Effect of SGLT2 inhibitors on body composition, fluid status and renin-angiotensin-aldosterone system in type 2 diabetes: a prospective study using bioimpedance spectroscopy

Anja Schork, Janine Saynisch, Andreas Vosseler, Benjamin Assad Jaghutriz, Nils Heyne, Andreas Peter, Hans-Ulrich Häring, Norbert Stefan, Andreas Fritsche, Ferruh Artunc, Anja Schork, Janine Saynisch, Andreas Vosseler, Benjamin Assad Jaghutriz, Nils Heyne, Andreas Peter, Hans-Ulrich Häring, Norbert Stefan, Andreas Fritsche, Ferruh Artunc

Abstract

Background: SGLT2-inhibitors are potent antihyperglycemic drugs for patients with type 2 diabetes and have been shown to reduce body weight. However, it is unclear which body compartments are reduced and to what extent.

Methods: In this longitudinal observational study, we analyzed the body composition of 27 outpatients with type 2 diabetes mellitus during the first week and up to 6 months after initiation of treatment with SGLT2-inhibitors (n = 18 empagliflozin, n = 9 dapagliflozin) using bioimpedance spectroscopy (BCM, Fresenius). Fluid status of hypertensive patients taking medication with hydrochlorothiazide (n = 14) and healthy persons (n = 16) were analyzed for comparison.

Results: At 6 months, HbA1c decreased by 0.8% (IQR 2.3; 0.4), body weight and BMI by 2.6 kg (1.5; 9.3) and 0.9 kg/m2 (0.4; 3.3), respectively. Bioimpedance spectroscopy revealed significant decrease in adipose tissue mass and fat tissue index while lean tissue parameters remained stable. Overhydration (OH) and extracellular water (ECW) decreased by - 0.5 L/1.73 m2 (- 0.1; - 0.9) and - 0.4 L/1.73 m2 (- 0.1; - 0.8) at day 3, respectively, and returned to the initial value after 3 and 6 months. Plasma renin activity increased by 2.1-fold (0.5; 3.6) at 1 month and returned to the initial level at month 3 and 6. Fluid status of patients with SGLT2 inhibitors after 6 months showed no difference from that of hypertensive patients taking hydrochlorothiazide or healthy persons.

Conclusions: Body weight reduction under the treatment with SGLT2-inhibitors is caused by reduction of adipose tissue mass and transient loss of extracellular fluid, which is accompanied by upregulation of renin-angiotensin-aldosterone system (RAAS). Permanent loss of extracellular water does not occur under SGLT2 inhibition.

Keywords: Bioimpedance sprectroscopy; Body composition monitor; Diabetes mellitus; Fluid status; Overhydration; Renin–angiotensin–aldosterone system; SGLT2 inhibitor.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Course of body weight (a) and adipose tissue mass (ATM; b) under treatment with SGLT2 inhibitors. Left side shows absolute values, right side shows values normalized for baseline value. Whiskers indicate median and interquartile range. Friedman test was performed to test for significant differences during course of follow up; Wilcoxon Signed-Rank test was used to evaluate for differences between respective points of follow up; Bonferroni correction for multiple testing was performed
Fig. 2
Fig. 2
Course of overhydration (OH; a) and extracellular water (ECW; b) under treatment with SGLT2 inhibitors. Left side shows absolute values, right side shows values normalized for baseline value. Whiskers indicate median and interquartile range. Friedman test was performed to test for significant differences during course of follow up; Wilcoxon Signed-Rank test was used to evaluate for differences between respective points of follow up; Bonferroni correction for multiple testing was performed
Fig. 3
Fig. 3
Course of serum aldosterone concentration (a) and plasma renin activity (b) under treatment with SGLT2 inhibitors. Left side shows absolute values, right side shows values normalized for baseline value. Whiskers indicate median and interquartile range. Friedman test was performed to test for significant differences during course of follow up; Wilcoxon Signed-Rank test was used to evaluate for differences between respective points of follow up; Bonferroni correction for multiple testing was performed
Fig. 4
Fig. 4
Overhydration (OH; a), L/1.73 m2 and extracellular water (ECW; b), L/1.73 m2 in healthy controls, hypertensive patients with and without hydrochlorothiazide and in patients with type 2 diabetes with and without SGLT2 inhibitor. Values reported for patients with type 2 diabetes with SGLT2 inhibitor are values measured at the end of follow up period (day 180 of medication with SGLT2 inhibitor). Hypertensive patients with hydrochlorothiazide (HCT) have taken hydrochlorothiazide for at least 6 months. ANOVA analysis and t-tests performed for each pair reveal no difference in OH or ECW of patients with type 2 diabetes with SGLT2 inhibitors compared to healthy controls, patients with type 2 diabetes without SGLT2 inhibitor and hypertensive patients with and without hydrochlorothiazide. Whiskers indicate median and interquartile range

References

    1. Bays H. From victim to ally: the kidney as an emerging target for the treatment of diabetes mellitus. Curr Med Res Opin. 2009;25(3):671–681.
    1. Kovacs CS, Seshiah V, Swallow R, Jones R, Rattunde H, Woerle HJ, Broedl UC. Empagliflozin improves glycaemic and weight control as add-on therapy to pioglitazone or pioglitazone plus metformin in patients with type 2 diabetes: a 24-week, randomized, placebo-controlled trial. Diabetes Obes Metab. 2014;16(2):147–158.
    1. Nakajima H, Okada S, Mohri T, Kanda E, Inaba N, Hirasawa Y, Seino H, Kuroda H, Hiyoshi T, Niiya T, et al. Dapagliflozin improves treatment satisfaction in overweight patients with type 2 diabetes mellitus: a patient reported outcome study (PRO study) Diabetol Metab Syndr. 2018;10:11.
    1. Milder TY, Stocker SL, Abdel Shaheed C, McGrath-Cadell L, Samocha-Bonet D, Greenfield JR, Day RO. Combination therapy with an SGLT2 inhibitor as initial treatment for type 2 diabetes: a systematic review and meta-analysis. J Clin Med. 2019;8(1):45.
    1. Bolinder J, Ljunggren O, Kullberg J, Johansson L, Wilding J, Langkilde AM, Sugg J, Parikh S. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab. 2012;97(3):1020–1031.
    1. Neeland IJ, McGuire DK, Chilton R, Crowe S, Lund SS, Woerle HJ, Broedl UC, Johansen OE. Empagliflozin reduces body weight and indices of adipose distribution in patients with type 2 diabetes mellitus. Diabetes Vasc Dis Res. 2016;13(2):119–126.
    1. Neeland IJ, McGuire DK, Eliasson B, Ridderstrale M, Zeller C, Woerle HJ, Broedl UC, Johansen OE. Comparison of adipose distribution indices with gold standard body composition assessments in the EMPA-REG H2H SU trial: a body composition sub-study. Diabetes Ther. 2015;6(4):635–642.
    1. Iizuka T, Iemitsu K, Takihata M, Takai M, Nakajima S, Minami N, Umezawa S, Kanamori A, Takeda H, Kawata T, et al. Efficacy and safety of ipragliflozin in japanese patients with type 2 diabetes: interim outcome of the ASSIGN-K study. J Clin Med Res. 2016;8(2):116–125.
    1. Yamamoto C, Miyoshi H, Ono K, Sugawara H, Kameda R, Ichiyama M, Yamamoto K, Nomoto H, Nakamura A, Atsumi T. Ipragliflozin effectively reduced visceral fat in Japanese patients with type 2 diabetes under adequate diet therapy. Endocr J. 2016;63(6):589–596.
    1. Blonde L, Stenlof K, Fung A, Xie J, Canovatchel W, Meininger G. Effects of canagliflozin on body weight and body composition in patients with type 2 diabetes over 104 weeks. Postgrad Med. 2016;128(4):371–380.
    1. Schwaiger E, Burghart L, Signorini L, Ristl R, Kopecky C, Tura A, Pacini G, Wrba T, Antlanger M, Schmaldienst S, et al. Empagliflozin in posttransplantation diabetes mellitus: a prospective, interventional pilot study on glucose metabolism, fluid volume, and patient safety. Am J Transplant. 2019;19(3):907–919.
    1. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–2128.
    1. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–657.
    1. Fitchett D, Zinman B, Wanner C, Lachin JM, Hantel S, Salsali A, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME(R) trial. Eur Heart J. 2016;37(19):1526–1534.
    1. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–357.
    1. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Furtado RHM, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393(10166):31–39.
    1. Butler J, Hamo CE, Filippatos G, Pocock SJ, Bernstein RA, Brueckmann M, Cheung AK, George JT, Green JB, Januzzi JL, et al. The potential role and rationale for treatment of heart failure with sodium–glucose co-transporter 2 inhibitors. Eur J Heart Fail. 2017;19(11):1390–1400.
    1. Inzucchi SE, Zinman B, Wanner C, Ferrari R, Fitchett D, Hantel S, Espadero RM, Woerle HJ, Broedl UC, Johansen OE. SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diabetes Vasc Dis Res. 2015;12(2):90–100.
    1. McMurray JJV, DeMets DL, Inzucchi SE, Kober L, Kosiborod MN, Langkilde AM, Martinez FA, Bengtsson O, Ponikowski P, Sabatine MS, et al. A trial to evaluate the effect of the sodium–glucose co-transporter 2 inhibitor dapagliflozin on morbidity and mortality in patients with heart failure and reduced left ventricular ejection fraction (DAPA-HF) Eur J Heart Fail. 2019
    1. Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018;61(10):2108–2117.
    1. Reisin E, Graves J, Yamal J-M, Barzilay JI, Pressel S, Einhorn PT, Dart RA, Retta TM, Saklayen MG, Davis BR, et al. Blood pressure control and cardiovascular outcomes in normal, overweight, and obese hypertensives treated with three different anti-hypertensives in ALLHAT. J Hypertens. 2014;32(7):1503–1513.
    1. Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358(6):580–591.
    1. Davies MJ, D’Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, Rossing P, Tsapas A, Wexler DJ, Buse JB. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) Diabetes Care. 2018;41(12):2669–2701.
    1. Schork A, Woern M, Kalbacher H, Voelter W, Nacken R, Bertog M, Haerteis S, Korbmacher C, Heyne N, Peter A, et al. Association of plasminuria with overhydration in patients with CKD. Clin J Am Soc Nephrol. 2016;11(5):761–769.
    1. Moissl U, Arias-Guillen M, Wabel P, Fontsere N, Carrera M, Campistol JM, Maduell F. Bioimpedance-guided fluid management in hemodialysis patients. Clin J Am Soc Nephrol. 2013;8(9):1575–1582.
    1. Moissl UM, Wabel P, Chamney PW, Bosaeus I, Levin NW, Bosy-Westphal A, Korth O, Muller MJ, Ellegard L, Malmros V, et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol Meas. 2006;27(9):921–933.
    1. Chamney PW, Wabel P, Moissl UM, Muller MJ, Bosy-Westphal A, Korth O, Fuller NJ. A whole-body model to distinguish excess fluid from the hydration of major body tissues. Am J Clin Nutr. 2007;85(1):80–89.
    1. Lee PC, Ganguly S, Goh SY. Weight loss associated with sodium–glucose cotransporter-2 inhibition: a review of evidence and underlying mechanisms. Obes Rev. 2018;19(12):1630–1641.
    1. Rajasekeran H, Lytvyn Y, Cherney DZ. Sodium–glucose cotransporter 2 inhibition and cardiovascular risk reduction in patients with type 2 diabetes: the emerging role of natriuresis. Kidney Int. 2016;89(3):524–526.
    1. Thomas MC, Cherney DZI. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia. 2018;61(10):2098–2107.
    1. Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Heise T, Bizzotto R, Mari A, Pieber TR, Muscelli E. Shift to fatty substrate utilization in response to sodium–glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65(5):1190–1195.
    1. Bouchi R, Terashima M, Sasahara Y, Asakawa M, Fukuda T, Takeuchi T, Nakano Y, Murakami M, Minami I, Izumiyama H, et al. Luseogliflozin reduces epicardial fat accumulation in patients with type 2 diabetes: a pilot study. Cardiovasc Diabetol. 2017;16(1):32.
    1. Sato T, Aizawa Y, Yuasa S, Kishi S, Fuse K, Fujita S, Ikeda Y, Kitazawa H, Takahashi M, Sato M, et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc Diabetol. 2018;17(1):6.
    1. Ferdinand KC, Izzo JL, Lee J, Meng L, George J, Salsali A, Seman L. Antihyperglycemic and blood pressure effects of empagliflozin in African Americans with type 2 diabetes and hypertension. Circulation. 2019
    1. Imprialos KP, Sarafidis PA, Karagiannis AI. Sodium–glucose cotransporter-2 inhibitors and blood pressure decrease: a valuable effect of a novel antidiabetic class? J Hypertens. 2015;33(11):2185–2197.
    1. McGurnaghan SJ, Brierley L, Caparrotta TM, McKeigue PM, Blackbourn LAK, Wild SH, Leese GP, McCrimmon RJ, McKnight JA, Pearson ER, et al. The effect of dapagliflozin on glycaemic control and other cardiovascular disease risk factors in type 2 diabetes mellitus: a real-world observational study. Diabetologia. 2019;62(4):621–632.
    1. Tikkanen I, Narko K, Zeller C, Green A, Salsali A, Broedl UC, Woerle HJ. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care. 2015;38(3):420–428.
    1. Tanaka H, Takano K, Iijima H, Kubo H, Maruyama N, Hashimoto T, Arakawa K, Togo M, Inagaki N, Kaku K. Factors affecting canagliflozin-induced transient urine volume increase in patients with type 2 diabetes mellitus. Adv Ther. 2017;34(2):436–451.
    1. Ansary TM, Nakano D, Nishiyama A. Diuretic effects of sodium glucose cotransporter 2 inhibitors and their influence on the renin–angiotensin system. Int J Mol Sci. 2019;20(3):629.
    1. Yoshimoto T, Furuki T, Kobori H, Miyakawa M, Imachi H, Murao K, Nishiyama A. Effects of sodium–glucose cotransporter 2 inhibitors on urinary excretion of intact and total angiotensinogen in patients with type 2 diabetes. J Investig Med. 2017;65(7):1057–1061.
    1. Zou H, Zhou B, Xu G. SGLT2 inhibitors: a novel choice for the combination therapy in diabetic kidney disease. Cardiovasc Diabetol. 2017;16(1):65.
    1. Wu JH, Foote C, Blomster J, Toyama T, Perkovic V, Sundstrom J, Neal B. Effects of sodium–glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2016;4(5):411–419.
    1. Imprialos KP, Boutari C, Stavropoulos K, Doumas M, Karagiannis AI. Stroke paradox with SGLT-2 inhibitors: a play of chance or a viscosity-mediated reality? J Neurol Neurosurg Psychiatry. 2017;88(3):249–253.
    1. Zhou Z, Lindley RI, Radholm K, Jenkins B, Watson J, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Shaw W, et al. Canagliflozin and stroke in type 2 diabetes mellitus. Stroke. 2019;50(2):396–404.
    1. Guo M, Ding J, Li J, Wang J, Zhang T, Liu C, Huang W, Long Y, Gao C, Xu Y. SGLT2 inhibitors and risk of stroke in patients with type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes Metab. 2018;20(8):1977–1982.
    1. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen OE, Woerle HJ, Broedl UC, Zinman B. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323–334.
    1. Merrill AJ, Cargill WH. Forward failure; the mechanism of cardiac edema formation in subjects with normal or high cardiac outputs. J Clin Investig. 1947;26(6):1190.
    1. Davies MJ, Merton K, Vijapurkar U, Yee J, Qiu R. Efficacy and safety of canagliflozin in patients with type 2 diabetes based on history of cardiovascular disease or cardiovascular risk factors: a post hoc analysis of pooled data. Cardiovasc Diabetol. 2017;16(1):40.
    1. Ohara K, Masuda T, Murakami T, Imai T, Yoshizawa H, Nakagawa S, Okada M, Miki A, Myoga A, Sugase T, et al. Effects of the SGLT2 inhibitor dapagliflozin on fluid distribution: a comparison study with furosemide and tolvaptan. Nephrology. 2018
    1. Shigiyama F, Kumashiro N, Miyagi M, Ikehara K, Kanda E, Uchino H, Hirose T. Effectiveness of dapagliflozin on vascular endothelial function and glycemic control in patients with early-stage type 2 diabetes mellitus: DEFENCE study. Cardiovasc Diabetol. 2017;16(1):84.

Source: PubMed

3
Abonnieren