A serological survey on neutralizing antibody titer of SARS convalescent sera

Jian-San Zhang, Jiang-Ting Chen, Yu-Xuan Liu, Zhen-Shan Zhang, Hong Gao, Yan Liu, Xu Wang, Ye Ning, Yu-Fen Liu, Qiang Gao, Jian-Guo Xu, Chuan Qin, Xiao-Ping Dong, Wei-Dong Yin, Jian-San Zhang, Jiang-Ting Chen, Yu-Xuan Liu, Zhen-Shan Zhang, Hong Gao, Yan Liu, Xu Wang, Ye Ning, Yu-Fen Liu, Qiang Gao, Jian-Guo Xu, Chuan Qin, Xiao-Ping Dong, Wei-Dong Yin

Abstract

A seroepidemiologic study was conducted in North China in 2003 to determine the neutralizing antibody titer of severe acute respiratory syndrome (SARS) convalescent sera. A total of 99 SARS convalescent serum samples were collected from patients from the Inner Mongolia Autonomous Region, Hebei Province, and Beijing 35-180 days after the onset of symptoms. The anti-SARS antibodies were detected by enzyme-linked immunosorbent assay (ELISA), neutralization assay, and Western blot. Eighty-seven serum samples were confirmed to be positive for SARS antibodies. The neutralizing antibody titer of the 87 positive sera was analyzed quantitatively by neutralization assay. The geometric mean titer (GMT) of the 87 convalescent sera was 1:61. The Kolmogorov-Smirnov test showed that the neutralizing antibody titers conform to normal distribution, which suggests that the average anti-SARS antibody level in this study was representative of the convalescent antibody level of the SARS population. This result could be useful for the development and quality control of SARS vaccines.

(c) 2005 Wiley-Liss, Inc

References

    1. Bisht H, Roberts A, Vogel L, Bukreyev A, Collins PL, Murphy BR, Subbarao K, Moss B. 2004. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci USA 101: 6641–6646.
    1. Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguiere AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348: 1967–1976.
    1. Gao W, Tamin A, Soloff A, D'Aiuto L, Nwanegbo E, Robbins PD, Bellini WJ, Barratt‐Boyes S. 2003. Effects of a SARS‐associated coronavirus vaccine in monkeys. Lancet 362: 1895–1896.
    1. Huang LR, Chiu CM, Yeh SH, Huang WH, Hsueh PR, Yang WZ, Yang JY, Su IJ, Chang SC, Chen PJ. 2004. Evaluation of antibody responses against SARS coronaviral nucleocapsid or spike proteins by immunoblotting or ELISA. J Med Virol 73: 338–346.
    1. Kuiken T, Fouchier RA, Schutten M, Rimmelzwaan GF, van Amerongen G, van Riel D, Laman JD, de Jong T, van Doornum G, Lim W, Ling AE, Chan PK, Tam JS, Zambon MC, Gopal R, Drosten C, van der Werf S, Escriou N, Manuguerra JC, Stohr K, Peiris JS, Osterhaus AD. 2003. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362: 263–270.
    1. Li G, Chen X, Xu A. 2003. Profile of specific antibodies to the SARS‐associated coronavirus. N Engl J Med 349: 508–509.
    1. Liu Y, Shi Y, Li P, Li L, Yi Y, Ma Q, Cao C. 2004. Profile of antibodies to the nucleocapsid protein of the severe acute respiratory syndrome (SARS) associated corona virus in probable SARS patients. Clin Diag Lab Immunol 11: 227–228.
    1. Marshall E, Enserink M. 2004. Caution urged on SARS vaccines. Science 303: 944–946.
    1. Ministry of Health of P.R. China. 2003. Clinical diagnostic criteria for severe acute respiratory syndrome (SARS) (on trial). .
    1. Reed LJ, Muench H. 1938. A simple method of estimating fifty percent endpoints. Am J Hyg 27: 493–497.
    1. Shi Y, Yi Y, Li P, Kuang T, Li L, Dong M, Ma Q, Cao C. 2003. Diagnosis of severe acute respiratory syndrome (SARS) by detection of SARS coronavirus nucleocapsid antibodies in an antigen‐capturing enzyme‐linked immunosorbent assay. J Clin Microbiol 41: 5781–5782.
    1. Subbarao K, McAuliffe J, Vogel L, Fahle G, Fischer S, Tatti K, Packard M, Shieh W, Zaki S, Murphy B. 2004. Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J Virol 78: 3572–3577.
    1. Wang HB, Liu JH, Ouyang XL, Yu Y, Ma SX, Li XY, Lu LC, Tian YP, Liy HY, Xu HM, Yao W. 2003. Detection of the anti‐SARS‐coronavirus antibody levels in 156 SARS Patients. Zhongguo Shi Yan Xue Ye Xue Za Zhi 11: 441–443.
    1. Watts J. 2004. SARS under control, lab‐safety questions remain. Lancet 363: 1780.
    1. Wu HS, Chiu SC, Tseng TC, Lin SF, Lin JH, Hsu YF, Wang MC, Lin TL, Yang WZ, Ferng TL, Huang KH, Hsu LC, Lee LL, Yang JY, Chen HY, Su SP, Yang SY, Lin TH, Su IJ. 2004. Serological and molecular biologic methods for SARS‐associated coronavirus infection. Taiwan Emerg Infect Dis 10: 304–310.
    1. Yang ZY, Kong WP, Huang Y, Roberts A, Murphy BR, Subbarao K, Nabel GJ. 2004. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428: 561–564.
    1. Zhang JS, Liu YX, Hu LX, Gao Q, Zhang ZS, Zhang XM, Chen JT, Gong XJ, Song LF, Liu YF, Li J, Li SF, Huang JF, Ning Y, Gao H, Qin C, Dong XP, Wei JG, Dong GM, Yin WD. 2005. Preparation and characterization of SARS in‐house reference antiserum. Vaccine (in press).

Source: PubMed

3
Abonnieren