Measuring intracranial pressure by invasive, less invasive or non-invasive means: limitations and avenues for improvement

Karen Brastad Evensen, Per Kristian Eide, Karen Brastad Evensen, Per Kristian Eide

Abstract

Sixty years have passed since neurosurgeon Nils Lundberg presented his thesis about intracranial pressure (ICP) monitoring, which represents a milestone for its clinical introduction. Monitoring of ICP has since become a clinical routine worldwide, and today represents a cornerstone in surveillance of patients with acute brain injury or disease, and a diagnostic of individuals with chronic neurological disease. There is, however, controversy regarding indications, clinical usefulness and the clinical role of the various ICP scores. In this paper, we critically review limitations and weaknesses with the current ICP measurement approaches for invasive, less invasive and non-invasive ICP monitoring. While risk related to the invasiveness of ICP monitoring is extensively covered in the literature, we highlight other limitations in current ICP measurement technologies, including limited ICP source signal quality control, shifts and drifts in zero pressure reference level, affecting mean ICP scores and mean ICP-derived indices. Control of the quality of the ICP source signal is particularly important for non-invasive and less invasive ICP measurements. We conclude that we need more focus on mitigation of the current limitations of today's ICP modalities if we are to improve the clinical utility of ICP monitoring.

Keywords: Intracranial pressure; Miniature pressure sensors; Non-invasive ICP; Pulsatile ICP; Static ICP.

Conflict of interest statement

Both the authors declares that they have no competing of interests.

Figures

Fig. 1
Fig. 1
The intracranial pressure–volume curve. There is a non-linear relationship between change in intracranial pressure (ICP) and intracranial volume (Volume). At the flat portion of the curve, the pressure–volume reserve or buffering capacity is good (i.e. the intracranial compartment accepts a rather large change in intracranial volume without resulting in increased ICP). This implies that intracranial elastance is low (intracranial compliance is high). At the vertical portion of the curve, a small change in intracranial volume causes a marked rise in ICP; pressure–volume reserve capacity is low (high intracranial elastance or low intracranial compliance). The pressure–volume curve was established from measuring mean ICP. In the context of pulsatile ICP, at the flat portion of the curve the net intracranial blood volume change during the cardiac beat (about 1 ml) causes a small single wave amplitude ( 4–5 mmHg). From Wagshul et al. [32]
Fig. 2
Fig. 2
Overview of wire-based and wireless methods for ICP monitoring. The image on the right shows that ICP is measured via a ventricular (V) catheter placed within the cerebral ventricles, and dedicated ICP sensors implanted within the brain parenchyma (P), or via the ICP sensor placed within the epidural (E) location. The invasive ICP source signals are transferred to a monitor that may reveal the ICP scores. For example, the ICP scores may be shown as numerical values, trend plots, or as the single ICP waves. The image on the left illustrates implantable sensors to the ventricles or parenchyma wherein the communication between sensor and external receiver is wireless. Illustration: Øystein Horgmo, University of Oslo
Fig. 3
Fig. 3
Measurements of static versus pulsatile ICP. The static ICP (mean ICP) is an absolute pressure value measured against a reference pressure (here illustrated by the green line), not considering the pressure changes occurring during the cardiac cycle. The pulsatile ICP is the pulse pressure or the pressure changes occurring during the cardiac cycle (here illustrated by the blue line). A single ICP wave is characterized by an increase in pressure from diastolic minimum pressure to systolic maximum pressure (the peaks are illustrated by the red dots). The single ICP wave amplitude is the peak-to-peak pressure difference. Illustration: Øystein Horgmo, University of Oslo
Fig. 4
Fig. 4
Continuous ICP measurement from an individual with subarachnoid hemorrhage. Intracranial pressure was measured from two separate ICP sensors placed nearby in the right frontal lobe of an individual suffering from a subarachnoid hemorrhage 3 days before. The left upper window (a) presents the trend plots of mean ICP (MeanP, light green) and mean ICP wave amplitude (MeanWave AMP, darker green) measured from a Camino ICP sensor, and the lower left window the trend plots of mean ICP (MeanP, light green) and mean ICP wave amplitude (MeanWave AMP, darker green) measured from a Codman ICP sensor. Average values from the Camino ICP sensor (upper window) are Mean ICP 20.6 mmHg, Mean Wave AMP (amplitude) 4.3 mmHg, Mean wave RT (Rise time) 0.24 s, Mean Wave RT Coeff (Rise time coefficient) 20.9 mmHg/seconds. Average values of the Codman ICP sensor (lower window) are Mean ICP 14.1 mmHg, Mean Wave AMP (amplitude) 4.5 mmHg, Mean wave RT (Rise time) 0.23 s, Mean Wave RT Coeff (Rise time coefficient) 23 mmHg/seconds. In (b) the ICP waveform of the Camino (left upper window) and Codman (left lower window) ICP sensors are shown. The ICP scores are presented in the right windows. Despite close to identical ICP waveform from the Camino and Codman ICP sensors, the mean ICP differed substantially (mean ICP of Camino ICP 35.2 mmHg and mean ICP of Codman 16 mmHg). Subfigure (c) presents the ICP waveforms at a later time point. The Camino recording is shown in the left upper window and the Codman recording in the left lower window. At this time point, the mean ICP was lower in the Camino (6.0 mmHg) than Codman ICP sensors (mean ICP 13.9 mmHg); the ICP waveforms were close to identical. The pressure recording was retrieved from a pressure quality registry at Oslo university hospital (Approval 2014/4720)
Fig. 5
Fig. 5
Impact of electrostatic discharges (ESDs) on mean ICP. Results from bench testing of commercial ICP sensors exposed to ESDs. The continuous pressure signal from a Codman MicroSensor is presented before and after ESD in three individuals showing (a) a sudden decline in ICP, (b) a sudden rise in ICP, and (c) a gradual reduction in ICP. Bench testing of a Raumedic Neurovent P sensor exposed to ESDs caused (d) a gradual increase in ICP, or (e) a gradual decline in ICP. Repeated ESDs causing a stepwise increase in ICP are shown in (f). The baseline pressure level (mmHg) is shown on the y-axis and time (minutes) on the x-axis. The ESD is indicated by an arrow. Notably, the ESDs were of small magnitude. When the test person was charged to 0.5 kV, the ESD delivered to the ICP sensor was typically 0.5 kV pulse peak. Charging to 5 kV gave a potential charge of 2.5 kV (2–5 kV). ESDs < 3 kV provoked few unpleasant sensations for the test person, while ESDs of about 5 kV gave unpleasant sensations. Adapted from Eide and Bakken [88]
Fig. 6
Fig. 6
The different types of baseline pressure errors (BPEs). Graphical illustration of the different types of BPEs. a BPE Type 1 is characterized by a constant offset of reference pressure (e.g. due to incorrect zeroing or calibration failure). b BPE Type 2 is related to a sudden shift in baseline pressure. One cause may be ESDs, as illustrated in Fig. 7 a–b. c BPE Type 3 is related to a gradual and large magnitude change in baseline pressure. This type is typical for drift of ICP sensor reference pressure or may be caused by ESDs (see Fig. 7 c–f). Notably, these different types may occur together during ongoing ICP monitoring. From Eide et al. [92]
Fig. 7
Fig. 7
Occurrence of BPEs during ICP monitoring. In a prospective study, we examined the frequency and magnitude of BPEs in patients undergoing surveillance for SAH. Two Raumedic Neuro P sensors were placed nearby via the same burr hole in the skull. The different types of BPEs are illustrated. The trend plots in blue reveal differences in mean ICP computed for consecutive 6-second time windows (Mean ICPSignal 2 – Mean ICPSignal 1), and the green plots show differences in MWA (MWASignal 2 – MWASignal 1) of Signals 1 and 2, for the same 6-second time windows. The presence of PBEs is indicated by the differences in mean ICP, but with close to identical MWAs (differences in MWA < 0.5 mmHg). The red arrows indicate occurrence of BPEs. These plots are from different individuals. Type 2 BPE is shown in (a) and (b), while various examples of Type 3 BPEs are presented in (c), (d), (e) and (f). Adapted from Eide et al. [92]
Fig. 8
Fig. 8
Impact of BPEs on determination of the mean ICP-derived score RAP. From different individuals undergoing ICP monitoring as part of surveillance of SAH, RAP was measured from two nearby Raumedic Neurovent P sensors placed via the same burr hole. Thereby the sensors measure ICP from the same compartment without pressure gradients. Trend plots of RAP [correlation coefficient (R) between the intracranial pressure (ICP) wave amplitude (A) and the mean ICP level (P)] of signals 1 and 2 are presented for three individuals. RAP was determined during 100 consecutive 4-minute periods for signals 1 (blue line) and 2 (red line). The horizontal lines at RAP 0.6 illustrate a commonly used upper normal threshold for RAP. a In this individual, the average of RAPSignal 1 was 0.50 (blue line) and the average of RAPSignal 2 − 0.04 (red line). b In this individual, the average of RAPSignal 1 was 0.64 (blue line) while average of RAPSignal 2 was 0.16 (red line). c In this individual, the average of RAPSignal 1 was 0.17 (blue line), and the average of RAPSignal 2 0.59 (red line). Adapted from Eide et al. [61]
Fig. 9
Fig. 9
Differences between the time- and frequency-domain methods for estimating ICP scores. The pressure waveforms are usually presented in the time domain (upper panel). The single ICP waves are shown as the blue waveform and the arterial BP as the red waveform (PPG, photoplethysmograph, in this case). The lower plots present the pressure data analyzed in the frequency domain, represented as a function of frequency. The signal and the defined cardiac components separated from low frequency components such as respiration can be analyzed independently. Additional information available with frequency domain analysis is the phase, the frequency domain analog of timing in the time domain (not shown). The phase plot allows analysis of timing differences between the ICP and the reference waveform for each identified frequency component. From Wagshul et al. [32]
Fig. 10
Fig. 10
B waves are elevations of mean ICP that may have different patterns. Column A illustrates the trend of mean ICP and column B the computer-generated examples. (1) B waves with symmetrical shape and amplitude < 10 mmHg. (2) B waves with symmetrical shape and amplitude > 10 mmHg. (3) Symmetrical B waves with plateau. (4) Asymmetrical B waves. The timescale is in the order of minutes. It should be noted that amplitudes of B waves and single ICP waves are fundamentally different. From Martinez-Tejada et al. [112]
Fig. 11
Fig. 11
Tympanic membrane pressure (TMP) as a surrogate marker of intracranial pressure. (a) Schematic illustration of the anatomical structures involved in measurements of TMP waveforms. The non-invasive TMP waveforms were measured in the outer ear and used as input for the estimation of non-invasive ICP. ICP ICP input signal, CA cochlear aqueduct, OW oval window, RW round window, T tympanic membrane, and S sensor. (b) An example showing 6 seconds of the input signals and the corresponding transfer function estimate based on a total 10 minutes are shown in b1 and b2, respectively. The resulting output from the combination of b1 and the inverse of b2 is presented in b3. (c) The non-invasive ICP waveform estimate (nICP, interrupted red line) is shown together with the invasive ICP waveform (continuous red line) for four different 6-second time windows after the beginning of the measurement. The time delay between the nICP and ICP signals, as seen in b1, has been removed for visual comparison. Adapted from Evensen et al. [177]

References

    1. Mokri B. The Monro-Kellie hypothesis: applications in CSF volume depletion. Neurology. 2001;56:1746–1748. doi: 10.1212/WNL.56.12.1746.
    1. Sahuquillo J, Poca MA, Arribas M, Garnacho A, Rubio E. Interhemispheric supratentorial intracranial pressure gradients in head-injured patients: are they clinically important? J Neurosurg. 1999;90:16–26. doi: 10.3171/jns.1999.90.1.0016.
    1. Miller JD, Stanek A, Langfitt TW. Concepts of cerebral perfusion pressure and vascular compression during intracranial hypertension. Prog Brain Res. 1972;35:411–432. doi: 10.1016/S0079-6123(08)60102-8.
    1. Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, Diringer MN, Stocchetti N, Videtta W, Armonda R. Consensus summary statement of the international multidisciplinary consensus conference on multimodality monitoring in neurocritical care. Neurocrit Care. 2014;21:1–26. doi: 10.1007/s12028-014-0041-5.
    1. Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg. 1995;83:949–962. doi: 10.3171/jns.1995.83.6.0949.
    1. Nordstrom CH. The “Lund concept”: what it is and what it isn’t. Intensive Care Med. 2007;33:558. doi: 10.1007/s00134-006-0521-y.
    1. Aaslid R, Lindegaard KF, Sorteberg W, Nornes H. Cerebral autoregulation dynamics in humans. Stroke. 1989;20:45–52. doi: 10.1161/01.STR.20.1.45.
    1. Rohlwink UK, Zwane E, Fieggen AG, Argent AC, le Roux PD, Figaji AA. The relationship between intracranial pressure and brain oxygenation in children with severe traumatic brain injury. Neurosurgery. 2012;70:1220–1230. doi: 10.1227/NEU.0b013e318243fc59.
    1. Bouzat P, Sala N, Payen JF, Oddo M. Beyond intracranial pressure: optimization of cerebral blood flow, oxygen, and substrate delivery after traumatic brain injury. Ann Intensive Care. 2013;3:23. doi: 10.1186/2110-5820-3-23.
    1. Hasan-Olive MM, Enger R, Hansson HA, Nagelhus EA, Eide PK. Pathological mitochondria in neurons and perivascular astrocytic end feet of idiopathic normal pressure hydrocephalus patients. Fluids Barriers CNS. 2019;16:39. doi: 10.1186/s12987-019-0160-7.
    1. Quincke H. Die Lumbalpunction des Hydrocephalus. Berl Clin Wschr. 1891;28:929–933.
    1. Janny P: La pression intra-cranienne chez l’homme. Methode d’enregistrement–Etude de ses variations et de ses rapports avec les signes cliniques et ophtalmologiques. Thesis; 1950.
    1. Lundberg N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl. 1960;36:1–193.
    1. Zhong J, Dujovny M, Park HK, Perez E, Perlin AR, Diaz FG. Advances in ICP monitoring techniques. Neurol Res. 2003;25:339–350. doi: 10.1179/016164103101201661.
    1. Hutchinson PJ, Kolias AG, Czosnyka M, Kirkpatrick PJ, Pickard JD, Menon DK. Intracranial pressure monitoring in severe traumatic brain injury. BMJ. 2013;346:f1000. doi: 10.1136/bmj.f1000.
    1. Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GW, Bell MJ, Bratton SL, Chesnut R, Harris OA, Kissoon N, et al. Guidelines for the Management of Severe Traumatic Brain Injury, fourth edition. Neurosurgery. 2017;80:6–15. doi: 10.1227/NEU.0000000000001432.
    1. Badri S, Chen J, Barber J, Temkin NR, Dikmen SS, Chesnut RM, Deem S, Yanez ND, Treggiari MM. Mortality and long-term functional outcome associated with intracranial pressure after traumatic brain injury. Intensive Care Med. 2012;38:1800–1809. doi: 10.1007/s00134-012-2655-4.
    1. Helbok R, Olson DM, Le Roux PD, Vespa P. Intracranial pressure and cerebral perfusion pressure monitoring in non-TBI patients: special considerations. Neurocrit Care. 2014;21(Suppl 2):S85–S94. doi: 10.1007/s12028-014-0040-6.
    1. Heuer GG, Smith MJ, Elliott JP, Winn HR, LeRoux PD. Relationship between intracranial pressure and other clinical variables in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2004;101:408–416. doi: 10.3171/jns.2004.101.3.0408.
    1. Mack WJ, King RG, Ducruet AF, Kreiter K, Mocco J, Maghoub A, Mayer S, Connolly ES., Jr Intracranial pressure following aneurysmal subarachnoid hemorrhage: monitoring practices and outcome data. Neurosurg Focus. 2003;14:e3. doi: 10.3171/foc.2003.14.4.3.
    1. Kumar G, Kalita J, Misra UK. Raised intracranial pressure in acute viral encephalitis. Clin Neurol Neurosurg. 2009;111:399–406. doi: 10.1016/j.clineuro.2009.03.004.
    1. Larsen L, Poulsen FR, Nielsen TH, Nordstrom CH, Schulz MK, Andersen AB. Use of intracranial pressure monitoring in bacterial meningitis: a 10-year follow up on outcome and intracranial pressure versus head CT scans. Infect Dis (Lond) 2017;49:356–364. doi: 10.1080/23744235.2016.1269265.
    1. Wendon JA, Larsen FS. Intracranial pressure monitoring in acute liver failure. A procedure with clear indications. Hepatology. 2006;44:504–506.
    1. Fric R, Eide PK. Comparative observational study on the clinical presentation, intracranial volume measurements, and intracranial pressure scores in patients with either Chiari malformation type I or idiopathic intracranial hypertension. J Neurosurg. 2017;126:1312–1322. doi: 10.3171/2016.4.JNS152862.
    1. Eide PK, Sorteberg W. Diagnostic intracranial pressure monitoring and surgical management in idiopathic normal pressure hydrocephalus: a 6-year review of 214 patients. Neurosurgery. 2010;66:80–91. doi: 10.1227/01.NEU.0000363408.69856.B8.
    1. Chari A, Dasgupta D, Smedley A, Craven C, Dyson E, Matloob S, Thompson S, Thorne L, Toma AK, Watkins L. Intraparenchymal intracranial pressure monitoring for hydrocephalus and cerebrospinal fluid disorders. Acta Neurochir (Wien) 2017;159:1967–1978. doi: 10.1007/s00701-017-3281-2.
    1. Lenfeldt N, Koskinen LO, Bergenheim AT, Malm J, Eklund A. CSF pressure assessed by lumbar puncture agrees with intracranial pressure. Neurology. 2007;68:155–158. doi: 10.1212/01.wnl.0000250270.54587.71.
    1. Doyle DJ, Mark PW. Analysis of intracranial pressure. J Clin Monit. 1992;8:81–90. doi: 10.1007/BF01618093.
    1. Poca MA, Martinez-Ricarte F, Sahuquillo J, Lastra R, Torne R, Armengol MS. Intracranial pressure monitoring with the Neurodur-P epidural sensor: a prospective study in patients with adult hydrocephalus or idiopathic intracranial hypertension. J Neurosurg. 2008;108:934–942. doi: 10.3171/JNS/2008/108/5/0934.
    1. Lilja-Cyron A, Kelsen J, Andresen M, Fugleholm K, Juhler M. Feasibility of telemetric intracranial pressure monitoring in the neuro intensive care unit. J Neurotrauma. 2018;35:1578–1586. doi: 10.1089/neu.2017.5589.
    1. Norager NH, Lilja-Cyron A, Hansen TS, Juhler M. Deciding on appropriate telemetric intracranial pressure monitoring system. World neurosurgery. 2019;126:564–569. doi: 10.1016/j.wneu.2019.03.077.
    1. Wagshul ME, Eide PK, Madsen JR. The pulsating brain: a review of experimental and clinical studies of intracranial pulsatility. Fluids Barrier CNS. 2011;8:5. doi: 10.1186/2045-8118-8-5.
    1. Shafi S, Diaz-Arrastia R, Madden C, Gentilello L. Intracranial pressure monitoring in brain-injured patients is associated with worsening of survival. J Trauma. 2008;64:335–340. doi: 10.1097/TA.0b013e31815dd017.
    1. Farahvar A, Gerber LM, Chiu YL, Carney N, Hartl R, Ghajar J. Increased mortality in patients with severe traumatic brain injury treated without intracranial pressure monitoring. J Neurosurg. 2012;117:729–734. doi: 10.3171/2012.7.JNS111816.
    1. Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, Petroni G, Lujan S, Pridgeon J, Barber J, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367:2471–2481. doi: 10.1056/NEJMoa1207363.
    1. Cnossen MC, Huijben JA, van der Jagt M, Volovici V, van Essen T, Polinder S, Nelson D, Ercole A, Stocchetti N, Citerio G, et al. Variation in monitoring and treatment policies for intracranial hypertension in traumatic brain injury: a survey in 66 neurotrauma centers participating in the CENTER-TBI study. Crit Care. 2017;21:233. doi: 10.1186/s13054-017-1816-9.
    1. Chesnut RM, Bleck TP, Citerio G, Classen J, Cooper DJ, Coplin WM, Diringer MN, Grande PO, Hemphill JC, 3rd, Hutchinson PJ, et al. A consensus-based interpretation of the benchmark evidence from South American trials: treatment of Intracranial Pressure Trial. J Neurotrauma. 2015;32:1722–1724. doi: 10.1089/neu.2015.3976.
    1. Roh D, Park S. Brain multimodality monitoring: updated perspectives. Current neurology and neuroscience reports. 2016;16:56. doi: 10.1007/s11910-016-0659-0.
    1. Purins K, Lewen A, Hillered L, Howells T, Enblad P. Brain tissue oxygenation and cerebral metabolic patterns in focal and diffuse traumatic brain injury. Front Neurol. 2014;5:64. doi: 10.3389/fneur.2014.00064.
    1. Bhatia A, Gupta AK: Neuromonitoring in the intensive care unit. I. Intracranial pressure and cerebral blood flow monitoring. Intensive care medicine 2007, 33:1263-1271.
    1. Fried HI, Nathan BR, Rowe AS, Zabramski JM, Andaluz N, Bhimraj A, Guanci MM, Seder DB, Singh JM. The insertion and management of external ventricular drains: an evidence-based consensus statement. Neurocrit Care. 2016;24:61–81. doi: 10.1007/s12028-015-0224-8.
    1. Abdoh MG, Bekaert O, Hodel J, Diarra SM, Le Guerinel C, Nseir R, Bastuji-Garin S, Decq P. Accuracy of external ventricular drainage catheter placement. Acta Neurochir (Wien) 2012;154:153–159. doi: 10.1007/s00701-011-1136-9.
    1. Tavakoli S, Peitz G, Ares W, Hafeez S, Grandhi R. Complications of invasive intracranial pressure monitoring devices in neurocritical care. Neurosurg Focus. 2017;43:E6. doi: 10.3171/2017.8.FOCUS17450.
    1. Saladino A, White JB, Wijdicks EF, Lanzino G. Malplacement of ventricular catheters by neurosurgeons: a single institution experience. Neurocrit Care. 2009;10:248. doi: 10.1007/s12028-008-9154-z.
    1. Eide PK, Holm S, Sorteberg W. Simultaneous monitoring of static and dynamic intracranial pressure parameters from two separate sensors in patients with cerebral bleeds: comparison of findings. Biomed Engin Online. 2012;11:66. doi: 10.1186/1475-925X-11-66.
    1. Birch AA, Eynon CA, Schley D. Erroneous intracranial pressure measurements from simultaneous pressure monitoring and ventricular drainage catheters. Neurocrit Care. 2006;5:51–54. doi: 10.1385/NCC:5:1:51.
    1. Gelabert-Gonzalez M, Ginesta-Galan V, Sernamito-Garcia R, Allut AG, Bandin-Dieguez J, Rumbo RM. The Camino intracranial pressure device in clinical practice. Assessment in a 1000 cases. Acta Neurochir (Wien) 2006;148:435–441. doi: 10.1007/s00701-005-0683-3.
    1. Piper I, Barnes A, Smith D, Dunn L. The Camino intracranial pressure sensor: is it optimal technology? an internal audit with a review of current intracranial pressure monitoring technologies. Neurosurgery. 2001;49:1158–1164.
    1. Koskinen LO, Olivecrona M. Clinical experience with the intraparenchymal intracranial pressure monitoring Codman MicroSensor system. Neurosurgery. 2005;56:693–698. doi: 10.1227/01.NEU.0000156609.95596.24.
    1. Fernandes HM, Bingham K, Chambers IR, Mendelow AD. Clinical evaluation of the Codman microsensor intracranial pressure monitoring system. Acta neurochirurgica Suppl. 1998;71:44–46.
    1. Citerio G, Piper I, Chambers IR, Galli D, Enblad P, Kiening K, Ragauskas A, Sahuquillo J, Gregson B. Multicenter clinical assessment of the Raumedic Neurovent-P intracranial pressure sensor: a report by the BrainIT group. Neurosurgery. 2008;63:1152–1158. doi: 10.1227/01.NEU.0000335148.87042.D7.
    1. Stendel R, Heidenreich J, Schilling A, Akhavan-Sigari R, Kurth R, Picht T, Pietila T, Suess O, Kern C, Meisel J, Brock M. Clinical evaluation of a new intracranial pressure monitoring device. Acta Neurochir (Wien) 2003;145:185–193. doi: 10.1007/s00701-002-1052-0.
    1. Allin D, Czosnyka M, Czosnyka Z. Laboratory testing of the Pressio intracranial pressure monitor. Neurosurgery. 2008;62:1158–1161. doi: 10.1227/01.neu.0000325878.67752.eb.
    1. Lang JM, Beck J, Zimmermann M, Seifert V, Raabe A. Clinical evaluation of intraparenchymal Spiegelberg pressure sensor. Neurosurgery. 2003;52:1455–1459. doi: 10.1227/01.NEU.0000065136.70455.6F.
    1. Yau YH, Piper IR, Clutton RE, Whittle IR. Experimental evaluation of the Spiegelberg intracranial pressure and intracranial compliance monitor, technical note. J Neurosurg. 2000;93:1072–1077. doi: 10.3171/jns.2000.93.6.1072.
    1. Chambers IR, Siddique MS, Banister K, Mendelow AD. Clinical comparison of the Spiegelberg parenchymal transducer and ventricular fluid pressure. J Neurol Neurosurg Psychiatry. 2001;71:383–385. doi: 10.1136/jnnp.71.3.383.
    1. Crutchfield JS, Narayan RK, Robertson CS, Michael LH. Evaluation of a fiberoptic intracranial pressure monitor. J Neurosurg. 1990;72:482–487. doi: 10.3171/jns.1990.72.3.0482.
    1. Brean A, Eide P, Stubhaug A. Comparison of intracranial pressure measured simultaneously within the brain parenchyma and cerebral ventricles. J Clin Monit Comput. 2006;20:411. doi: 10.1007/s10877-006-9047-7.
    1. Popovic D, Khoo M, Lee S. Noninvasive monitoring of intracranial pressure. Recent Patents Biomed Eng. 2009;2:165–179. doi: 10.2174/1874764710902030165.
    1. Eide PK, Sorteberg W. Outcome of surgery for idiopathic normal pressure hydrocephalus: role of preoperative static and pulsatile intracranial pressure. World neurosurgery. 2016;86(186–193):e181.
    1. Eide PK, Sorteberg A, Meling TR, Sorteberg W. The effect of baseline pressure errors on an intracranial pressure-derived index: results of a prospective observational study. Biomed Eng Online. 2014;13:99. doi: 10.1186/1475-925X-13-99.
    1. Czosnyka M, Smielewski P, Timofeev I, Lavinio A, Guazzo E, Hutchinson P, Pickard JD. Intracranial pressure: more than a number. Neurosurg Focus. 2007;22:E10.
    1. Czosnyka M, Pickard JD. Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry. 2004;75:813–821. doi: 10.1136/jnnp.2003.033126.
    1. Brain Trauma F, American Association of Neurological Surgeon. Congress of Neurological Surgeons et al. Guidelines for the management of severe traumatic brain injury. J Neurotrauma. 2007;24(Suppl 1):S1–106.
    1. Andresen M, Juhler M. Intracranial pressure following complete removal of a small demarcated brain tumor: a model for normal intracranial pressure in humans. J Neurosurg. 2014;121:797–801. doi: 10.3171/2014.2.JNS132209.
    1. Pedersen SH, Lilja-Cyron A, Andresen M, Juhler M. The relationship between intracranial pressure and age-chasing age-related reference values. World Neurosurg. 2018;110:e119–e123. doi: 10.1016/j.wneu.2017.10.086.
    1. Saehle T, Eide PK. Characteristics of intracranial pressure (ICP) waves and ICP in children with treatment-responsive hydrocephalus. Acta Neurochir (Wien) 2015;157:1003–1014. doi: 10.1007/s00701-015-2410-z.
    1. Saehle T, Eide PK. Intracranial pressure monitoring in pediatric and adult patients with hydrocephalus and tentative shunt failure: a single-center experience over 10 years in 146 patients. J Neurosurg. 2015;122:1076–1086. doi: 10.3171/2014.12.JNS141029.
    1. Eide PK, Kerty E. Static and pulsatile intracranial pressure in idiopathic intracranial hypertension. Clin Neurol Neurosurg. 2011;113:123–128. doi: 10.1016/j.clineuro.2010.10.008.
    1. Albeck MJ, Borgesen SE, Gjerris F, Schmidt JF, Sorensen PS. Intracranial pressure and cerebrospinal fluid outflow conductance in healthy subjects. J Neurosurg. 1991;74:597–600. doi: 10.3171/jns.1991.74.4.0597.
    1. Andresen M, Hadi A, Petersen LG, Juhler M. Effect of postural changes on ICP in healthy and ill subjects. Acta Neurochir (Wien) 2015;157:109–113. doi: 10.1007/s00701-014-2250-2.
    1. Eide PK, Sroka M, Wozniak A, Saehle T. Morphological characterization of cardiac induced intracranial pressure (ICP) waves in patients with overdrainage of cerebrospinal fluid and negative ICP. Med Eng Phys. 2012;34:1066–1070. doi: 10.1016/j.medengphy.2011.11.011.
    1. Czosnyka M, Price DJ, Williamson M. Monitoring of cerebrospinal dynamics using continuous analysis of intracranial pressure and cerebral perfusion pressure in head injury. Acta Neurochir (Wien) 1994;126:113–119. doi: 10.1007/BF01476419.
    1. Balestreri M, Czosnyka M, Steiner LA, Schmidt E, Smielewski P, Matta B, Pickard JD. Intracranial hypertension: what additional information can be derived from ICP waveform after head injury? Acta Neurochir (Wien) 2004;146:131–141. doi: 10.1007/s00701-003-0187-y.
    1. Czosnyka M, Guazzo E, Whitehouse M, Smielewski P, Czosnyka Z, Kirkpatrick P, Piechnik S, Pickard JD. Significance of intracranial pressure waveform analysis after head injury. Acta Neurochir (Wien) 1996;138:531–541. doi: 10.1007/BF01411173.
    1. Hall A, O’Kane R. The best marker for guiding the clinical management of patients with raised intracranial pressure-the RAP index or the mean pulse amplitude? Acta Neurochir (Wien) 2016;158:1997–2009. doi: 10.1007/s00701-016-2932-z.
    1. Zweifel C, Lavinio A, Steiner LA, Radolovich D, Smielewski P, Timofeev I, Hiler M, Balestreri M, Kirkpatrick PJ, Pickard JD, et al. Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus. 2008;25:E2. doi: 10.3171/FOC.2008.25.10.E2.
    1. Donnelly J, Czosnyka M, Adams H, Cardim D, Kolias AG, Zeiler FA, Lavinio A, Aries M, Robba C, Smielewski P, et al. Twenty-five years of intracranial pressure monitoring after severe traumatic brain injury: a retrospective, single-center analysis. Neurosurgery. 2019;85:E75–e82. doi: 10.1093/neuros/nyy468.
    1. Zeiler FA, Ercole A, Cabeleira M, Zoerle T, Stocchetti N, Menon DK, Smielewski P, Czosnyka M. Univariate comparison of performance of different cerebrovascular reactivity indices for outcome association in adult TBI: a CENTER-TBI study. Acta Neurochir (Wien) 2019;161:1217–1227. doi: 10.1007/s00701-019-03844-1.
    1. Nordstrom CH, Reinstrup P. Univariate comparison of PRx, PAx, and RAC-much ado about what? Acta Neurochir (Wien) 2019;161:1215–1216. doi: 10.1007/s00701-019-03845-0.
    1. Zacchetti L, Magnoni S, Di Corte F, Zanier ER, Stocchetti N. Accuracy of intracranial pressure monitoring: systematic review and meta-analysis. Crit Care. 2015;19:420. doi: 10.1186/s13054-015-1137-9.
    1. Institute AftAoMIICPDSANS: Intracranial Pressure Monitoring Devices. In Book Intracranial Pressure Monitoring Devices; 1993.
    1. Popovic DKM, Lee S. Noninvasive monitoring of intracranial pressure. Recent Patents Biomed Engineer. 2009;2:165–179. doi: 10.2174/1874764710902030165.
    1. Morgalla MH, Dietz K, Deininger M, Grote EH. The problem of long-term ICP drift assessment: improvement by use of the ICP drift index. Acta Neurochir (Wien) 2002;144:57–60. doi: 10.1007/s701-002-8274-2.
    1. Morgalla MH, Krasznai L, Dietz K, Mettenleiter H, Deininger M, Grote EH. Methods of experimental and clinical assessment of the relative measurement accuracy of an intracranial pressure transducer. Technical note. J Neurosurg. 2001;95:529–532. doi: 10.3171/jns.2001.95.3.0529.
    1. Kohani M, Pecht M. Malfunctions of medical devices due to electrostatic occurrences. Big Data analysis of 10 years of the FDA’s reports. IEEE Access. 2018;6:5805–5811. doi: 10.1109/ACCESS.2017.2782088.
    1. Abenstein JP. Safety while swimming in a sea of energy. Mayo Clin Proc. 2007;82:276–278. doi: 10.1016/S0025-6196(11)61021-5.
    1. Eide PK, Bakken A. The baseline pressure of intracranial pressure (ICP) sensors can be altered by electrostatic discharges. Biomed Eng Online. 2011;10:75. doi: 10.1186/1475-925X-10-75.
    1. Andresen M, Juhler M, Thomsen OC. Electrostatic discharges and their effect on the validity of registered values in intracranial pressure monitors. J Neurosurg. 2013;119:1119–1124. doi: 10.3171/2013.7.JNS13506.
    1. Eide PK. Comparison of simultaneous continuous intracranial pressure (ICP) signals from a Codman and a Camino ICP sensor. Med Eng Phys. 2006;28:542–549. doi: 10.1016/j.medengphy.2005.09.003.
    1. Eide PK, Holm S, Sorteberg W. Simultaneous monitoring of static and dynamic intracranial pressure parameters from two separate sensors in patients with cerebral bleeds: comparison of findings. Biomed Eng Online. 2012;11:66. doi: 10.1186/1475-925X-11-66.
    1. Eide PK, Sorteberg A, Meling TR, Sorteberg W. Baseline pressure errors (BPEs) extensively influence intracranial pressure scores: results of a prospective observational study. Biomed Eng Online. 2014;13:7. doi: 10.1186/1475-925X-13-7.
    1. Eide PK, Rapoport BI, Gormley WB, Madsen JR. A dynamic nonlinear relationship between the static and pulsatile components of intracranial pressure in patients with subarachnoid hemorrhage. J Neurosurg. 2010;112:616–625. doi: 10.3171/2009.7.JNS081593.
    1. Eide PK, Sorteberg W. An intracranial pressure-derived index monitored simultaneously from two separate sensors in patients with cerebral bleeds: comparison of findings. Biomed Eng Online. 2013;12:14. doi: 10.1186/1475-925X-12-14.
    1. Calviello L, Donnelly J, Cardim D, Robba C, Zeiler FA, Smielewski P, Czosnyka M. Compensatory-reserve-weighted intracranial pressure and its association with outcome after traumatic brain injury. Neurocrit Care. 2018;28:212–220. doi: 10.1007/s12028-017-0475-7.
    1. Eide PK. Demonstration of uneven distribution of intracranial pulsatility in hydrocephalus patients. J Neurosurg. 2008;109:912–917. doi: 10.3171/JNS/2008/109/11/0912.
    1. Eide P, Brean A. Lumbar cerebrospinal fluid pressure waves versus intracranial pressure waves in idiopathic normal pressure hydrocephalus. Br J Neurosurg. 2006;20:407–414. doi: 10.1080/02688690601047312.
    1. Stephensen H, Tisell M, Wikkelso C. There is no transmantle pressure gradient in communicating or noncommunicating hydrocephalus. Neurosurgery. 2002;50:763–771. doi: 10.1097/00006123-200204000-00016.
    1. Eide PK, Saehle T. Is ventriculomegaly in idiopathic normal pressure hydrocephalus associated with a transmantle gradient in pulsatile intracranial pressure? Acta Neurochir. 2010;152:989–995. doi: 10.1007/s00701-010-0605-x.
    1. Holm S, Eide PK. The frequency domain versus time domain methods for processing of intracranial pressure (ICP) signals. Med Eng Phys. 2008;30:164–170. doi: 10.1016/j.medengphy.2007.03.003.
    1. Eide PK. A new method for processing of continuous intracranial pressure signals. Med Eng Phys. 2006;28:579–587. doi: 10.1016/j.medengphy.2005.09.008.
    1. Eide PK, Bentsen G, Sorteberg AG, Marthinsen PB, Stubhaug A, Sorteberg W. A randomized and blinded single-center trial comparing the effect of intracranial pressure and intracranial pressure wave amplitude-guided intensive care management on early clinical state and 12-month outcome in patients with aneurysmal subarachnoid hemorrhage. Neurosurgery. 2011;69:1105–1115. doi: 10.1227/NEU.0b013e318227e0e1.
    1. Hu X, Xu P, Asgari S, Vespa P, Bergsneider M. Forecasting ICP elevation based on prescient changes of intracranial pressure waveform morphology. IEEE Trans Biomed Eng. 2010;57:1070–1078. doi: 10.1109/TBME.2009.2037607.
    1. Eide PK, Park EH, Madsen JR. Arterial blood pressure vs intracranial pressure in normal pressure hydrocephalus. Acta Neurol Scand. 2010;122:262–269. doi: 10.1111/j.1600-0404.2009.01304.x.
    1. Eide PK, Sorteberg A, Bentsen G, Marthinsen PB, Stubhaug A, Sorteberg W. Pressure-derived versus pressure wave amplitude-derived indices of cerebrovascular pressure reactivity in relation to early clinical state and 12-month outcome following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2012;116:961–971. doi: 10.3171/2012.1.JNS111313.
    1. Aries MJ, Czosnyka M, Budohoski KP, Kolias AG, Radolovich DK, Lavinio A, Pickard JD, Smielewski P. Continuous monitoring of cerebrovascular reactivity using pulse waveform of intracranial pressure. Neurocrit Care. 2012;17:67–76. doi: 10.1007/s12028-012-9687-z.
    1. van Eijndhoven JH, Avezaat CJ. Cerebrospinal fluid pulse pressure and the pulsatile variation in cerebral blood volume: an experimental study in dogs. Neurosurgery. 1986;19:507–522. doi: 10.1227/00006123-198610000-00004.
    1. Carrera E, Kim DJ, Castellani G, Zweifel C, Czosnyka Z, Kasparowicz M, Smielewski P, Pickard JD, Czosnyka M. What shapes pulse amplitude of intracranial pressure? J Neurotrauma. 2010;27:317–324. doi: 10.1089/neu.2009.0951.
    1. Baledent O, Czosnyka M, Czosnyka ZH. Brain pulsations enlightened. Acta Neurochir (Wien) 2018;160:225–227. doi: 10.1007/s00701-017-3436-1.
    1. Eide PK. Cardiac output in idiopathic normal pressure hydrocephalus: association with arterial blood pressure and intracranial pressure wave amplitudes and outcome of shunt surgery. Fluids Barriers CNS. 2011;8:11. doi: 10.1186/2045-8118-8-11.
    1. Lemaire JJ, Khalil T, Cervenansky F, Gindre G, Boire JY, Bazin JE, Irthum B, Chazal J. Slow pressure waves in the cranial enclosure. Acta Neurochir (Wien) 2002;144:243–254. doi: 10.1007/s007010200032.
    1. Martinez-Tejada I, Arum A, Wilhjelm JE, Juhler M, Andresen M. B waves: a systematic review of terminology, characteristics, and analysis methods. Fluids Barriers CNS. 2019;16:33. doi: 10.1186/s12987-019-0153-6.
    1. Lofgren J, von Essen C, Zwetnow NN. The pressure-volume curve of the cerebrospinal fluid space in dogs. Acta Neurol Scand. 1973;49:557–574. doi: 10.1111/j.1600-0404.1973.tb01330.x.
    1. Langfitt TW, Weinstein JD, Kassell NF. Cerebral vasomotor paralysis produced by intracranial hypertension. Neurology. 1965;15:622–641. doi: 10.1212/WNL.15.7.622.
    1. Marmarou A, Shulman K, LaMorgese J. Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg. 1975;43:523–534. doi: 10.3171/jns.1975.43.5.0523.
    1. Marmarou A, Shulman K, Rosende RM. A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics. J Neurosurg. 1978;48:332–344. doi: 10.3171/jns.1978.48.3.0332.
    1. Ryder HW, Espey FF, Kimbell FD, Penka EJ, Rosenauer A, Podolsky B, Evans JP. The mechanism of the change in cerebrospinal fluid pressure following an induced change in the volume of the fluid space. J Lab Clin Med. 1953;41:428–435.
    1. Miller JD, Garibi J, Pickard JD. Induced changes of cerebrospinal fluid volume. Effects during continuous monitoring of ventricular fluid pressure. Arch Neurol. 1973;28:265–269. doi: 10.1001/archneur.1973.00490220073011.
    1. Piper IR, Chan KH, Whittle IR, Miller JD. An experimental study of cerebrovascular resistance, pressure transmission, and craniospinal compliance. Neurosurgery. 1993;32:805–815. doi: 10.1227/00006123-199305000-00014.
    1. Piper I, Spiegelberg A, Whittle I, Signorini D, Mascia L. A comparative study of the Spiegelberg compliance device with a manual volume-injection method: a clinical evaluation in patients with hydrocephalus. Br J Neurosurg. 1999;13:581–586. doi: 10.1080/02688699943097.
    1. Portella G, Cormio M, Citerio G, Contant C, Kiening K, Enblad P, Piper I. Continuous cerebral compliance monitoring in severe head injury: its relationship with intracranial pressure and cerebral perfusion pressure. Acta Neurochir (Wien) 2005;147:707–713. doi: 10.1007/s00701-005-0537-z.
    1. Wilkinson HA, Schuman N, Ruggiero J. Nonvolumetric methods of detecting impaired intracranial compliance or reactivity: pulse width and wave form analysis. J Neurosurg. 1979;50:758–767. doi: 10.3171/jns.1979.50.6.0758.
    1. Avezaat C, Van Eijndhoven J, Wyper D. Cerebrospinal fluid pulse pressure and intracranial volume-pressure relationships. J Neurol Neurosurg Psychiatry. 1979;42:687–700. doi: 10.1136/jnnp.42.8.687.
    1. Szewczykowski J, Sliwka S, Kunicki A, Dytko P, Korsak-Sliwka J. A fast method of estimating the elastance of the intracranial system. J Neurosurg. 1977;47:19–26. doi: 10.3171/jns.1977.47.1.0019.
    1. Czosnyka M, Wollk-Laniewski P, Batorski L, Zaworski W. Analysis of intracranial pressure waveform during infusion test. Acta Neurochir (Wien) 1988;93:140–145. doi: 10.1007/BF01402897.
    1. Robertson CS, Narayan RK, Contant CF, Grossman RG, Gokaslan ZL, Pahwa R, Caram P, Jr, Bray RS, Jr, Sherwood AM. Clinical experience with a continuous monitor of intracranial compliance. J Neurosurg. 1989;71:673–680. doi: 10.3171/jns.1989.71.5.0673.
    1. Cardoso ER, Rowan JO, Galbraith S. Analysis of the cerebrospinal fluid pulse wave in intracranial pressure. J Neurosurg. 1983;59:817–821. doi: 10.3171/jns.1983.59.5.0817.
    1. Nucci CG, De Bonis P, Mangiola A, Santini P, Sciandrone M, Risi A, Anile C. Intracranial pressure wave morphological classification: automated analysis and clinical validation. Acta Neurochir (Wien) 2016;158:581–588. doi: 10.1007/s00701-015-2672-5.
    1. Shapiro K, Marmarou A, Shulman K. Characterization of clinical CSF dynamics and neural axis compliance using the pressure-volume index: I. The normal pressure-volume index. Ann Neurol. 1980;7:508–514. doi: 10.1002/ana.410070603.
    1. Eide PK, Sorteberg W. Association among intracranial compliance, intracranial pulse pressure amplitude and intracranial pressure in patients with intracranial bleeds. Neurol Res. 2007;29:798–802. doi: 10.1179/016164107X224132.
    1. Eide PK. The correlation between pulsatile intracranial pressure and indices of intracranial pressure-volume reserve capacity: results from ventricular infusion testing. J Neurosurg. 2016;125:1493–1503. doi: 10.3171/2015.11.JNS151529.
    1. Howells T, Lewen A, Skold MK, Ronne-Engstrom E, Enblad P. An evaluation of three measures of intracranial compliance in traumatic brain injury patients. Intensive Care Med. 2012;38:1061–1068. doi: 10.1007/s00134-012-2571-7.
    1. Harary M, Dolmans RG, Gormley WB. Intracranial pressure monitoring—review and avenues for development. Sensors. 2018;18:465. doi: 10.3390/s18020465.
    1. Alperin NJ, Lee SH, Loth F, Raksin PB, Lichtor T. MR-Intracranial pressure (ICP): a method to measure intracranial elastance and pressure noninvasively by means of MR imaging: baboon and human study. Radiology. 2000;217:877–885. doi: 10.1148/radiology.217.3.r00dc42877.
    1. Ringstad G, Lindstrom EK, Vatnehol SAS, Mardal KA, Emblem KE, Eide PK. Non-invasive assessment of pulsatile intracranial pressure with phase-contrast magnetic resonance imaging. PLoS ONE. 2017;12:e0188896. doi: 10.1371/journal.pone.0188896.
    1. Eftekhari S, Westgate CSJ, Uldall MS, Jensen RH. Preclinical update on regulation of intracranial pressure in relation to idiopathic intracranial hypertension. Fluids Barriers CNS. 2019;16:35. doi: 10.1186/s12987-019-0155-4.
    1. Katzman R, Hussey F. A simple constant-infusion manometric test for measurement of CSF absorption. I. Rationale and method. Neurology. 1970;20:534–544. doi: 10.1212/WNL.20.6.534.
    1. Speck V, Staykov D, Huttner HB, Sauer R, Schwab S, Bardutzky J. Lumbar catheter for monitoring of intracranial pressure in patients with post-hemorrhagic communicating hydrocephalus. Neurocrit Care. 2011;14:208–215. doi: 10.1007/s12028-010-9459-6.
    1. Kapadia FN, Jha A. Simultaneous lumbar and intraventricular manometry to evaluate the role and safety of lumbar puncture in raised intracranial pressure following subarachnoid haemorrhage. Br J Neurosurg. 1996;10:585–588. doi: 10.1080/02688699646907.
    1. Blei AT, Olafsson S, Webster S, Levy R. Complications of intracranial pressure monitoring in fulminant hepatic failure. Lancet. 1993;341:157–158. doi: 10.1016/0140-6736(93)90016-A.
    1. Bruder N, N’Zoghe P, Graziani N, Pelissier D, Grisoli F, François G. A comparison of extradural and intraparenchymatous intracranial pressures in head injured patients. Intensive Care Med. 1995;21:850–852. doi: 10.1007/BF01700971.
    1. Poca MA, Sahuquillo J, Topczewski T, Peñarrubia MJ, Muns A. Is intracranial pressure monitoring in the epidural space reliable? Fact Fict. 2007;106:548.
    1. Eide PK. Comparison of simultaneous continuous intracranial pressure (ICP) signals from ICP sensors placed within the brain parenchyma and the epidural space. Med Eng Phys. 2008;30:34–40. doi: 10.1016/j.medengphy.2007.01.005.
    1. Eide PK, Sorteberg W. Simultaneous measurements of intracranial pressure parameters in the epidural space and in brain parenchyma in patients with hydrocephalus. J Neurosurg. 2010;113:1317–1325. doi: 10.3171/2010.7.JNS10483.
    1. Uldall M, Juhler M, Skjolding AD, Kruuse C, Jansen-Olesen I, Jensen R. A novel method for long-term monitoring of intracranial pressure in rats. J Neurosci Methods. 2014;227:1–9. doi: 10.1016/j.jneumeth.2014.01.036.
    1. Zwienenberg M, Gong QZ, Lee LL, Berman RF, Lyeth BG. ICP monitoring in the rat: comparison of monitoring in the ventricle, brain parenchyma, and cisterna magna. J Neurotrauma. 1999;16:1095–1102. doi: 10.1089/neu.1999.16.1095.
    1. Guild SJ, McBryde FD, Malpas SC. Recording of intracranial pressure in conscious rats via telemetry. J Appl Physiol (Bethesda, Md : 1985) 2015;119:576–581. doi: 10.1152/japplphysiol.00165.2015.
    1. Kawoos U, Gu M, Lankasky J, McCarron RM, Chavko M. Effects of exposure to blast overpressure on intracranial pressure and blood-brain barrier permeability in a rat model. PLoS ONE. 2016;11:e0167510. doi: 10.1371/journal.pone.0167510.
    1. Kawoos U, McCarron RM, Chavko M. Protective effect of n-acetylcysteine amide on blast-induced increase in intracranial pressure in rats. Front Neurol. 2017;8:219. doi: 10.3389/fneur.2017.00219.
    1. Kashif FM, Verghese GC, Novak V, Czosnyka M, Heldt T. Model-based noninvasive estimation of intracranial pressure from cerebral blood flow velocity and arterial pressure. Sci Trans Med. 2012;4:129–144. doi: 10.1126/scitranslmed.3003249.
    1. Tain RW, Alperin N. Noninvasive intracranial compliance from MRI-based measurements of transcranial blood and CSF flows: indirect versus direct approach. IEEE Trans Biomed Eng. 2009;56:544–551. doi: 10.1109/TBME.2008.2006010.
    1. Ambarki K, Baledent O, Kongolo G, Bouzerar R, Fall S, Meyer ME. A new lumped-parameter model of cerebrospinal hydrodynamics during the cardiac cycle in healthy volunteers. IEEE Trans Biomed Eng. 2007;54:483–491. doi: 10.1109/TBME.2006.890492.
    1. Imaduddin SM, Fanelli A, Vonberg F, Tasker RC, Heldt T. Pseudo-Bayesian model-based noninvasive intracranial pressure estimation and tracking. IEEE Trans Biomed Eng. 2019 doi: 10.1109/TBME.2019.2940929.
    1. Jaishankar R, Fanelli A, Filippidis A, Vu T, Holsapple J, Heldt T. A spectral approach to model-based noninvasive intracranial pressure estimation. IEEE J Biomed Health Inform. 2019 doi: 10.1109/JBHI.2019.2961403.
    1. Geeraerts T, Newcombe VF, Coles JP, Abate MG, Perkes IE, Hutchinson PJ, Outtrim JG, Chatfield DA, Menon DK. Use of T2-weighted magnetic resonance imaging of the optic nerve sheath to detect raised intracranial pressure. Crit Care. 2008;12:R114. doi: 10.1186/cc7006.
    1. Schmidt B, Klingelhofer J, Schwarze JJ, Sander D, Wittich I. Noninvasive prediction of intracranial pressure curves using transcranial Doppler ultrasonography and blood pressure curves. Stroke. 1997;28:2465–2472. doi: 10.1161/01.STR.28.12.2465.
    1. Evensen KB, O’Rourke M, Prieur F, Holm S, Eide PK. Non-invasive estimation of the intracranial pressure waveform from the central arterial blood pressure waveform in idiopathic normal pressure hydrocephalus patients. Sci Rep. 2018;8:4714. doi: 10.1038/s41598-018-23142-7.
    1. Kim MO, Eide PK, O’Rourke MF, Adji A, Avolio AP. Intracranial pressure waveforms are more closely related to central aortic than radial pressure waveforms: implications for pathophysiology and therapy. Acta neurochirurgica Supplement. 2016;122:61–64. doi: 10.1007/978-3-319-22533-3_12.
    1. Fanelli A, Vonberg FW, LaRovere KL, Walsh BK, Smith ER, Robinson S, Tasker RC, Heldt T. Fully automated, real-time, calibration-free, continuous noninvasive estimation of intracranial pressure in children. J Neurosurg. 2019;24:509–519.
    1. Aaslid R, Markwalder T-M, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57:769–774. doi: 10.3171/jns.1982.57.6.0769.
    1. Homburg AM, Jakobsen M, Enevoldsen E. Transcranial Doppler recordings in raised intracranial pressure. Acta Neurol Scand. 1993;87:488–493. doi: 10.1111/j.1600-0404.1993.tb04142.x.
    1. Klingelhöfer J, Sander D, Holzgraefe M, Bischoff C, Conrad B. Cerebral vasospasm evaluated by transcranial Doppler ultrasonography at different intracranial pressures. J Neurosurg. 1991;75:752–758. doi: 10.3171/jns.1991.75.5.0752.
    1. Schmidt B, Czosnyka M, Klingelhofer J. Clinical applications of a non-invasive ICP monitoring method. Eur J Ultrasound. 2002;16:37–45. doi: 10.1016/S0929-8266(02)00044-7.
    1. Behrens A, Lenfeldt N, Ambarki K, Malm J, Eklund A, Koskinen LO. Transcranial Doppler pulsatility index: not an accurate method to assess intracranial pressure. Neurosurgery. 2010;66:1050–1057. doi: 10.1227/01.NEU.0000369519.35932.F2.
    1. Cardim D, Robba C, Donnelly J, Bohdanowicz M, Schmidt B, Damian M, Varsos GV, Liu X, Cabeleira M, Frigieri G. Prospective study on noninvasive assessment of intracranial pressure in traumatic brain-injured patients: comparison of four methods. J Neurotrauma. 2016;33:792–802. doi: 10.1089/neu.2015.4134.
    1. Kashif FM, Verghese GC, Novak V, Czosnyka M, Heldt T. Model-based noninvasive estimation of intracranial pressure from cerebral blood flow velocity and arterial pressure. Sci Trans Med. 2012;4:129ra144. doi: 10.1126/scitranslmed.3003249.
    1. Heldt T, Zoerle T, Teichmann D, Stocchetti N. Intracranial pressure and intracranial elastance monitoring in neurocritical care. Annu Rev Biomed Eng. 2019;21:523–549. doi: 10.1146/annurev-bioeng-060418-052257.
    1. Ragauskas A, Matijosaitis V, Zakelis R, Petrikonis K, Rastenyte D, Piper I, Daubaris G. Clinical assessment of noninvasive intracranial pressure absolute value measurement method. Neurology. 2012;78:1684–1691. doi: 10.1212/WNL.0b013e3182574f50.
    1. Koskinen LD, Malm J, Zakelis R, Bartusis L, Ragauskas A, Eklund A. Can intracranial pressure be measured non-invasively bedside using a two-depth Doppler-technique? J Clin Monit Comput. 2017;31:459–467. doi: 10.1007/s10877-016-9862-4.
    1. Purkayastha S, Sorond F. Transcranial Doppler ultrasound: technique and application. New York: Thieme Medical Publishers; 2012. pp. 411–420.
    1. Marchbanks R, Reid A, Martin A, Brightwell A, Bateman D. The effect of raised intracranial pressure on intracochlear fluid pressure: three case studies. Br J Audiol. 1987;21:127–130. doi: 10.3109/03005368709077785.
    1. Shimbles S, Dodd C, Banister K, Mendelow A, Chambers I. Clinical comparison of tympanic membrane displacement with invasive intracranial pressure measurements. Physiol Meas. 2005;26:1085. doi: 10.1088/0967-3334/26/6/017.
    1. Gwer S, Sheward V, Birch A, Marchbanks R, Idro R, Newton CR, Kirkham FJ, Lin J-P, Lim M. The tympanic membrane displacement analyser for monitoring intracranial pressure in children. Child’s Nervous Syst. 2013;29:927–933. doi: 10.1007/s00381-013-2036-5.
    1. Raboel P, Bartek J, Andresen M, Bellander B, Romner B. Intracranial pressure monitoring: invasive versus non-invasive methods—a review. Criti Care Res Pract. 2012;2012:950393.
    1. Davids J, Birch A, Marchbanks R. 082 Non-invasive measurements of intracranial pressure: can Coherent averaging show a tilt-dependent change in the measured Spontaneous Tympanic Membrane Displacement (STMD) signal in healthy volunteers? J Neurol Neurosurg Psychiatry. 2012;83:e1–e1. doi: 10.1136/jnnp-2011-301993.124.
    1. Lang EW, Paulat K, Witte C, Zolondz J, Mehdorn HM. Noninvasive intracranial compliance monitoring: technical note and clinical results. J Neurosurg. 2003;98:214–218. doi: 10.3171/jns.2003.98.1.0214.
    1. Evensen KB, Paulat K, Prieur F, Holm S, Eide PK. Utility of the tympanic membrane pressure waveform for non-invasive estimation of the intracranial pressure waveform. Sci Rep. 2018;8:15776. doi: 10.1038/s41598-018-34083-6.
    1. Büki B, Avan P, Lemaire J, Dordain M, Chazal J, Ribari O. Otoacoustic emissions: a new tool for monitoring intracranial pressure changes through stapes displacements. Hear Res. 1996;94:125–139. doi: 10.1016/0378-5955(96)00015-9.
    1. Voss SE, Horton NJ, Tabucchi TH, Folowosele FO, Shera CA. Posture-induced changes in distortion-product otoacoustic emissions and the potential for noninvasive monitoring of changes in intracranial pressure. Neurocrit Care. 2006;4:251–257. doi: 10.1385/NCC:4:3:251.
    1. Eide P. The relationship between intracranial pressure and size of cerebral ventricles assessed by computed tomography. Acta Neurochir. 2003;145:171–179. doi: 10.1007/s00701-002-1062-y.
    1. Pappu S, Lerma J, Khraishi T. Brain CT to assess intracranial pressure in patients with traumatic brain injury. J Neuroimaging. 2016;26:37–40. doi: 10.1111/jon.12289.
    1. Kayhanian S, Young AMH, Piper RJ, Donnelly J, Scoffings D, Garnett MR, Fernandes HM, Smielewski P, Czosnyka M, Hutchinson PJ, Agrawal S. Radiological correlates of raised intracranial pressure in children: a review. Front Pediatrics. 2018;6:32. doi: 10.3389/fped.2018.00032.
    1. Tain R-W, Alperin N. Noninvasive intracranial compliance from MRI-based measurements of transcranial blood and CSF flows: indirect versus direct approach. IEEE Trans Biomed Eng. 2008;56:544–551. doi: 10.1109/TBME.2008.2006010.
    1. Jaeger M, Khoo AK, Conforti DA, Cuganesan R. Relationship between intracranial pressure and phase contrast cine MRI derived measures of intracranial pulsations in idiopathic normal pressure hydrocephalus. J Clin Neurosci. 2016;33:169–172. doi: 10.1016/j.jocn.2016.03.029.
    1. Miller MT, Pasquale M, Kurek S, White J, Martin P, Bannon K, Wasser T, Li M. Initial head computed tomographic scan characteristics have a linear relationship with initial intracranial pressure after trauma. J Trauma Acute Care Surg. 2004;56:967–973. doi: 10.1097/01.TA.0000123699.16465.8B.
    1. Zhang X, Medow JE, Iskandar BJ, Wang F, Shokoueinejad M, Koueik J, Webster JG. Invasive and noninvasive means of measuring intracranial pressure: a review. Physiol Meas. 2017;38:R143. doi: 10.1088/1361-6579/aa7256.
    1. Levinsky A, Papyan S, Weinberg G, Stadheim T, Eide PK. Non-invasive estimation of static and pulsatile intracranial pressure from transcranial acoustic signals. Med Eng Phys. 2016;38:477–484. doi: 10.1016/j.medengphy.2016.02.009.
    1. Ragauskas A, Daubaris G: Method and apparatus for non-invasively deriving and indicating of dynamic characteristics of the human and animal intracranial media. Book Method and apparatus for non-invasively deriving and indicating of dynamic characteristics of the human and animal intracranial media Google Patents; 1995.
    1. Ragauskas A, Petkus V: Non-invasive technologies for intracranial pressure/volume measurement. In 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; 2001: 259–262.
    1. Petkus V, Ragauskas A, Jurkonis R. Investigation of intracranial media ultrasonic monitoring model. Ultrasonics. 2002;40:829–833. doi: 10.1016/S0041-624X(02)00216-0.
    1. Ragauskas A, Daubaris G, Ragaisis V, Petkus V. Implementation of non-invasive brain physiological monitoring concepts. Med Eng Phys. 2003;25:667–678. doi: 10.1016/S1350-4533(03)00082-1.
    1. Kim S-E, Hong EP, Kim HC, Lee SU, Jeon JP. Ultrasonographic optic nerve sheath diameter to detect increased intracranial pressure in adults: a meta-analysis. Acta Radiol. 2019;60:221–229. doi: 10.1177/0284185118776501.
    1. Padayachy L, Brekken R, Fieggen G, Selbekk T. Pulsatile dynamics of the optic nerve sheath and intracranial pressure: an exploratory in vivo investigation. Neurosurgery. 2016;79:100–107. doi: 10.1227/NEU.0000000000001200.
    1. Padayachy L, Brekken R, Fieggen G, Selbekk T. Noninvasive transorbital assessment of the optic nerve sheath in children: relationship between optic nerve sheath diameter, deformability index, and intracranial pressure. Op Neurosurg. 2018;16:726–733.
    1. Koziarz A, Sne N, Kegel F, Nath S, Badhiwala JH, Nassiri F, Mansouri A, Yang K, Zhou Q, Rice T, Faidi S. Bedside optic nerve ultrasonography for diagnosing increased intracranial pressure. Ann Intern Med. 2019;171(12):896–905. doi: 10.7326/M19-0812.
    1. Naldi A, Provero P, Vercelli A, Bergui M, Mazzeo AT, Cantello R, Tondo G, Lochner P. Optic nerve sheath diameter asymmetry in healthy subjects and patients with intracranial hypertension. Neurol Sci. 2020;41(2):329–333. doi: 10.1007/s10072-019-04076-y.
    1. Ghosh A, Elwell C, Smith M. Review article: cerebral near-infrared spectroscopy in adults: a work in progress. Anesth Analg. 2012;115:1373–1383. doi: 10.1213/ANE.0b013e31826dd6a6.
    1. Wiegand C, Richards P. Measurement of intracranial pressure in children: a critical review of current methods. Dev Med Child Neurol. 2007;49:935–941. doi: 10.1111/j.1469-8749.2007.00935.x.
    1. Bruce BB. State-of-the-art review: non-invasive assessment of cerebrospinal fluid pressure. J Neuro Ophthalmol. 2014;34:288. doi: 10.1097/WNO.0000000000000153.
    1. Robba C, Bacigaluppi S, Cardim D, Donnelly J, Bertuccio A, Czosnyka M. Non-invasive assessment of intracranial pressure. Acta Neurol Scand. 2016;134:4–21. doi: 10.1111/ane.12527.
    1. Kristiansson H, Nissborg E, Bartek J, Jr, Andresen M, Reinstrup P, Romner B. Measuring elevated intracranial pressure through noninvasive methods: a review of the literature. J Neurosurg Anesthesiol. 2013;25:372–385. doi: 10.1097/ANA.0b013e31829795ce.
    1. Narayan V, Mohammed N, Savardekar AR, Patra DP, Notarianni C, Nanda A. Noninvasive intracranial pressure monitoring for severe traumatic brain injury in children: a concise update on current methods. World Neurosurg. 2018;114:293–300. doi: 10.1016/j.wneu.2018.02.159.
    1. Atkinson JR, Shurtleff DB, Foltz EL. Radio telemetry for the measurement of intracranial pressure. J Neurosurg. 1967;27:428–432. doi: 10.3171/jns.1967.27.5.0428.
    1. Macellari V. Batteryless on-demand-sampling active radiosonde for intracranial pressure measurement. Med Biol Eng Compu. 1981;19:686–694. doi: 10.1007/BF02441329.
    1. Richard KE, Block FR, Weiser RR. First clinical results with a telemetrie shunt-integrated ICP-sensor. Neurol Res. 1999;21:117–120. doi: 10.1080/01616412.1999.11740906.
    1. Welschehold S, Schmalhausen E, Dodier P, Vulcu S, Oertel J, Wagner W, Tschan CA. First clinical results with a new telemetric intracranial pressure-monitoring system. Neurosurgery. 2012;70:44–49.
    1. Antes S, Tschan CA, Heckelmann M, Breuskin D, Oertel J. Telemetric intracranial pressure monitoring with the raumedic neurovent P-tel. World neurosurgery. 2016;91:133–148. doi: 10.1016/j.wneu.2016.03.096.
    1. Freimann FB, Sprung C, Chopra SS, Vajkoczy P, Wolf S. Large-scale referencing of the telemetric Neurovent-P-tel intracranial pressure sensor in a porcine model. Pediatr Neurosurg. 2013;49:29–32. doi: 10.1159/000355561.
    1. Lilja A, Andresen M, Hadi A, Christoffersen D, Juhler M. Clinical experience with telemetric intracranial pressure monitoring in a Danish neurosurgical center. Clin Neurol Neurosurg. 2014;120:36–40. doi: 10.1016/j.clineuro.2014.02.010.
    1. Tirado-Caballero J, Muñoz-Nuñez A, Rocha-Romero S, Rivero-Garvía M, Gomez-González E, Marquez-Rivas J. Long-term reliability of the telemetric Neurovent-P-tel sensor: in vivo case report. J Neurosurg. 2018;1:1–4.
    1. Norager NH, Lilja-Cyron A, Bjarkam CR, Duus S, Juhler M. Telemetry in intracranial pressure monitoring: sensor survival and drift. Acta Neurochir. 2018;160:2137–2144. doi: 10.1007/s00701-018-3691-9.
    1. Kiefer M, Antes S, Leonhardt S, Schmitt M, Orakcioglu B, Sakowitz OW, Eymann R. Telemetric ICP measurement with the first CE-approved device: data from animal experiments and initial clinical experiences. Acta Neurochirurgica Suppl. 2012;114:111–116. doi: 10.1007/978-3-7091-0956-4_20.
    1. Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41:11–19. doi: 10.1097/00006123-199707000-00005.
    1. Yu L, Kim BJ, Meng E. Chronically implanted pressure sensors: challenges and state of the field. Sensors (Basel, Switzerland) 2014;14:20620–20644. doi: 10.3390/s141120620.
    1. Kang SK, Murphy RK, Hwang SW, Lee SM, Harburg DV, Krueger NA, Shin J, Gamble P, Cheng H, Yu S, et al. Bioresorbable silicon electronic sensors for the brain. Nature. 2016;530:71–76. doi: 10.1038/nature16492.
    1. Jiang G. Design challenges of implantable pressure monitoring system. Front Neurosci. 2010;4:29.
    1. Shin J, Yan Y, Bai W, Xue Y, Gamble P, Tian L, Kandela I, Haney CR, Spees W, Lee Y. Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nature Biomed Eng. 2019;3:37. doi: 10.1038/s41551-018-0300-4.
    1. Clausen I, Glott T. Development of clinically relevant implantable pressure sensors: perspectives and challenges. Sensors. 2014;14:17686–17702. doi: 10.3390/s140917686.

Source: PubMed

3
Abonnieren