Influence of scaler tip design on root surface roughness, tooth substance loss and patients' pain perception: an in vitro and a randomised clinical trial

Nur Ayman Abdul Hayei, Noor Azlin Yahya, Syarida Hasnur Safii, Roslan Saub, Rathna Devi Vaithilingam, Nor Adinar Baharuddin, Nur Ayman Abdul Hayei, Noor Azlin Yahya, Syarida Hasnur Safii, Roslan Saub, Rathna Devi Vaithilingam, Nor Adinar Baharuddin

Abstract

Background: The influence of scaler tip design on root surface roughness, tooth substance loss and patients' pain perception is investigated.

Methods: This article was divided into the following parts: Part 1 Surface roughness and substance loss: an in vitro study, which involves intact extracted teeth sectioned and treated using a piezoelectric ultrasonic device (PM200 EMS Piezon, Switzerland) with a conventional scaler tip (FS-407) and a Perio Slim (PS) scaler tip (Perio Slim DS-016A). All sectioned samples for tooth surface roughness (n = 20) and tooth substance loss (n = 46) analyses were measured and compared using a 3D surface texture analyser and scanning electron microscope (SEM) respectively, at baseline and following scaling. Part 2 Pain Perception: a clinical study, which was a split mouth study design including 30 participants with gingivitis and/or mild chronic periodontitis; treated with supra-gingival scaling from teeth #13 to #23. Subjects were randomised to group A or group B. Group A was treated first with PS scaler tips, whereas group B was treated first with conventional scaler tips. Pain perception was recorded using the visual analogue scale (VAS).

Results: In vitro study: both scaler tips caused significant reduction in root substance roughness after scaling (p < 0.05), but no significant difference between the two scaler tips (p > 0.05) was observed. The PS scaler tip caused statistically significantly less root substance loss (p < 0.05) when the initial thickness of the tooth was < 1000 µm. Clinical study: the participants reported significantly lesser pain score during scaling using the PS scaler tip (median: 3) than when using the conventional scaler tip (median: 5) (p < 0.05).

Conclusions: In the in vitro study, using a slim scaler tip design causes less tooth substance loss compared to a wider scaler tip design. In the clinical study, less pain was observed compared than a wide (conventional) scaler tip design.

Trial registration: ClinicalTrials.gov NCT04623723.

Keywords: Pain perception; Scaler tip design; Tooth substance loss; Tooth surface roughness; Ultrasonic scaler.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Diagram showing tooth preparation. a The mesial view of an incisor sectioned indicated by dotted line. An area of 3 mm × 5 mm area was marked apical to CEJ for roughness assessment, as indicated by R. Scaling was performed at R. b The cross-sectional view of the incisor tooth showing two reference points marked using a scaler tip
Fig. 2
Fig. 2
Portable ultrasonic scaler unit (PM200, EMS Switzerland)
Fig. 3
Fig. 3
Lateral view of conventional (C) and Perio Slim (PS) scaler tips (EMS Piezon, Switzerland)
Fig. 4
Fig. 4
Frontal view of conventional (C) and Perio Slim (PS) scaler tips (EMS Piezon, Switzerland)
Fig. 5
Fig. 5
Visual Analogue Scale (VAS)
Fig. 6
Fig. 6
Consort 2010 flow chart of the clinical study
Fig. 7
Fig. 7
Scanning electron micrograph showing a cross-section of the tooth before scaling at × 50 magnification. Two reference points shown: upper reference point (UR) and lower reference point (LR). Tooth thickness (D) is measured from the outer tooth surface (T) (dotted lines) to the reference points, UR and LR. c is cementum, d is dentine and p is pulp
Fig. 8
Fig. 8
Frequency distribution of VAS scores for Perio Slim (PS) and conventional scaler tips

References

    1. Westfelt E. Rationale of mechanical plaque control. J Clin Periodontol. 1996;23(3):263–267. doi: 10.1111/j.1600-051X.1996.tb02086.x.
    1. Badersten A, Nilveus R, Egelberg J. Effect of nonsurgical periodontal therapy: II. Severely advanced periodontitis. J Clin Periodontol. 1984;11(1):63–76. doi: 10.1111/j.1600-051X.1984.tb01309.x.
    1. Busslinger A, Lampe K, Beuchat M, Lehmann B. A comparative in vitro study of a magnetostrictive and a piezoelectric ultrasonic scaling instrument. J Clin Periodontol. 2001;28(7):642–649. doi: 10.1034/j.1600-051x.2001.028007642.x.
    1. Lea SC, Landini G, Walmsley AD. Displacement amplitude of ultrasonic scaler inserts. J Clin Periodontol. 2003;30(6):505–510. doi: 10.1034/j.1600-051X.2003.00012.x.
    1. Lea SC, Landini G, Walmsley AD. Ultrasonic scaler tip performance under various load conditions. J Clin Periodontol. 2003;30(10):876–881. doi: 10.1034/j.1600-051X.2003.00395.x.
    1. Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implant Res. 2006;17(S2):68–81. doi: 10.1111/j.1600-0501.2006.01353.x.
    1. Von Troil B, Needleman I, Sanz M. A systematic review of the prevalence of root sensitivity following periodontal therapy. J Clin Periodontol. 2002;29:173–177. doi: 10.1034/j.1600-051X.29.s3.10.x.
    1. Folwaczny M, Merkel U, Mehl A, Hickel R. Influence of parameters on root surface roughness following treatment with a magnetostrictive ultrasonic scaler: an in vitro study. J Periodontol. 2004;75(9):1221–1226. doi: 10.1902/jop.2004.75.9.1221.
    1. Kawashima H, Sato S, Kishida M, Ito K. A comparison of root surface instrumentation using two piezoelectric ultrasonic scalers and a hand scaler in vivo. J Periodontal Res. 2007;42(1):90–95. doi: 10.1111/j.1600-0765.2006.00924.x.
    1. Lea SC, Felver B, Landini G, Walmsley AD. Ultrasonic scaler oscillations and tooth-surface defects. J Dent Res. 2009;88(3):229–234. doi: 10.1177/0022034508330267.
    1. Rupf S, Brader I, Vonderlind D, Kannengiesser S, Eschrich K, Roeder I, Merte K. In vitro, clinical, and microbiological evaluation of a linear oscillating device for scaling and root planing. J Periodontol. 2005;76(11):1942–1949. doi: 10.1902/jop.2005.76.11.1942.
    1. George J, Eraly SM, Eraly S, Parameswaran A, John J, Khader MA. Evaluation of root surface of periodontally involved teeth after manual, ultrasonic, and diode laser instrumentation. J Int Oral Health. 2016;8(9):927.
    1. Jepsen S, Ayna M, Hedderich J, Eberhard J. Significant influence of scaler tip design on root substance loss resulting from ultrasonic scaling: a laserprofilometric in vitro study. J Clin Periodontol. 2004;31(11):1003–1006. doi: 10.1111/j.1600-051X.2004.00601.x.
    1. Wilson TG., Jr Compliance and its role in periodontal therapy. Periodontol. 1996;12(1):16–23. doi: 10.1111/j.1600-0757.1996.tb00075.x.
    1. Berggren U, Meynert G. Dental fear and avoidance: causes, symptoms, and consequences. J Am Dent Assoc. 1984;109(2):247–251. doi: 10.14219/jada.archive.1984.0328.
    1. Kleinknecht RK, Klepac RA, Alexander LD. Origins and characteristics of fear of dentistry. J Am Dent Assoc. 1973;86:842–848. doi: 10.14219/jada.archive.1973.0165.
    1. Braun A, Jepsen S, Krause F. Subjective intensity of pain during ultrasonic supragingival calculus removal. J Clin Periodontol. 2007;34(8):668–672. doi: 10.1111/j.1600-051X.2007.01100.x.
    1. Ainamo J. Development of the World Health Organization (WHO) community periodontal index of treatment needs (CPITN) Int Dent J. 1982;32:281–291.
    1. Nazri MH, Azmi MF, Baharuddin NA, Saub R, Hayei NA, Vaithilingam RD. Influence of scaler tip design on intensity of pain and discomfort during scaling. Ann Dent Univ Malaya. 2018;25(2):36–42.
    1. Mayr S, Erdfelder E, Buchner A, Faul F. A short tutorial of GPower. Tutor Quant Methods Psychol. 2007;3(2):51–59. doi: 10.20982/tqmp.03.2.p051.
    1. Arabaci T, Ciçek Y, Özgöz M, Canakçi V, Canakçi CF, Eltas A. The comparison of the effects of three types of piezoelectric ultrasonic tips and air polishing system on the filling materials: an in vitro study. Int J Dent Hygiene. 2007;5(4):205–210. doi: 10.1111/j.1601-5037.2007.00265.x.
    1. Arabaci T, Cicek Y, Dilsiz A, Erdogan IY, Kose O, Kizildağ A. Influence of tip wear of piezoelectric ultrasonic scalers on root surface roughness at different working parameters. A profilometric and atomic force microscopy study. Int J Dent Hygiene. 2013;11(1):69–74. doi: 10.1111/idh.12003.
    1. Lea SC, Landini G, Walmsley AD. The effect of wear on ultrasonic scaler tip displacement amplitude. J Clin Periodontol. 2006;33(1):37–41. doi: 10.1111/j.1600-051X.2005.00861.x.
    1. Cirano FR, Romito GA, Todescan JH. Determination of root dentin and cementum micro hardness. Braz J Oral Sci. 2004;3(8):420–424.
    1. Flemmig TF, Petersilka GJ, Mehl A, Hickel R, Klaiber B. The effect of working parameters on root substance removal using a piezoelectric ultrasonic sealer in vitro. J Clin Periodontol. 1998;25(2):158–163. doi: 10.1111/j.1600-051X.1998.tb02422.x.
    1. Lie T, Leknes KN. Evaluation of the effect on root surfaces of air turbine sealers and ultrasonic instrumentation. J Periodontol. 1985;56(9):522–531. doi: 10.1902/jop.1985.56.9.522.
    1. Braun A, Krause F, Nolden R, Frentzen M. Subjective intensity of pain during the treatment of periodontal lesions with the VectorTM-system. J Periodontal Res. 2003;38(2):135–140. doi: 10.1034/j.1600-0765.2003.00356.x.
    1. Muhney KA, Dechow PC. Research patients' perception of pain during ultrasonic debridement: a comparison between piezoelectric and magnetostrictive scalers. J Dent Hygiene. 2010;84(4):185–189.
    1. Campbell T, O'Brien E, Van Boven L, Schwarz N, Ubel P. Too much experience: a desensitization bias in emotional perspective taking. J Pers Soc Psychol. 2014;106(2):272. doi: 10.1037/a0035148.

Source: PubMed

3
Abonnieren