Revisiting the circulation time of Plasmodium falciparum gametocytes: molecular detection methods to estimate the duration of gametocyte carriage and the effect of gametocytocidal drugs

Teun Bousema, Lucy Okell, Seif Shekalaghe, Jamie T Griffin, Sabah Omar, Patrick Sawa, Colin Sutherland, Robert Sauerwein, Azra C Ghani, Chris Drakeley, Teun Bousema, Lucy Okell, Seif Shekalaghe, Jamie T Griffin, Sabah Omar, Patrick Sawa, Colin Sutherland, Robert Sauerwein, Azra C Ghani, Chris Drakeley

Abstract

Background: There is renewed acknowledgement that targeting gametocytes is essential for malaria control and elimination efforts. Simple mathematical models were fitted to data from clinical trials in order to determine the mean gametocyte circulation time and duration of gametocyte carriage in treated malaria patients.

Methods: Data were used from clinical trials from East Africa. The first trial compared non-artemisinin combination therapy (non-ACT: sulphadoxine-pyrimethamine (SP) plus amodiaquine) and artemisinin-based combination therapy (ACT: SP plus artesunate (AS) or artemether-lumefantrine). The second trial compared ACT (SP+AS) with ACT in combination with a single dose of primaquine (ACT-PQ: SP+AS+PQ). Mature gametocytes were quantified in peripheral blood samples by nucleic acid sequence based amplification. A simple deterministic compartmental model was fitted to gametocyte densities to estimate the circulation time per gametocyte; a similar model was fitted to gametocyte prevalences to estimate the duration of gametocyte carriage after efficacious treatment.

Results: The mean circulation time of gametocytes was 4.6-6.5 days. After non-ACT treatment, patients were estimated to carry gametocytes for an average of 55 days (95% CI 28.7 - 107.7). ACT reduced the duration of gametocyte carriage fourfold to 13.4 days (95% CI 10.2-17.5). Addition of PQ to ACT resulted in a further fourfold reduction of the duration of gametocyte carriage.

Conclusions: These findings confirm previous estimates of the circulation time of gametocytes, but indicate a much longer duration of (low density) gametocyte carriage after apparently successful clearance of asexual parasites. ACT shortened the period of gametocyte carriage considerably, and had the most pronounced effect on mature gametocytes when combined with PQ.

Figures

Figure 1
Figure 1
Models describing change in gametocyte density and gametocyte prevalence over time. S, sequestered gametocytes; G, circulating gametocytes; E, gametocyte-negative infected individuals (i.e. gametocytes not yet released into circulation); I, gametocyte-positive individuals; ρ rate of release of gametocytes from sequestration into the bloodstream; μ, rate of decay/removal of gametocytes; f, rate at which gametocyte-negative individuals become gametocyte-positive; r, rate at which gametocyte-positive individuals become gametocyte negative.
Figure 2
Figure 2
The mean gametocyte circulation time based on Pfs25 QT-NASBA gametocyte density after non-ACT and ACT. Log gametocyte density/μL is given on the Y-axis, the day of follow up after initiation of treatment. Symbols and error bars indicate the field data with 95% confidence interval, lines fitted values. The dotted line indicates the lower threshold for gametocyte detection by QT-NASBA, 0.02 gametocytes/μL. The trial was conducted in Kenya; treatment regimens were non-ACT (open diamonds; SP+AQ administered on day 0-2) and ACT (closed triangles; SP+AS or AL administered on day 0-2). The estimated mean circulation time of gametocytes in this trial was 6.53 days (95% CI 4.84-8.80) after non-ACT treatment and 5.04 days (95% CI 4.20-6.06) after ACT treatment, based on data between d3 and d28.
Figure 3
Figure 3
The mean gametocyte circulation time based on Pfs25 QT-NASBA gametocyte density after ACT and ACT-PQ. Log gametocyte density/μL is given on the Y-axis, the day of follow up after initiation of treatment. Symbols and error bars indicate the field data with 95% confidence interval, lines fitted values. The dotted line indicates the lower threshold for gametocyte detection by QT-NASBA, 0.02 gametocytes/μL. The trial was conducted in Tanzania; treatment regimens were ACT (closed triangles; SP+AS administered on day 0-2) and ACT-PQ (open squares; SP+AS administered on day 0-2 followed by a single dose of PQ on day 2). The mean circulation time of gametocytes in this trial was 4.61 days (2.92 - 7.26) after ACT treatment and 0.53 days (0.24-1.19) after ACT-PQ treatment.
Figure 4
Figure 4
The duration of gametocyte carriage based on the Pfs25 QT-NASBA gametocyte prevalence after non-ACT and ACT treatment. Symbols and error bars indicate the field data with 95% confidence interval, lines fitted values. The trial was conducted in Kenya; treatment regimens were non-ACT (open diamonds; SP+AQ administered on day 0-2) and ACT (closed triangles; SP+AS or AL administered on day 0-2). The estimated average duration of gametocyte carriage was 55.6 days (95% CI 28.7-107.7) after non-ACT treatment and 13.4 days (95% CI 10.2-17.5) after ACT treatment.
Figure 5
Figure 5
The duration of gametocyte carriage based on the Pfs25 QT-NASBA gametocyte prevalence after ACT and ACT-PQ treatment. Symbols and error bars indicate the field data with 95% confidence interval, lines fitted values. The trial was conducted in Tanzania; treatment regimens were ACT (closed triangles; SP+AS administered on day 0-2) and ACT-PQ (open squares; SP+AS administered on day 0-2 followed by a single dose of PQ on day 2). The estimated average duration of gametocyte carriage was 28.6 days (95% CI 17.0 - 48.0) after ACT treatment and 6.3 days (95% CI 4.7-8.5) after ACT-PQ treatment.

References

    1. Carter R, Mendis KN, Miller LH, Molineaux L, Saul A. Malaria transmission-blocking vaccines--how can their development be supported? Nat Med. 2000;6:241–244. doi: 10.1038/73062.
    1. Sauerwein RW. Malaria transmission-blocking vaccines: the bonus of effective malaria control. Microbes Infect. 2007;9:792–795. doi: 10.1016/j.micinf.2007.02.011.
    1. White NJ. The role of anti-malarial drugs in eliminating malaria. Malar J. 2008;7(Suppl 1):S8. doi: 10.1186/1475-2875-7-S1-S8.
    1. Babiker HA, Schneider P, Reece SE. Gametocytes: insights gained during a decade of molecular monitoring. Trends Parasitol. 2008;24:525–530. doi: 10.1016/j.pt.2008.08.001.
    1. Butcher GA. Antimalarial drugs and the mosquito transmission of Plasmodium. Int J Parasitol. 1997;27:975–987. doi: 10.1016/S0020-7519(97)00079-9.
    1. Drakeley C, Sutherland C, Bousema JT, Sauerwein RW, Targett GA. The epidemiology of Plasmodium falciparum gametocytes: weapons of mass dispersion. Trends Parasitol. 2006;22:424–430. doi: 10.1016/j.pt.2006.07.001.
    1. Talman AM, Domarle O, McKenzie FE, Ariey F, Robert V. Gametocytogenesis: the puberty of Plasmodium falciparum. MalarJ. 2004;3:24. doi: 10.1186/1475-2875-3-24.
    1. Smalley ME, Sinden RE. Plasmodium falciparum gametocytes: their longevity and infectivity. Parasitology. 1977;74:1–8. doi: 10.1017/S0031182000047478.
    1. Eichner M, Diebner HH, Molineaux L, Collins WE, Jeffery GM, Dietz K. Genesis, sequestration and survival of Plasmodium falciparum gametocytes: parameter estimates from fitting a model to malariatherapy data. Trans R Soc Trop Med Hyg. 2001;95:497–501. doi: 10.1016/S0035-9203(01)90016-1.
    1. Bousema JT, Gouagna LC, Drakeley CJ, Meutstege AM, Okech BA, Akim IN, Beier JC, Githure JI, Sauerwein RW. Plasmodium falciparum gametocyte carriage in asymptomatic children in western Kenya. Malar J. 2004;3:18. doi: 10.1186/1475-2875-3-18.
    1. Jeffery GM, Young MD, Eyles DE. The treatment of Plasmodium falciparum infection with chloroquine, with a note on infectivity to mosquitoes of primaquine- and pyrimethamine-treated cases. Am J Hyg. 1956;64:1–11.
    1. Molineaux L, Gramiccia G. The Garki Project. Research on the epidemiology and control of malaria in the Sudan savannah of West Africa. World Health Organization; 1980.
    1. Schneider P, Bousema JT, Gouagna LC, Otieno S, van de Vegte-Bolmer M, Omar SA, Sauerwein RW. Submicroscopic Plasmodium falciparum gametocyte densities frequently result in mosquito infection. Am J Trop Med Hyg. 2007;76:470–474.
    1. Ouedraogo AL, Bousema T, Schneider P, de Vlas SJ, Ilboudo-Sanogo E, Cuzin-Ouattara N, Nebie I, Roeffen W, Verhave JP, Luty AJ, Sauerwein R. Substantial contribution of submicroscopical Plasmodium falciparum gametocyte carriage to the infectious reservoir in an area of seasonal transmission. PLoS One. 2009;4:e8410. doi: 10.1371/journal.pone.0008410.
    1. Shekalaghe S, Drakeley C, Gosling R, Ndaro A, van Meegeren M, Enevold A, Alifrangis M, Mosha F, Sauerwein R, Bousema T. Primaquine clears submicroscopic Plasmodium falciparum gametocytes that persist after treatment with sulphadoxine-pyrimethamine and artesunate. PLoSONE. 2007;2:e1023.
    1. Bousema JT, Schneider P, Gouagna LC, Drakeley CJ, Tostmann A, Houben R, Githure JI, Ord R, Sutherland CJ, Omar SA, Sauerwein RW. Moderate effect of artemisinin-based combination therapy on transmission of Plasmodium falciparum. J Infect Dis. 2006;193:1151–1159. doi: 10.1086/503051.
    1. Sinclair D, Zani B, Donegan S, Olliaro P, Garner P. Artemisinin-based combination therapy for treating uncomplicated malaria. Cochrane Database Syst Rev. 2009. p. CD007483.
    1. Okell LC, Drakeley CJ, Bousema T, Whitty CJ, Ghani AC. Modelling the impact of artemisinin combination therapy and long-acting treatments on malaria transmission intensity. PLoS Med. 2008;5:e226. doi: 10.1371/journal.pmed.0050226. discussion e226.
    1. Pukrittayakamee S, Chotivanich K, Chantra A, Clemens R, Looareesuwan S, White NJ. Activities of artesunate and primaquine against asexual- and sexual-stage parasites in falciparum malaria. Antimicrob Agents Chemother. 2004;48:1329–1334. doi: 10.1128/AAC.48.4.1329-1334.2004.
    1. Kumar N, Zheng H. Stage-specific gametocytocidal effect in vitro of the antimalaria drug qinghaosu on Plasmodium falciparum. Parasitol Res. 1990;76:214–218. doi: 10.1007/BF00930817.
    1. Chotivanich K, Sattabongkot J, Udomsangpetch R, Looareesuwan S, Day NP, Coleman RE, White NJ. Transmission-blocking activities of quinine, primaquine, and artesunate. Antimicrob Agents Chemother. 2006;50:1927–1930. doi: 10.1128/AAC.01472-05.
    1. Targett G, Drakeley C, Jawara M, von Seidlein L, Coleman R, Deen J, Pinder M, Doherty T, Sutherland C, Walraven G, Milligan P. Artesunate reduces but does not prevent posttreatment transmission of Plasmodium falciparum to Anopheles gambiae. J Infect Dis. 2001;183:1254–1259. doi: 10.1086/319689.
    1. Sutherland CJ, Ord R, Dunyo S, Jawara M, Drakeley CJ, Alexander N, Coleman R, Pinder M, Walraven G, Targett GA. Reduction of malaria transmission to Anopheles mosquitoes with a six-dose regimen of co-artemether. PLoS Med. 2005;2:e92. doi: 10.1371/journal.pmed.0020092.
    1. Okell LC, Drakeley CJ, Ghani AC, Bousema T, Sutherland CJ. Reduction of transmission from malaria patients by artemisinin combination therapies: a pooled analysis of six randomized trials. Malar J. 2008;7:125. doi: 10.1186/1475-2875-7-125.
    1. Taylor WR, White NJ. Antimalarial drug toxicity: a review. Drug Saf. 2004;27:25–61. doi: 10.2165/00002018-200427010-00003.
    1. El-Sayed B, El-Zaki SE, Babiker H, Gadalla N, Ageep T, Mansour F, Baraka O, Milligan P, Babiker A. A randomized open-label trial of artesunate- sulfadoxine-pyrimethamine with or without primaquine for elimination of sub-microscopic P. falciparum parasitaemia and gametocyte carriage in eastern Sudan. PLoS One. 2007;2:e1311. doi: 10.1371/journal.pone.0001311.
    1. Shilulu J, Mbogo C, Mutero CM, Gunter J, Swalm C, Regens J, Keating J, Yan G, Githure JI, Beier JC. Spatial distribution of Anopheles gambiae and Anopheles funestus and malaria transmission in Suba District, western Kenya. Proceedings of the 49th Annual Meeting of ASTMH, Houston, TX, USA. 2000.
    1. Monitoring of Anti-Malarial Drug resistance by real-time quantitative nucleic acid sequence-based amplification and the impact on TRANSmission of Plasmodium falciparum; protocol registration.
    1. Stewart L, Gosling R, Griffin J, Gesase S, Campo J, Hashim R, Masika P, Mosha J, Bousema T, Shekalaghe S, Cook J, Corran P, Ghani A, Riley EM, Drakeley C. Rapid assessment of malaria transmission using age-specific sero-conversion rates. PLoS One. 2009;4:e6083. doi: 10.1371/journal.pone.0006083.
    1. The GAMetocyticidal activity of sulphadoxine-pyremthamine plus artesunate followed by a single dose of PrimaQuine; protocol registration.
    1. Schneider P, Schoone G, Schallig H, Verhage D, Telgt D, Eling W, Sauerwein R. Quantification of Plasmodium falciparum gametocytes in differential stages of development by quantitative nucleic acid sequence-based amplification. Mol Biochem Parasitol. 2004;137:35–41. doi: 10.1016/j.molbiopara.2004.03.018.
    1. Schneider P, Wolters L, Schoone G, Schallig H, Sillekens P, Hermsen R, Sauerwein R. Real-time nucleic acid sequence-based amplification is more convenient than real-time PCR for quantification of Plasmodium falciparum. J Clin Microbiol. 2005;43:402–405. doi: 10.1128/JCM.43.1.402-405.2005.
    1. Martensson A, Ngasala B, Ursing J, Isabel VM, Wiklund L, Membi C, Montgomery SM, Premji Z, Farnert A, Bjorkman A. Influence of consecutive-day blood sampling on polymerase chain reaction-adjusted parasitological cure rates in an antimalarial-drug trial conducted in Tanzania. J Infect Dis. 2007;195:597–601. doi: 10.1086/510910.
    1. Mendez F, Munoz A, Carrasquilla G, Jurado D, Arevalo-Herrera M, Cortese JF, Plowe CV. Determinants of treatment response to sulfadoxine-pyrimethamine and subsequent transmission potential in falciparum malaria. Am J Epidemiol. 2002;156:230–238. doi: 10.1093/aje/kwf030.
    1. Bousema JT, Drakeley CJ, Mens PF, Arens T, Houben R, Omar SA, Gouagna LC, Schallig H, Sauerwein RW. Increased Plasmodium falciparum gametocyte production in mixed infections with P. malariae. Am J Trop Med Hyg. 2008;78:442–448.
    1. Stepniewska K, Taylor W, Sirima SB, Ouedraogo EB, Ouedraogo A, Gansane A, Simpson JA, Morgan CC, White NJ, Kiechel JR. Population pharmacokinetics of artesunate and amodiaquine in African children. Malar J. 2009;8:200. doi: 10.1186/1475-2875-8-200.
    1. Elmes NJ, Bennett SM, Abdalla H, Carthew TL, Edstein MD. Lack of sex effect on the pharmacokinetics of primaquine. Am J Trop Med Hyg. 2006;74:951–952.
    1. Lawpoolsri S, Klein EY, Singhasivanon P, Yimsamran S, Thanyavanich N, Maneeboonyang W, Hungerford LL, Maguire JH, Smith DL. Optimally timing primaquine treatment to reduce Plasmodium falciparum transmission in low endemicity Thai-Myanmar border populations. Malar J. 2009;8:159. doi: 10.1186/1475-2875-8-159.
    1. Hogh B, Thompson R, Hetzel C, Fleck SL, Kruse NA, Jones I, Dgedge M, Barreto J, Sinden RE. Specific and nonspecific responses to Plasmodium falciparum blood-stage parasites and observations on the gametocytemia in schoolchildren living in a malaria-endemic area of Mozambique. Am J Trop Med Hyg. 1995;52:50–59.
    1. Lensen A, Bril A, van dV, Van Gemert GJ, Eling W, Sauerwein R. Plasmodium falciparum: infectivity of cultured, synchronized gametocytes to mosquitoes. Exp Parasitol. 1999;91:101–103. doi: 10.1006/expr.1998.4354.
    1. White NJ. Qinghaosu (artemisinin): the price of success. Science. 2008;320:330–334. doi: 10.1126/science.1155165.
    1. Saeed M, Drakeley C, Targett G, Sutherland C. Targets of immunity on the surface of developing P. falciparum gametocytes. British Society for Parasitology meeting Abstract. 2005.
    1. Dondorp AM, Desakorn V, Pongtavornpinyo W, Sahassananda D, Silamut K, Chotivanich K, Newton PN, Pitisuttithum P, Smithyman AM, White NJ, Day NP. Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS Med. 2005;2:e204. doi: 10.1371/journal.pmed.0020204.
    1. Gunders AE. The effect of a single dose of pyrimethamine and primaquine in combination upon gametocytes and sporogony of Laverania falcipara (Plasmodium falciparum) in Liberia. Bull World Health Organ. 1961;24:650–653.
    1. Vale N, Moreira R, Gomes P. Primaquine revisited six decades after its discovery. Eur J Med Chem. 2009;44:937–953. doi: 10.1016/j.ejmech.2008.08.011.
    1. Abdel-Wahab A, Abdel-Muhsin AM, Ali E, Suleiman S, Ahmed S, Walliker D, Babiker HA. Dynamics of gametocytes among Plasmodium falciparum clones in natural infections in an area of highly seasonal transmission. J Infect Dis. 2002;185:1838–1842. doi: 10.1086/340638.
    1. Nassir E, Abdel-Muhsin AM, Suliaman S, Kenyon F, Kheir A, Geha H, Ferguson HM, Walliker D, Babiker HA. Impact of genetic complexity on longevity and gametocytogenesis of Plasmodium falciparum during the dry and transmission-free season of eastern Sudan. Int J Parasitol. 2005;35:49–55. doi: 10.1016/j.ijpara.2004.10.014.
    1. Arnot D. Unstable malaria in Sudan: the influence of the dry season. Clone multiplicity of Plasmodium falciparum infections in individuals exposed to variable levels of disease transmission. Trans R Soc Trop Med Hyg. 1998;92:580–585. doi: 10.1016/S0035-9203(98)90773-8.

Source: PubMed

3
Abonnieren