim H.S.L., Syrjala K.L. Patient-reported outcomes and health status associated with chronic graft-versus-host disease. Haematologica. 2018;103:1535–1541. doi: 10.3324/haematol.2018.192930.
    1. Kurosawa S., Yamaguchi T., Oshima K., Yanagisawa A., Fukuda T., Kanamori H. Resolved versus Active Chronic Graft-versus-Host Disease: Impact on Post-Transplantation Quality of Life. Biol. Blood Marrow Transplant. 2019;25:1851–1858. doi: 10.1016/j.bbmt.2019.05.016.
    1. Campbell K.L., Winters-Stone K.M., Wiskemann J., May A.M., Schwartz A.L., Courneya K.S., Zucker D.S., Matthews C.E., Ligibel J.A., Gerber L.H., et al. Exercise Guidelines for Cancer Survivors: Consensus Statement from International Multidisciplinary Roundtable. Med. Sci. Sports Exerc. 2019;51:2375–2390. doi: 10.1249/MSS.0000000000002116.
    1. Merlin J.S., Patel K., Thompson N., Kapo J., Keefe F., Liebschutz J., Paice J., Somers T., Starrels J., Childers J., et al. Managing Chronic Pain in Cancer Survivors Prescribed Long-Term Opioid Therapy: A National Survey of Ambulatory Palliative Care Providers. J. Pain Symptom Manage. 2019;57:20–27. doi: 10.1016/j.jpainsymman.2018.10.493.
    1. Woolf C.J. Central sensitization: Implications for the diagnosis and treatment of pain. Pain. 2011;152:S2–S15. doi: 10.1016/j.pain.2010.09.030.

Source: PubMed

3
Abonnieren